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On the noise prediction for serrated
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An analytical model is developed for the prediction of noise radiated by an aerofoil
with leading-edge serration in a subsonic turbulent stream. The model makes use of
Fourier expansion and Schwarzschild techniques in order to solve a set of coupled
differential equations iteratively and express the far-field sound power spectral density
in terms of the statistics of incoming turbulent upwash velocity. The model has shown
that the primary noise-reduction mechanism is due to the destructive interference of
the scattered pressure induced by the leading-edge serrations. It has also shown
that in order to achieve significant sound reduction, the serration must satisfy two
geometrical criteria related to the serration sharpness and hydrodynamic properties of
the turbulence. A parametric study has been carried out and it is shown that serrations
can reduce the overall sound pressure level at most radiation angles, particularly at
small aft angles. The sound directivity results have also shown that the use of
leading-edge serration does not significantly change the dipolar pattern of the far-field
noise at low frequencies, but it changes the cardioid directivity pattern associated
with radiation from straight-edge scattering at high frequencies to a tilted dipolar
pattern.

Key words: aeroacoustics, flow–structure interactions, noise control

1. Introduction
The issue of noise generation from aerofoils has been the subject of much

theoretical, experimental and computational research over the past few decades
and is of great importance in many applications, such as jet engines, wind turbine
blades, high-speed propellers, helicopter blades, etc. Aerofoil noise can generally
be categorized as self-noise and inflow-turbulence interaction noise. The aerofoil
self-noise is due to the interaction of the aerofoil with its own boundary layer and the
flow instabilities present in the boundary layer (Brooks, Pope & Marcolini 1989). The
aerofoil inflow-turbulence interaction noise, on the other hand, is due to the interaction
of an incoming unsteady gust with the aerofoil. The aerofoil inflow-turbulence
interaction noise is a significant contributor in systems involving multiple rows of
blades, such as jet engines and contra-rotating propellers. For instance, the wake
flow shed by the aircraft engine fan blades interacts with following blades and vanes,

† Email addresses for correspondence: bl362@cam.ac.uk, m.azarpeyvand@bristol.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

42
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

en
dl

eb
ur

y 
Li

br
ar

y 
of

 M
us

ic
, o

n 
09

 Ju
n 

20
19

 a
t 1

0:
43

:1
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

http://orcid.org/0000-0002-8751-7875
mailto:bl362@cam.ac.uk
mailto:m.azarpeyvand@bristol.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.429&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.429&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.429&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.429&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.429&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.429&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.429&domain=pdf
https://doi.org/10.1017/jfm.2017.429
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


206 B. Lyu and M. Azarpeyvand

causing leading-edge noise from the rear blades. Likewise, the interaction of the wake
flow from the front row blades in a contra-rotating open rotor (CROR) system with
the downstream blades is considered as the main source of broadband noise from
such configurations. Also, the interaction of atmospheric turbulence with the blades
of wind turbines can similarly cause high levels of low-frequency broadband noise.

The prediction of aerofoil inflow-turbulence interaction noise has been the subject
of much research over the past few decades (Sears 1941; Graham 1970; Amiet 1975;
Devenport, Staubs & Glegg 2010). Sears originally considered the interaction of an
unsteady sinusoidal gust with a flat plate and developed a model for the prediction of
the plate aerodynamic response under such unsteady loading. Sears’ model was later
further developed and extended to compressible flows by Graham (1970) and Amiet
(1975). In Amiet’s model, the blade response function to an incoming gust is first
obtained using the Schwarzschild technique and the far-field sound is then formulated
based on the theories of Kirchoff and Curle (1955) using the radiation integral.
Amiet’s model shows that the far-field sound power spectral density (PSD) is directly
related to the energy spectrum of the velocity fluctuations of the incoming gust. It
has been widely shown that Amiet’s model can provide fairly good comparisons with
experimental observations when the turbulence statistical quantities are known. The
effects of aerofoil geometrical parameters, such as angle of attack, aerofoil thickness,
camber, etc. on the generation of leading-edge turbulence interaction noise has also
been the subject of some theoretical studies (Goldstein & Atassi 1976; Goldstein
1978; Atassi, Fang & Patrick 1993; Myers & Kerschen 1995, 1997; Devenport et al.
2010; Roger & Carazo 2010).

The use of leading-edge treatments, inspired by the flippers of humpback whales
(Bushnell & Moore 1991; Fish & Battle 1995; Miklosovic & Murray 2004; Fish,
Howle & Murray 2008; Pedro & Kobayashi 2008), has been shown to lead to
improved aerodynamic and hydrodynamic performance, particularly at high angles
of attack. The recent extensive experimental work on the effects of leading-edge
serrations on the generation and control of turbulence interaction noise has shown
that the use of such treatments can result in significant noise reduction over a wide
range of frequencies (Hansen, Kelso & Doolan 2012; Narayanan et al. 2015). For
example, Narayanan et al. (2015) showed that using sinusoidal leading-edge serrations
for a flat plate and NACA-65 type aerofoil leads to significant noise reduction. Noise
reduction was found to be significantly greater for the flat plates. It was also shown
that the sound power reduction level is more sensitive to the serration amplitude
and less sensitive to the serration wavelength. In a more recent study, it was shown
that the use of complex leading-edge serrations, i.e. serrations formed from the
superposition of two serration profiles of different frequency, amplitude and phase,
can produce greater noise reduction than single wavelength serrations (Chaitanya
et al. 2016).

Besides the experimental activities, the problem of aerofoil inflow-turbulence
interaction noise reduction using wavy edges has recently been investigated in several
computational studies (Lau, Haeri & Kim 2013; Kim, Haeri & Joseph 2016; Turner
& Kim 2016). In the work of Lau et al. (2013), the effectiveness of leading-edge
serrations for turbulence interaction noise reduction was examined numerically. It
was found that the hydrodynamic quantity k1h plays an important role in determining
the effectiveness of the serration, where k1 is the hydrodynamic wavenumber of the
disturbance in the streamwise direction and the serration root-to-tip distance is 2h. The
serration wavelength λ, on the other hand, was found to be less important. However,
one should note that the study assumed a perfect coherence in the spanwise direction,
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which may not be the case in real-world applications. The three-dimensionality
of the disturbance was accounted for in the work of Kim et al. (2016) using
synthetically generated turbulence. It was argued that both a source cut-off and
destructive interference effects contributed to the sound reduction. Both of these two
numerical studies used a regular sinusoidal serration profile attached to a flat plate.
In a more recent study by Turner & Kim (2016), a dual-frequency wavy serration
profile was proposed and it was found that the more complex serration geometries
can increase noise reduction. It is again worth noting that the upstream disturbance
was assumed to be perfectly correlated in the spanwise direction.

The above discussion provides a comprehensive literature review of the use
of leading-edge serrations as a passive method for the reduction of aerofoil
inflow-turbulence interaction noise. It is, however, worth mentioning that the topic of
using leading-edge serrations for improving the aerodynamic performance of aerofoils
has attracted much attention over the past few decades. A great many experimental
and numerical studies have been conducted to investigate the effects of leading-edge
modifications on aerofoil aerodynamic forces, early separation and stall behaviour,
unsteady forces, etc., at different flow regimes. The detailed literature review of the
aerodynamic performance of serrated aerofoils is beyond the scope of this study,
but interested readers can refer to some of the very first activities (Soderman 1972)
and more recent research (Miklosovic & Murray 2004; Johari et al. 2007; Hansen,
Kelso & Dally 2011), where detailed literature reviews and comprehensive studies
are provided.

Despite the significant body of work on noise reduction using leading-edge
serrations, no mathematical model has yet been developed to relate the radiated
noise to the serration geometrical parameters and turbulence quantities. While the
experimental observations (Paterson & Amiet 1976; Roger & Carazo 2010; Roger,
Schram & Santana 2013; Narayanan et al. 2015) and computational studies (Atassi
et al. 1993; Hixon et al. 2006; Allampalli et al. 2009; Gill, Zhang & Joseph 2013;
Lau et al. 2013; Kim et al. 2016; Turner & Kim 2016) have provided the evidence
that leading-edge serrations can lead to significant noise reduction, an accurate and
robust analytical model can help in better understanding the mechanism of such noise
reductions. An accurate analytical model will also enable us to assess the effectiveness
of leading-edge serrations at high Mach numbers and Reynolds numbers, relevant to
turbomachinery applications, where numerical approaches are costly and experiments
difficult. This will also provide us with a tool for blade-design optimization purposes.
In this paper, we aim to extend Amiet’s leading-edge noise-prediction model to
the case of serrated leading edges and provide a parametric study of the effects of
serrations on far-field noise. It will be shown in § 2 that the introduction of serrations
will lead to a complex differential equation, which is solved using the Schwarzschild
technique in an iterative manner. The scattered pressure loading will then be used
in a radiation integral and the far-field PSD will be found in terms of the incoming
gust statistical quantities and blade response function. Section 3 presents an extensive
parametric study of the proposed model and results will be provided for far-field
sound pressure level (SPL), noise directivity and overall SPL. The noise-reduction
mechanism will also be discussed in this section. Section 5 concludes the paper and
lists our future plans.

2. Analytical formulation
In this section, we present a detailed derivation for the prediction of noise due to

the interaction of an unsteady gust with a flat plate with a serrated leading edge.
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c

d

2h

Observer

FIGURE 1. Schematic of a flat plate with a sawtooth-like leading edge.

The analytical model developed is based on Amiet’s model and the Schwarzschild
technique for solving the Helmholtz equation with appropriate boundary conditions.

2.1. Leading-edge noise modelling
Let us consider an infinitesimally thin flat plate with leading-edge serrations, as shown
in figure 1, with an averaged chord length c and spanwise length d. A Cartesian
coordinate system is chosen such that the serration profile is an oscillatory function
of zero mean. When the acoustic wavelength is smaller than the chord length c, the
flat plate can be considered as an infinitely long plate without a trailing edge (Amiet
1976b, 1978; Roger & Moreau 2005). When the frequencies are high enough such that
the semi-infinite simplification is permissible, the plate can also be considered infinite
in the spanwise direction when it has a relatively large aspect ratio, typically larger
than 3 (Amiet 1978; Roger & Carazo 2010). Let x′, y′ and z′ denote the streamwise,
spanwise and normal directions to the plate, respectively. The observer point is located
at (x1, x2, x3), as shown in figure 1.

As mentioned above, the origin of the coordinate system (x′, y′, z′) is chosen such
that the serration profile, H(y′), is an oscillatory function of zero mean and that
H(y′)= 0 in the absence of serrations. Though the method developed in this section
can be used for any general periodic serrations, in this paper we only focus on the
sawtooth serration, as shown in figure 1, where the root-to-tip length is 2h and the
serration wavelength is λ. The parameter σ = 4h/λ will also be used to quantify the
sharpness of the sawtooth serrations. To obtain a mathematical description of H(y′),
let us consider a single sawtooth centred on the coordinate origin and let (λ0, ε0),
(λ1, ε1) and (λ2, ε2) denote the three joint-points defining this single sawtooth, as
shown in figure 2. The serration profile function H(y′) can therefore be defined as

H(y′)=

{
σ0(y′ − λ0 −mλ)+ ε0, λ0 +mλ< y′ 6 λ1 +mλ
σ1(y′ − λ1 −mλ)+ ε1, λ1 +mλ< y′ 6 λ2 +mλ,

(2.1)

where σj = (εj+1 − εj)/(λj+1 − λj), j= 0, 1 and m= 0, ±1,±2,±3 · · · .
In this paper, we focus our attention on the unsteady upwash disturbance (Amiet

1975), denoted by w, that exists upstream of the leading edge, convecting downstream
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Joint point

Joint point

Joint point

2h

FIGURE 2. A schematic of the serration profile.

with the mean flow at a speed of U. According to Kovasznay (1953), the unsteady
motion on a uniform flow can be decomposed into vorticity, entropy and sound-wave
modes. When perturbation amplitudes are small such that linearization is permissible,
the three modes can be considered mutually independent. It is generally accepted that
the incident turbulence can be well represented by the vorticity mode, which convects
at the speed of the mean flow. Therefore, this study follows the same simplification
and the incoming gust is assumed to be frozen in the frame moving with the mean
flow, i.e. the velocity distribution is w(x′, y′, t)=wm(x′−Ut, y′), where t denotes time,
for some function wm(xm, ym) describing the distribution of upwash velocity in the
travelling coordinate system {xm, ym, zm}. In the plate fixed frame, the incoming gust
can be written in terms of its wavenumber components, w̃(k1, k2), as

w(x′, y′, t)=
∫∫

∞

−∞

w̃(k1, k2)ei(k1(x′−Ut)+k2y′) dk1 dk2, (2.2)

where the Fourier component w̃(k1, k2) is given by

w̃(k1, k2)=

(
1

2π

)2 ∫∫ L

−L
wm(xm, ym)e−i(k1xm+k2ym) dxm dym, (2.3)

where L is a large but finite number to avoid convergence difficulties and k1 and
k2 denote the Fourier wavenumbers in the streamwise and spanwise directions,
respectively. Using (2.2) one can find

w(x′, y′, ω) =
1

2π

∫
w(x′, y′, t)eiωt dt

=
1
U

∫
∞

−∞

w̃(ω/U, k2)ei(ωx′/U+k2y′) dk2, (2.4)

where ω represents angular frequency.
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210 B. Lyu and M. Azarpeyvand

Equation (2.4) suggests that a general unsteady gust can be decomposed into a set
of plane-wave-like gusts, each of which takes the form of

wi =wiae−i(ωt−k1x′−k2y′), (2.5)

where k1 = ω/U and wia denotes the magnitude of the upwash velocity and is a
function of both ω and k2. The scattered velocity potential φt is governed by the
convective wave equation, i.e.

∇
2φt −

1
c2

0

(
∂

∂t
+U

∂

∂x′

)2

φt = 0, (2.6)

where c0 denotes the speed of sound. Hence, if we can find the far-field sound
induced by a single gust by solving the wave equation subject to appropriate boundary
conditions upstream of the leading edge and over the surface of the serrated plate,
then a more general solution can readily be obtained by performing an integration
over k2, as shown in (2.4). The next part of this section is therefore devoted to the
single-gust solution for a flat plate with sawtooth leading-edge serrations.

2.2. Single-gust solution
The full solution φt to (2.6) can be written in terms of an initial and a residual
potential part. The initial potential, φi, is used to cancel the upwash velocity on the
plane z′= 0. Upon defining k=ω/c0, β2

= 1−M2
0 and M0=U/c0, one can show that

on the plane z′ = 0, φi takes the form of

φi =−Φiae−i(ωt−k1x′−k2y′), (2.7)

where Φia ≡−wia/
√
(k1β + kM0/β)2 + k2

2 − (k/β)2.
The Schwarzschild technique can then be used to calculate the second part, i.e.

residual term, of the potential field, φ, which would cancel the potential field of the
initial solution upstream of the leading edge (such that we have φt = 0 for x′< 0 and
z′ = 0). Thus, the boundary conditions at z′ = 0 for φ read

∂φ

∂z′
= 0, x′ >H(y′)

φ =Φiae−i(ωt−k1x′−k2y′), x′ 6 H(y′).

 (2.8)

The equation governing the second-part potential field φ remains unchanged, i.e.

∇
2φ −

1
c2

0

(
∂

∂t
+U

∂

∂x′

)2

φ = 0. (2.9)

Equation (2.9) together with the boundary conditions given in (2.8) forms a well-posed
mathematical problem and we attempt to solve it in this section.

2.2.1. Boundary-value problem
With the assumption of harmonic perturbation φ = Φ(x′, y′, z′)e−iωt, equation (2.9)

reduces to

β2 ∂
2Φ

∂x′2
+
∂2Φ

∂z′2
+
∂2Φ

∂y′2
+ 2ikM0

∂Φ

∂x′
+ k2Φ = 0. (2.10)
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On the noise prediction for serrated leading edges 211

In order to make the boundary conditions in (2.8) independent of y′, the coordinate
transformation x = x′ − H(y′), y = y′, z = z′ is used (Roger et al. 2013), which leads
to the following differential equation (Sinayoko, Azarpeyvand & Lyu 2014; Lyu,
Azarpeyvand & Sinayoko 2015, 2016a):

(β2
+H′2(y))

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
− 2H′(y)

∂2Φ

∂x∂y
+ (2iM0k−H′′(y))

∂Φ

∂x
+ k2Φ = 0,

(2.11)
where H′(y) and H′′(y) denote the first and second derivatives of H(y) with respect
to y. The boundary conditions now read

Φ(x, y, 0)=Φiaei(k1x+k2y)eik1H(y), x 6 0
∂Φ(x, y, 0)/∂z= 0, x> 0.

}
(2.12)

The set of equations (2.11) and (2.12) forms a linear boundary-value problem.
However, unlike the governing equation for a straight leading edge (Amiet 1976a),
the coefficients in (2.11) now depend on y and therefore the standard ‘separation
of variables’ technique cannot be easily applied. Therefore, a Fourier expansion
technique will be initially employed to eliminate the y dependency in (2.11), as
explained in the following section.

2.2.2. Fourier expansion
Using both the infinite-span and serration periodicity assumptions, one can make use

of the Fourier series in terms of the new coordinates (x, y, z) to expand the induced
potential due to the gust interaction as

Φ(x, y, z)=
∞∑
−∞

Φn(x, z)eik2ny, (2.13)

where k2n = k2 + 2nπ/λ. Substituting this expansion into (2.11) and multiplying the
resulting equation by e−ik2n′ y, then integrating over y from −λ/2 to λ/2, one can
readily show that{

β2 ∂
2

∂x2
+
∂2

∂z2
+ 2ikM0

∂

∂x
+ (k2

− k2
2n′)

}
Φn′

+
1
λ

∫ λ/2
−λ/2

∞∑
n=−∞

{
H′2

∂2

∂x2
− (H′′ + 2ik2nH′)

∂

∂x

}
Φnei(2(n−n′)π/λ)y dy= 0. (2.14)

If both H′(y) and H′′(y) were constant within the entire wavelength, the summation
over different modes in (2.14) would vanish and one would obtain an equation which
only involves one mode, say n′. However, for the profile of the sawtooth serration,
H′(y), is not continuous and hence H′′(y) is singular at the joint-points (λi, εi). We
use the generalized function δ(y) to describe the singularities, i.e.

H′(y)=

{
σ0, λ0 +mλ< y 6 λ1 +mλ
σ1, λ1 +mλ< y 6 λ2 +mλ,

H′′(y)=
∞∑

m=−∞

(−1)m+12σδ(x−mλ/2),

 (2.15)
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212 B. Lyu and M. Azarpeyvand

where σ = 4h/λ signifies the serration sharpness. As
∫
∞

−∞
δ(x)f (x) dx = f (0), the

summation in (2.14) cannot be dropped, indicating that different modes are coupled
together. Substituting the serration profile function and its derivatives, equation (2.1)
and (2.15), into (2.14) and making use of the fact that

∫
∞

−∞
f (x)δ(x− τ) dx= f (τ ), we

obtain {
(β2
+ σ 2)

∂2

∂x2
+
∂2

∂z2
+ 2ikM0

∂

∂x
+ (k2

− k2
2n′)

}
Φn′

=−
4σ
λ

∑
n−n′=odd

(
1−

k2λ+ 2nπ

(n− n′)π

)
∂Φn

∂x
. (2.16)

We can write the set of differential equations obtained above in a more compact
matrix form. Using a linear operator

D=
{
(β2
+ σ 2)

∂2

∂x2
+
∂2

∂z2
+ 2ikM0

∂

∂x

}
, (2.17)

and a vector of functions

Φ = (· · ·Φ−n′(x, z), Φ−n′+1(x, z), . . . Φn′−1(x, z), Φn′(x, z), . . .)T , (2.18)

the coupled equations in (2.16) can be written as

DΦ = AΦ + B
∂Φ

∂x
, (2.19)

where the symbol T in (2.18) denotes the transpose of a matrix. Matrices A and B
denote the coefficient matrices of Φ and ∂Φ/∂x, respectively, and the elements Aml
and Bml, representing the entry corresponding to mode m in row and l in column of
matrices A and B, are given by

Aml = (k2
2m − k2)δml, Bml =


4σ
λ

m+ l+ k2λ/π

l−m
, m− l= odd

0, m− l= even,
(2.20a,b)

where δml represents the Kronecker delta.
The boundary condition for each mode n can be obtained by substituting the profile

geometry, (2.1), into the boundary conditions, (2.12), and performing the same Fourier
expansions:

Φn(x, 0)=Φiaaneik1x, x 6 0
∂Φn

∂z
(x, 0)= 0, x> 0,

 (2.21)

where an is defined as

an =
1
λ

∫ λ/2
−λ/2

eik1H(y)e−i(2nπ/λ)y dy. (2.22)

Before we attempt to solve (2.19), it is worth examining some of its important
properties. Matrix A is obviously a diagonal matrix and if B was also diagonal, we
would be able to solve each mode individually, i.e. no mode coupling. However, B is
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On the noise prediction for serrated leading edges 213

not a diagonal matrix and different modes are coupled together, in the sense that Φn,
for example, appears in the governing equation of Φm. This means that every mode
is interacting with the other modes and cannot be solved individually. Also, it can be
observed from the expression of B in (2.20) that the strength of the mode coupling is
proportional to σ/λ. This indicates that mode coupling becomes stronger for sharper
serrations. Obviously, the mode-coupling phenomenon fades away when the serration
amplitude 2h is very small and the solution is reduced to that of Amiet’s model for a
straight leading edge. Also, at very low frequencies it is expected that the contribution
of higher-order modes becomes negligible compared with the zero mode. Thus, for the
equation governing the zero mode, the coupling with higher modes becomes weak.
One can, therefore, solve the zero mode individually and calculate the potential with
only the contribution of the zero mode. But this only works for very low frequencies
or for very wide serrations. The coupling effect becomes more pronounced at high
frequencies. To solve these coupled equations at relatively high frequencies we will
use an iterative procedure, which is explained in the following section.

2.2.3. Induced potential field
To obtain the induced potential field, equation (2.19) together with the boundary

conditions in (2.21) needs to be solved. For a set of linear algebraic equations, it
is known that its solution can be sought via the so-called iterative process (Süli &
Mayers 2003). One can draw an analogy between these partial differential equations
(PDEs) and the linear algebraic equations. In what follows, we shall explain the
iterative procedure employed for solving our set of PDEs (Lyu et al. 2015; Lyu,
Azarpeyvand & Sinayoko 2016b).

Substituting an assumed initial value Φ(0) into the coupling term in (2.19), one can
obtain

DΦ =AΦ +B
∂Φ(0)

∂x
. (2.23)

Solving (2.23) gives a new set of solutions Φ(1). By replacing Φ(0) in (2.23) with Φ(1),
we obtain a new wave equation,

DΦ =AΦ +B
∂Φ(1)

∂x
. (2.24)

Again, solving (2.24) gives a new set of solutions Φ(2). Continuing this process, we
obtain a solution sequence, Φ(0), Φ(1), Φ(2), Φ(3)

· · · . If the sequence appears to be
convergent, we manage to obtain the solution to (2.19).

The initial value Φ(0) used to start the first iteration can be found by ignoring all
the coupling terms, i.e. with B= 0, and by solving each equation individually using
the standard Schwarzschild technique. The solution to each equation in the uncoupled
matrix equation

DΦ =AΦ (2.25)

can be found as follows. Upon making use of the transformation of

Φn′ = Φ̄n′e−i(kM0/(β
2
+σ 2))x, (2.26)

the individual equations in (2.25) reduce to{
(β2
+ σ 2)

∂2

∂x2
+
∂2

∂z2
+K2

n′(β
2
+ σ 2)

}
Φ̄n′ = 0, (2.27)
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214 B. Lyu and M. Azarpeyvand

where
Kn′ =

√
k2(1+ σ 2)− k2

2n′(β
2 + σ 2)/(β2

+ σ 2). (2.28)

Making use of X = x and Z =
√
β2 + σ 2z transformations, one can verify that (2.27)

reduces to the standard Schwarzschild problem, as(
∂

∂X2
+

∂

∂Z2
+K2

n′

)
Φ̄n′(X, Z)= 0,

Φ̄n′(X, 0)=Φiaan′eik1Xei((kM0)/(β
2
+σ 2))X, X 6 0,

∂Φ̄n′

∂X
(X, 0)= 0, X > 0.


(2.29)

The Schwarzschild technique entails that, for X > 0, i.e. over the plate, the solution
for (2.29) can be found from (Landahl 1961; Amiet 1976b, 1978)

Φ̄n′(X, 0)=
1
π

∫ 0

−∞

√
−X
ξ

eiKn′ (X−ξ)

X − ξ
Φ̄n′(ξ , 0) dξ . (2.30)

Evaluating (2.30) and transforming back to the physical coordinate system (x) yields
the initial solution

Φ
(0)
n′ =−Φiaeik1xan′((1+ i)E∗(µn′x)− 1), (2.31)

where Φ(0)
n′ is the element of vector Φ(0) corresponding to the n′th mode, and

µn′ =−Kn′ + k1 +
kM0

β2 + σ 2
,

E∗(x)=
∫ x

0

e−it

√
2πt

dt.

 (2.32)

The initial solutions obtained by ignoring all the coupling terms denote the
non-coupled part of the exact solution of each mode, which implies that an nth
mode excitation (x < 0) produces only an nth mode response (x > 0). The iteration
procedure will add a coupled part to the solution of each mode.

As discussed above, by substituting Φ(0) into the coupling terms on the right-hand
side of (2.19), one obtains

DΦ =AΦ +B
∂Φ(0)

∂x
. (2.33)

However, it should be noted that due to the inhomogeneous nature of these equations,
they cannot be solved using the standard Schwarzschild technique. One therefore
needs to manipulate these equations so that they change to homogeneous ones. Note
that Φ(0) satisfies (2.25), hence, for x 6= 0, where Φ(0) is first-order continuously
differentiable, the following equation holds:

D
∂Φ(0)

∂x
=A

∂Φ(0)

∂x
. (2.34)
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On the noise prediction for serrated leading edges 215

Making use of (2.34), one can show that (2.33) can be equivalently written as

D
(

Φ + α
∂Φ(0)

∂x

)
=A

(
Φ + α

∂Φ(0)

∂x

)
, (2.35)

where α is a coefficient matrix whose entries are

αml =
Bml

k2
2m − k2

2l
=


−4h

π2(m− l)2
, m− l= odd

0, m− l= even.
(2.36)

It should be noted that for z = 0 (2.35) only holds when x 6= 0, not for x ∈ R.
In order to apply the Schwarzschild technique, it must be valid over the whole
domain. However, since the singularity of ∂Φ(0)/∂x only exists at x = 0, similar to
the differentiation of H(y), we may again make use of the generalized function to
account for this singularity. Let ∂Φ̂(0)/∂x denote the generalized differentiation, which
allows the presence of generalized functions at singular point x = 0 but is equal to
∂Φ(0)/∂x elsewhere, then equation

D
∂Φ̂(0)

∂x
=A

∂Φ̂(0)

∂x
(2.37)

needs to hold for any x ∈ R. The Schwarzschild technique suggests that if (2.37)
does hold, then the routine application of the steps described in (2.27) to (2.31)
shall recover the value of ∂Φ(0)/∂x for x> 0. Thus, one can show that the intended
∂Φ̂(0)/∂x can indeed be found as

∂Φ̂
(0)
n′

∂x
(x, 0)=

∂Φ
(0)
n′

∂x
(x, 0)−Φiaan′(1+ i)(−

√
µn′)
√
−2πxδ(x), (2.38)

where ∂Φ̂(0)
n′ /∂x denotes the element of ∂Φ̂(0)/∂x corresponding to the n′th mode and∫ 0

−∞

δ(x) dx=
1
2
. (2.39)

Now, the first iterated solution, Φ(1), can be obtained by solving the following
equation

D
(

Φ + α
∂Φ̂(0)

∂x

)
=A

(
Φ + α

∂Φ̂(0)

∂x

)
, (2.40)

using the steps described in (2.27) to (2.31). Continuing this iteration process gives
Φ(2), Φ(3), . . . , and the exact solutions Φt after adding the initial potential field can
be expressed as

Φt(x, 0)=N(x)+C(1)(x)+C(2)(x)+C(3)(x)+ · · · , (2.41)

where the non-coupled part is denoted by N, while the coupled parts are denoted by
C(i) (i = 1, 2, 3, . . .). Here only the entries of N and C(1) corresponding to mode n′
are presented, which are

Nn′(x)=−Φiaeik1xan′(1+ i)E∗(µn′x) (2.42)
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216 B. Lyu and M. Azarpeyvand

and

C(1)
n′ (x) = −Φiaeik1x(1+ i)

∞∑
m=−∞

αn′mam

(
ik1(E∗(µn′x)− E∗(µmx))

+

√
µm

2πx
(e−iµn′ x − e−iµmx)

)
(2.43)

respectively. The result of the second iteration is rather complex and is provided
in the appendix. It is worth noting that due to the iterative nature of this solution,
the function C(i) becomes more and more complex as i increases. However, if C(i)

vanishes sufficiently quickly, the higher orders can be dropped without causing
significant errors. This appears to be the case for the frequency range of interest
(kc< 102) considered in this paper.

Substituting (2.42) and (2.43) into (2.41), a first-order approximation of the exact
solution is obtained. The induced potential due to the gust interaction is finally
obtained by summing the modal solutions over all different modes and transforming
back to the original physical coordinate system, namely

Φt(x′, y′, 0)=
∞∑

n′=−∞

[Nn′ +C(1)
n′ +C(2)

n′ + · · ·](x
′
−H(y′), 0)eik2n′ y

′

, (2.44)

where the Nn′ and C(1)
n′ functions are defined in (2.42) and (2.43) respectively, C(2)

n′ can
be found in the appendix and the terms in the second parenthesis are the arguments
for the Nn′ and C(i)

n′ (i= 1, 2, 3, . . .) functions.
As shown in (2.44), the induced potential field can now be expressed in terms of an

infinite series. In a limiting case, when h= 0, all the C(i)
n′ (i= 1, 2, 3, . . .) terms on the

right-hand side of (2.44) vanish and Amiet’s formulation is recovered. An interesting
fact about the solution developed here is the proportionality of C(i)

n′ ∝hi (i=1,2,3, . . .)
and thus (2.44) may be understood as a perturbation solution with respect to h. It can
be shown that at sufficiently low frequencies, i.e. k1h < π2/4, the infinite series is
convergent. At higher frequencies, the series still appears to be convergent, but it can
be expected that for a proper approximation, a higher truncation number and higher-
order iterations will be required. The convergence issue will be discussed in more
detail in § 3.

2.2.4. Induced far-field sound pressure
As shown in the previous section, the induced potential field in the time domain

can be found as

φt(x′, y′, 0, t)=
∞∑

n′=−∞

[Nn′ +C(1)
n′ +C(2)

n′ + · · ·](x
′
−H(y′), 0)eik2n′ y

′

e−iωt. (2.45)

The pressure field is related to the velocity potential through the momentum equation,
as

p=−ρ0U
(
∂φt

∂x′
− ik1φt

)
, (2.46)
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therefore, the pressure jump 1p across the flat plate is given by

1p(x′, y′, 0, t)= 2
∞∑

n′=−∞

[P(0)n′ + P(1)n′ + P(2)n′ + · · ·](x
′
−H(y′), 0)eik2n′ y

′

e−iωt, (2.47)

where
P(0)n′ (x)= ρ0UΦia(1+ i)eik1xan′

√
µn′

1
√

2πx
e−iµn′ x (2.48)

and

P(1)n′ (x) = ρ0UΦia(1+ i)eik1x

×

∞∑
m=−∞

αn′mam

[
ik1

1
√

2πx
(
√
µn′e−iµn′ x −

√
µme−iµmx)

− i
√
µm

2πx
(µn′e−iµn′ x −µme−iµmx)−

1
2

√
µm

2πx
1
x
(e−iµn′ x − e−iµmx)

]
. (2.49)

The second-order solution, P(2)n′ (x), is given in the appendix. Having obtained the
pressure jump across the flat plate, the far-field sound can be found using the surface
pressure integral (Amiet 1975), as

pf (x, ω)=
−iωx3

4πc0S2
0

∫∫
s
1P(x′, y′)e−ikR dx′ dy′, (2.50)

where S2
0 = x2

1 + β
2(x2

2 + x2
3) denotes the stretched distance due to the mean flow, the

pressure jump has a harmonic form 1Pe−iωt
=1p and the radiation distance R takes

the form of

R=
M0(x1 − x′)− S0

β2
+

x1x′ + x2y′β2

β2S0
. (2.51)

By substituting the solution obtained in (2.47) into (2.50), the far-field sound
pressure can be found as

pf (x, ω, k2)= 2ρ0UΦiaL(ω, k1, k2)

(
−iωx3

4πc0S2
0

)
λ

sin((N + 1/2)λ(k2 − kx2/S0))

sin((λ/2)(k2 − kx2/S0))
. (2.52)

Here, 2N + 1 represents the number of sawteeth along the span and the non-
dimensional far-field sound gust-response function L is defined as

L(ω, k1, k2) = (1+ i)
1
λ

(
∞∑

n′=−∞

(Θ
(0)
n′ +Θ

(1)
n′ +Θ

(2)
n′ + · · ·)

)
× e−i(k/β2)(M0x1−S0)ei(k/β2)(M0−x1/S0)h, (2.53)

with
Θ
(0)
n′ = an′

√
µn′Sn′n′,

Θ
(1)
n′ =

∞∑
m=−∞

αn′mam
[
ik1(
√
µn′Sn′n′ −

√
µmSn′m)

−i
√
µm(µn′Sn′n′ −µmSn′m)−

√
µm(Tn′n′ − Tn′m)

]
,

 (2.54)
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218 B. Lyu and M. Azarpeyvand

and Θ (2)
n′ terms are provided in the appendix. The function Snm and Tnm in the above

equations are given by

Snm =

1∑
j=0

1
iκnj

{
1
√
ηAm
[eiκnjλj+1E∗(ηAm(c− εj+1))− eiκnjλjE∗(ηAm(c− εj))]

−
1

√
ηBnmj

eiκnj(λj+(c−εj)/σj)[E∗(ηBnmj(c− εj+1))− E∗(ηBnmj(c− εj))]

}
, (2.55)

Tnm =

1∑
j=0

1
iκnj

{
−iηAm
√
ηAm
[eiκnjλj+1E∗(ηAm(c− εj+1))− eiκnjλjE∗(ηAm(c− εj))]

+
iηBnmj
√
ηBnmj

eiκnj(λj+(c−εj)/σj)[E∗(ηBnmj(c− εj+1))− E∗(ηBnmj(c− εj))]

}
, (2.56)

where
κnj = k2n − kx2/S0 + (k/β2)(M0 − x1/S0)σj,

ηAm =−Km + kM0/(β
2
+ σ 2)− (k/β2)(M0 − x1/S0),

ηBnmj =−Km + kM0/(β
2
+ σ 2)+ (k2n − kx2/S0)/σj.

 (2.57)

2.3. General-gust solution
Equation (2.52) gives the far-field sound pressure induced by a single gust of form
wi = wiae−i(ωt−k1x′−k2y′). For a more general incoming gust given by (2.4), the induced
far-field pressure can be obtained from

pf (x, ω)= 2ρ0

(
−iωx3

4πc0S2
0

)
×

∫
∞

−∞

−w̃(ω/U, k2)

γd(ω/U, k2)
L(ω, ω/U, k2)λ

sin((N + 1/2)λ(k2 − kx2/S0))

sin((λ/2)(k2 − kx2/S0))
dk2, (2.58)

where pf is the far-field sound pressure and γd(k1, k2)=
√
(k1β+kM0/β)2+k2

2−(k/β)2.
The far-field sound PSD, Spp(x, ω), can then be found from

Spp(x, ω)= lim
T→∞

π

T
pf (x, ω)p∗f (x, ω)=

(
ρ0ωx3

2πc0S2
0

)2

U

×

∫
∞

−∞

Φww(ω/U, k2)

|γd(ω/U, k2)|2
|L(ω, ω/U, k2)|

2λ2 sin2((N + 1/2)λ(k2 − kx2/S0))

sin2((λ/2)(k2 − kx2/S0))
dk2, (2.59)

where the overbar and star denote the ensemble average and complex conjugate
respectively and we have made use of the fact that (Amiet 1975)

w(ω/U, k2)w∗(ω/U, k′2)=
L
π
δ(k2 − k′2)Φww(ω/U, k2), (2.60)

where Φww denotes the energy spectrum of the incoming vertical fluctuation velocity.
Equation (2.59) can be further simplified by noting that when the span d of the flat
plate is large, we have

λ2 sin2((N + 1/2)λ(k2 − kx2/S0))

sin2((λ/2)(k2 − kx2/S0))
∼ 2πd

∞∑
m=−∞

δ(k2 − kx2/S0 + 2mπ/λ), (2.61)
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and (2.59) becomes

Spp(x, ω)=
(
ρ0ωx3

2πc0S2
0

)2

U(2πd)

×

∞∑
m=−∞

Φww(ω/U, kx2/S0 + 2mπ/λ)

|γd(ω/U, kx2/S0 + 2mπ/λ)|2
|L(ω, ω/U, kx2/S0 + 2mπ/λ)|2. (2.62)

Equation (2.62) is the fundamental equation of this paper. For cases with the observer
located on the mid-span plane, i.e. x2 = 0, the sound pressure PSD reduces to

Spp(x, ω)= (2πdU)
(
ρ0ωx3

2πc0S2
0

)2 ∞∑
m=−∞

Φww(ω/U, 2mπ/λ)

|γd(ω/U, 2mπ/λ)|2
|L(ω, ω/U, 2mπ/λ)|2.

(2.63)
It is worth pointing out that (2.63) shows that the far-field sound PSD has a

linear dependence on the incoming turbulence energy spectrum. The quantity Φww
can be obtained from various models for turbulence energy spectrum, such as but
not limited to the von Kármán spectrum model. Moreover, it should be emphasized
that due to the assumption of a uniform mean flow over a flat plate, the effects of
lifting-potential flow around a realistic aerofoil are neglected in this paper. It has
been shown in several papers that when the angle of attack and camber are not zero,
these effects can be important (Tsai & Kerschen 1990; Myers & Kerschen 1995,
1997). However, these effects would diminish as the Mach number decreases (Myers
& Kerschen 1995). Consequently, the model developed in this paper can serve as a
good approximation for configurations with a low angle of attack and/or low Mach
numbers. More importantly, though these lifting-flow effects can change the overall
far-field sound spectra, they are unlikely to cause any significant changes to the
predicted sound-reduction level, which is perhaps more important and is more of
practical interest. This is because the principle mechanism of sound reduction, as
shown in the rest of this paper, is due to destructive interferences.

3. Comparison with experiments
Having obtained an analytical solution for the far-field sound PSD, (2.63), we

can now compare the results against the experimental data and also carry out a
parametric study and investigate the effects of the serration geometry and turbulence
parameters on the generated noise. As seen in (2.63), the model requires a prior
knowledge of the energy spectrum of the incoming vertical fluctuation velocity (Φww).
Previous experiments on leading-edge noise have shown that the turbulent upwash
velocity spectra can be well captured by the von Kármán spectrum model (Amiet
1975; Narayanan et al. 2015). By adopting the von Kármán spectrum model, Amiet
(1975) showed that

Φww(k1, k2)=
4ū2

9πk2
e

k̂2
1 + k̂2

2

(1+ k̂2
1 + k̂2

2)
7/3
, (3.1)

where u denotes the streamwise fluctuating velocity and ke, k̂1 and k̂2 are given by

ke =

√
πΓ (5/6)

LtΓ (1/3)
, k̂1 =

k1

ke
, k̂2 =

k2

ke
, (3.2a−c)

where Lt is the integral scale of the turbulence and Γ is the Gamma function.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

42
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

en
dl

eb
ur

y 
Li

br
ar

y 
of

 M
us

ic
, o

n 
09

 Ju
n 

20
19

 a
t 1

0:
43

:1
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.429
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


220 B. Lyu and M. Azarpeyvand

80

60

40

20

0

80

60

40

20

0
102

Straight edge model
Serrated edge model
Straight edge exp
Serrated edge exp

103

f (Hz)
104 102 103

f (Hz)
104

(a) (b)

FIGURE 3. (Colour online) The validation of the second-order model (normalized (2.63)
to be consistent with the SPL in the experiment) with experimental data for the baseline
(blue) and serrated (red) flat plates. The observer is at 90◦ above the flat plate in the
mid-span plane. The von Kármán model for isotropic turbulence is used with a mean flow
velocity of U = 60 m s−1, integral length scale of Lt = 0.006 m and turbulence intensity
of 2.5 %, as measured by Narayanan et al. (2015). Both serrations have a spanwise
wavelength of λ/c= 0.067.

In order to validate the new model, we compare the far-field noise predictions
against the experimental data measured by Narayanan et al. (2015). The experiment
was carried out for a flat plate immersed in a turbulent flow with a mean flow velocity
of U = 60 m s−1, turbulence intensity of about 2.5 % and streamwise integral scale
of Lt = 0.006 m. The flat plate had a mean chord length of c ≈ 0.175 m and span
length of d = 0.45 m, fitted with a sinusoidal serration with a spanwise wavelength
of λ/c= 0.067 and amplitudes of h/c= 0.067 (figure 3a) and h/c= 0.167 (figure 3b).
Note that though in our model a sawtooth serration is used, for such a sharp serration
we expect the differences between the two serration profiles to be negligible. Note
also that in the experiment the microphones were positioned outside the jet flow in
the far-field. However, as pointed out by Amiet (1975), the shear of the jet mean
flow has no refraction effects for the observer directly above the flat plate, i.e. 90◦
above the flat-plate leading edge. The convection effects of the ambient mean flow,
as considered in the model, have an order of β2 for such an observer. Since the
Mach number in the experiment was low (less than 0.2), the convection effects of
the mean flow can be safely neglected. Therefore, we can proceed to compare the
sound spectra measured in the experiment to the results obtained in the model. As
mentioned earlier, the von Kármán velocity spectrum, (3.1), was used to represent
the energy spectrum of the vertical fluctuation velocity. The high level of noise at
low frequencies observed in the experimental data, as mentioned by Narayanan et al.
(2015), is believed to be due to the dominance of the open-jet wind-tunnel background
noise and also the grid-generated vortex shedding and its interaction with the flat
plate. Therefore, the disagreement at low frequencies between the experiment and
model prediction, as shown in figure 3(a), is believed to be due to the dominance
of jet noise. Another possible reason for contributing to the disagreement is the
perfect-coherence assumption in the streamwise direction, which will be described in
detail in § 4.3. In the mid to high frequencies, however, the model provided excellent
agreement with measured data. In particular, there exists a perfect match between the
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Straight
Serrated zero order
Serrated 1st order
Serrated 2nd order
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104

80
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FIGURE 4. (Colour online) The convergence of the zero-, first- and second-order solutions.

predicted and observed peaks of the leading-edge noise of the serrated flat plate at
frequencies above f > 1000 Hz. This suggests that the model captures the essential
physics and gives an accurate prediction of the noise from the flat plates fitted
with leading-edge serrations. Predictions under the same flow conditions for a much
sharper serration, i.e. λ/c = 0.067 and h/c = 0.167, are presented in figure 3(b). It
can be seen that sharper serrations are more effective in reducing leading-edge noise,
which has been demonstrated by both the experimental data and model predictions.
The agreement between the model and experiments continues to be very good in
the frequency range where leading-edge noise is dominant. The slight mismatch at
high frequencies ( f > 7 kHz) in the serrated case is likely to be caused by other
noise mechanisms present in the experiment, as seen in the experimental data, such
as trailing-edge noise.

The results presented in figure 3 were calculated using second-order solutions,
but we have not yet examined the rate of convergence of the solution in (2.63). To
demonstrate that the second-order solution can provide a sufficiently accurate solution,
we present the predicted sound pressure spectra for the first validation case (figure 3a)
using the zero-, first- and second-order solutions. The results are shown in figure 4.
Though a difference of up to 5 dB can be observed between the zero- and first-order
solutions, the difference between the first- and second-order solutions is uniformly
less than 1 dB over the entire frequency range of interest. This suggests that the
second-order solution should serve as a good approximation for the serration cases
considered in this study and over the frequency range of interest.

4. Discussions
4.1. Effects of serration geometry

In this section, we carry out a parametric numerical evaluation of the model to study
the effects of serration geometry and Mach number on leading-edge noise. Since we
are primarily interested in the effects of serration geometry and flow convective effects,
we shall use the same chord length and incoming turbulence statistical quantities as
in the preceding section, i.e. c≈ 0.175 m, Lt = 0.006 m and a turbulence intensity of
2.5 %. Results will be presented for the far-field sound power spectra at 90◦ above
the flat plate in the mid-span plane.
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FIGURE 5. (Colour online) The effects of varying h and λ on a far-field sound spectrum.
The observer is located at 90◦ above the flat plate in the mid-span plane. The von Kármán
model for isotropic turbulence is used with the integral length scale of Lt = 0.006 m and
turbulence intensity of 2.5 %, as measured by Narayanan et al. (2015). The flat plate has
a mean chord length of c= 0.175 m and a span length of d= 0.45 m.

The results in figure 5(a) present the far-field sound pressure level for a flat plate
with wide serrations, i.e. λ = 3Lt, with different amplitudes, i.e. h from (1/3)Lt to
3Lt, in a relatively low Mach number flow of M0 = 0.1. Note here, we use ‘wide’
to describe the serrations which have a longer wavelength λ compared to those to be
shown subsequently. Similarly, ‘sharp’ serrations have been used to describe serrations
with a small value of λ. It is clear from the results that serrations of h= (1/3)Lt have
virtually no effect on reducing the far-field sound. This is expected since a leading
edge with wide and short serrations will act in a similar way to a straight edge. On
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the other hand, serrations with a relatively large root-to-tip amplitude, h= Lt, start to
reduce noise at high frequencies, as shown by the dash-dotted line in figure 5(a). The
use of longer serrations, i.e. h= 3Lt, is shown to result in a significant reduction of
far-field noise, even at low frequencies.

Figure 5(b) shows the results for a flat plate with a leading-edge serration
wavelength of λ = Lt. The effect of varying the serration amplitude (h) on the
reduction of turbulence interaction noise is similar to that observed before. However,
an important difference compared to the wider serration case with λ = 3Lt, see
figure 5(a), is that an area of noise increase appears at low frequencies (around
kLt ≈ 0.1) for short serrations (small h). The reason for such noise increases at
low frequencies will be discussed later in § 4.3. Results are also presented for very
sharp serrations (λ = (1/3)Lt), see figure 5(c). The noise increase observed at low
frequencies for serrations with small h is now more pronounced. However, one
can see that as long as the serration is long enough, the noise increase disappears
completely and that using sharp serrations (small λ) results in a more effective sound
reduction at high frequencies compared with the wide serrations. In summary, the
results suggest that in order to suppress leading-edge noise, the serration wavelength
λ has to be sufficiently small and the root-to-tip amplitude has to be large.

The effect of flow convective effects, particularly at high Mach numbers, can
also be studied using the new model. As mentioned earlier, since the formulations
are based on Amiet’s leading-edge noise theory, where the convection effects of the
uniform mean flow have been properly accounted for, the new model should suffer no
constraints caused by high-speed mean flow convection effects. Therefore the model
can be used for higher Mach numbers (when the uniform mean flow assumption is
permissible). This capability is particularly important as most of the experimental
data available are collected at low Mach numbers of up to 0.23 (Narayanan et al.
2015). Figure 5(d–f ) presents the far-field noise from a flat plate in a turbulent flow
with a Mach number of M0 = 0.4. Results are presented for wide (λ= 3Lt) to sharp
(λ= (1/3)Lt) serrations. In general, the results show the same trends as before, that
is greater noise reduction can be achieved using sharp serrations and that the use
of short leading-edge serrations can lead to a noise increase at about kLt = 0.1. The
level of noise increase at low frequencies has been observed to increase significantly
with Mach number.

4.2. Directivity
The effects of leading-edge serrations on far-field noise directivity have also been
investigated. In this section, we shall study the effects of a specific leading-edge
serration on the directivity patterns at different non-dimensionalized frequencies (kLt)
and Mach numbers (M0 = 0.1 and 0.4). From § 4.1, we see that in order to achieve
significant noise reduction, the serration wavelength λ has to be sufficiently small and
the serration amplitude 2h has to be sufficiently large. However, it is found that when
λ is too small, e.g. λ = (1/3)Lt, there is a large noise increase at low frequencies.
Therefore, in practical applications the serration profile with λ = Lt and h = 3Lt is
preferred. In this section, we choose this geometry to study the effects of serration
on directivity at different frequencies and Mach numbers. As before, the flat plate
has a mean chord length of c= 0.175 m and a span length of d= 0.45 m. Also, the
incoming flow turbulence intensity is set to 2.5 % and the integral length scale is
taken as Lt = 0.006 m. Results are presented at different acoustic wavenumbers kLt,
corresponding to the convective wavenumbers of k1Lt = 0.2, 0.5, 1, 2, 5 and 10 (see
figure 6).
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FIGURE 6. (Colour online) The directivity of leading-edge noise for both straight and
serrated edges at Mach number M0 = 0.1 in the mid-span plane. The von Kármán model
for isotropic turbulence is used in the analytical model with a turbulence intensity of
2.5 % and length scale of Lt=0.006 m. Results are presented at different frequencies (kLt),
corresponding to convective wavenumbers of k1Lt = 0.2, 0.5, 1, 2, 5 and 10.

Figure 6(a) shows the directivity patterns for both the straight and serrated edges at
a frequency of kLt= 0.02 (k1Lt= 0.2). At such low frequencies, the serrations have no
effect on the radiated sound. A slight noise reduction only appears when the frequency
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increases to kLt = 0.05 (k1Lt = 0.5), as shown in figure 6(b). Further increasing the
frequency results in more effective sound reduction, as shown in figure 6(c). It is
interesting to note that at mid-frequencies, i.e. kLt = 0.2 and 0.5 (k1Lt = 2 and 5),
greater noise reduction is obtained for observer locations closer to the trailing-edge
side of the flat plate, i.e. θ = 0◦, see figure 6(d,e). At a higher frequency kLt = 1
(k1Lt = 10), significant noise reduction can be achieved at all radiation angles and the
noise reduction at θ = 90◦ reaches 10 dB. Another interesting phenomenon observed is
the significant change to the directivity pattern of the radiated noise. As seen for the
low frequencies, i.e. kLt = 0.02 and 0.05, the introduction of leading-edge serrations
do not significantly change the dipolar shape of the radiated sound field. However,
at higher frequencies, the cardioid shape of the leading-edge noise is changed to a
more tilted dipolar shape, as seen in figures 6(c) to 6( f ). The cause is thought to be
due to the fact that for the serrated-edge case the scattered surface pressure is more
concentrated near the leading edge and less strong further downstream. From the
zero-order solution, equation (2.48), one can see that only the zero mode contributes
significantly to the surface pressure far downstream. However, as frequency (k1h)
increases, this zero mode contribution decreases quickly as |an| decreases. Therefore,
for a serrated leading edge, the scattered surface pressure downstream of the leading
edge is much less strong than that for the straight edge. This is consistent with the
findings in the recent numerical work of Kim et al. (2016). These more localized
dipole sources would produce a nearly dipolar (symmetric) far-field pattern, which
explains the significant change in the directivity. The strong scattered pressure far
downstream of the straight leading edge is why the pressure integral (2.50) evaluates
to large values at small aft angles (small θ ), leading to a cardioid directivity pattern. In
this sense, by affecting the downstream pressure distribution, the serration contributes
to the noise reduction for observers at small aft angles. However, as will be seen in
subsequent sections, this is not the primary noise-reduction mechanism. In particular,
this would have little impact on the noise at 90◦ directly above the leading edge. It is
also worth noting that the scattered surface pressure is not the only factor that affects
the directivity. At high Mach numbers, the convection effects would also become
important.

The far-field noise directivity results at a Mach number of M0= 0.4 are presented in
figure 7. Figure 7(a) shows the directivity results at kLt= 0.08 (k1Lt= 0.2). Compared
to figure 6(a) for M0 = 0.1, we see a slight noise increase at low frequencies. This
is consistent with our findings in the preceding section, i.e. noise increase is more
pronounced at high Mach numbers. This noise increase persists at around 90◦ above
and below the plate for frequencies up to kLt = 0.2 (k1Lt = 0.5), as shown in
figure 7(b). The use of leading-edge serrations at kLt = 0.4 (k1Lt = 1), however, leads
to noise reduction at all angles, as can be seen in figure 7(c). Figures 7(d) to 7( f )
show the directivity patterns at kLt = 0.8, 2 and 4, respectively, corresponding to the
convective wavenumbers of k1Lt = 2, 5 and 10. As before, results here confirm that
the leading-edge serrations are more effective at high frequencies and that the use of
leading-edge serration changes the far-field noise directivity from a cardioid shape to
a tilted dipole.

In addition to the SPL at different frequencies, the overall SPL (OASPL) results
can also provide some insight into the total sound energy radiated at different angles
and the effects of leading-edge serrations. This also provides an opportunity to better
understand the effectiveness of leading-edge serration as most of the OASPL results
obtained experimentally are contaminated due to the strong low-frequency background
jet noise contribution. The OASPL results, as shown in figure 8, are obtained by
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FIGURE 7. (Colour online) The directivity of leading-edge noise for both straight and
serrated edges at Mach number M0 = 0.4 in the mid-span plane. The von Kármán model
for isotropic turbulence is used in the analytical model with a turbulence intensity of
2.5 % and length scale of Lt=0.006 m. Results are presented at different frequencies (kLt),
corresponding to convective wavenumbers of k1Lt = 0.2, 0.5, 1, 2, 5 and 10.

integrating the sound power over the frequency range of kLt= 0.02 to 2 (for M0= 0.1)
and kLt= 0.04 to 4 (for M0= 0.4). As in the previous section, the serration used has a
wavelength of λ=Lt and a half root-to-tip amplitude of h= 3Lt and the incoming flow
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FIGURE 8. (Colour online) The leading-edge far-field noise OASPL directivity patterns
for both straight and serrated leading edges in the mid-span plane. The serration used has
a wavelength of λ= Lt and a half root-to-tip amplitude of h= 3Lt and the incoming flow
has a turbulence intensity of 2.5 % and integral length scale of Lt = 0.006 m.

has a turbulence intensity of 2.5 % and integral length scale of Lt = 0.006 m. Results
are presented at Mach numbers of M0 = 0.1 and 0.4, see figure 8(a,b). Results have
shown that the use of leading-edge serration can result in significant reduction of the
OASPL of 5–10 dB. It has also been observed that leading-edge serration is more
effective at low Mach numbers and small aft angles. This was also observed in the
far-field SPL results in figures 6 and 7 at mid to high frequencies.

4.3. Noise-reduction mechanism
Inspection of the equations developed in § 2 shows that in order for the leading-edge
serration treatment to be effective, two geometrical criteria must be met. The detailed
derivations are not provided for the sake of brevity, but interested readers can refer to
the paper by the authors (Lyu et al. 2016b) on noise from aerofoils with trailing-edge
serrations. The two geometrical criteria are (1) ωh/U� 1 and (2) ωhe/U� 1, where
the effective half root-to-tip length he is defined by he= σ ly′/2 and ly′ is the spanwise
correlation length defined by

ly′(ω)=
1

R(ω, 0)

∫
∞

−∞

R(ω, y′) dy′, (4.1)

where R(ω, y′) is the spanwise two-point correlation of the incoming turbulent velocity.
Using the von Kármán model, Amiet (1975) showed that ly′(ω) can be obtained as

ly′(ω)=
16Lt

3

(
Γ (1/3)
Γ (5/6)

)2
(ω/Uke)

2(
3+ 8(ω/Uke)2

)√
1+ (ω/Uke)2

. (4.2)

It may seem somewhat unexpected to obtain the dependence of the sound reduction
on the spanwise correlation length. A careful inspection of (2.59) reveals that this
dependence originates from the energy spectrum Φww(ω, k2) in (2.59). The inverse
Fourier transformation of Φww(ω, k2) over k2 yields the two-point cross spectrum
R(ω, y′). The first criterion is consistent with the findings in the numerical work by
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Lau et al. (2013) and some experimental data available for different leading-edge
serrations (Chaitanya et al. 2016). The second criterion, although less discussed in
recent work, is an important condition and relates the serration geometry to the
structure of the incoming turbulence.

As shown in other numerical and experimental work, the main cause of noise
reduction is the destructive sound interferences caused by the serration. In that sense,
the noise-reduction mechanism is very similar to that of trailing-edge serration, as
previously discussed by Lyu et al. (2016b). A better understanding of the destructive
sound interference phenomenon may help us to explain the physical implications of
the two above-mentioned criteria. The first condition ωh/U � 1 is to ensure that
a complete phase variation (of minimum 2π) of the scattered pressure along the
serrated edge is achieved. At low frequencies, this requires the serration amplitude
2h to be large in order to achieve significant sound reduction, as only a large value
of h can ensure a complete phase variation of the scattered pressure field along the
serrated edge. For cases where the serration amplitude h is not large enough, there
would be little variation in the scattered pressure, i.e. in-phase radiation along the
edge. This can result in noise increase at low frequencies, as observed in figures 3
and 5, which is due to the fact that the wetted edge by an in-phase pressure field
for the serrated edge is longer than that of the straight-edge. It should be noted
that in this paper we assume that the incoming turbulence is frozen. This would
imply a perfect spatial correlation in the streamwise direction for the upwash velocity
field. For serrations with a large h, the assumption of perfect streamwise correlation
of the turbulence becomes inappropriate and therefore the condition developed may
not hold. This might explain why a noise increase is predicted in figure 3(a) while
this was not seen in the experimental results. However, for mid- to high-frequency
regimes this assumption should serve as a good approximation, as demonstrated by
figure 3(a,b). The importance of the second criterion is also easy to understand. Since
noise reduction relies on destructive interference, the scattered pressure needs to be
correlated. In this case ωhe/U � 1 effectively ensures this, hence makes pressure
cancellation due to phase variation possible.

To clearly demonstrate the effect of the ωh/U criterion, we present the scattered
pressure on the upper surface of the flat plate at fixed ωhe/U = 7 in figure 9. To
better understand the effect of sound interference, the x′- and y′-axis are normalized
by the hydrodynamic wavelength (λh = 2πU/ω) and spanwise correlation length (ly′).
The distances between the adjacent y′-grid lines shown in figure 9 are used to show
the spanwise correlation length ly′ . When ωh/U= 1, as can be seen from figure 9(a),
little phase variation is induced along and near the leading edge in the spanwise
direction. This suggests little sound reduction occurs due to destructive interference.
As ωh/U increases to 4, as shown in figure 9(b), phase variation of the scattered
pressure near the leading edge become noticeable. Further increasing ωh/U to 10, we
see from figure 9(c) that significant sound reduction can be achieved due to the strong
phase variation near the leading edge in the spanwise direction. Figure 9(d) shows that
pressure distribution when ωh/U = 20. It is evident that when ωhe/U is fixed, the
number of pressure crests and troughs within ly′ is fixed at sufficiently large values
of ωh/U (see figure 9b–d). The effects of ωhe/U are similarly shown in figure 10,
where ωh/U is fixed at 10 while ωhe/U varies from 1 to 10. From figure 10(a–d)
the scattered pressure patterns are virtually the same. However, the phase variation
of the surface pressure within the spanwise correlation length ly′ is very different.
In figure 10(a) we see that within the length of ly′ (between adjacent y′-grid lines),
the phase variation of pressure is negligible. Since destructive interference can only
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FIGURE 9. (Colour online) The effects of varying ωh/U on the scattered surface pressure
at a fixed frequency and ωhe/U = 7: (a) ωh/U = 1; (b) ωh/U = 4; (c) ωh/U = 10;
(d) ωh/U= 20. The colour shows the normalized scattered pressure on the upper surface
of the flat plate. The vertical axis shows the spanwise coordinate normalized by the
spanwise correlation length and the horizontal axis shows the streamwise coordinate
normalized by the hydrodynamic wavelength.

occur within ly′ , little sound reduction can be expected in this case. On the other hand,
figure 10(c,d) shows a sufficient number of crests and troughs appearing within the
length ly′ , leading to effective noise reduction due to the destructive interference within
ly′ . Figures 9 and 10 clearly show that in order to achieve significant sound reduction
both ωh/U� 1 and ωhe/U� 1 have to be satisfied.

5. Conclusions and future work
A new mathematical model is developed in this paper with the aim of predicting

the sound radiated from the interaction of an incoming turbulent flow with a flat plate
with a serrated leading edge. By making use of Fourier expansion and Schwarzschild
techniques, we find that the PSD of the far-field sound is related to the energy
spectrum of the incident velocity field. The model is based on Amiet’s approach and
is therefore valid even for high Mach number applications where leading-edge noise is
a common problem. Comparing the model with experimental data has shown excellent
agreement and this suggests that the model can capture the essential physics of the
noise-generation and reduction mechanisms and can provide an accurate prediction
of the noise from serrated leading edges. A thorough parametric study has been
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FIGURE 10. (Colour online) The effects of varying ωhe/U on the scattered surface
pressure at a fixed frequency and ωh/U= 10: (a) ωhe/U= 1; (b) ωhe/U= 3; (c) ωhe/U=
6; (d) ωhe/U = 10. The colour shows the normalized scattered pressure on the upper
surface of the flat plate. The vertical axis shows the spanwise coordinate normalized by
the spanwise correlation length and the horizontal axis shows the streamwise coordinate
normalized by the hydrodynamic wavelength.

carried out using the new model and the effects of leading-edge serration geometry
and incoming turbulent flow characteristics on far-field noise at different Mach
numbers have been studied. It has been found that in order to achieve significant
noise reduction, the serration amplitude 2h has to be sufficiently large compared
to the hydrodynamic wavelength in the streamwise direction. More specifically, the
condition of ωh/U � 1 needs to be satisfied. The spanwise correlation length also
plays an important role in achieving effective noise reduction. In order to achieve
significant noise reduction, a second condition of ωhe/U�1 has to be satisfied, which
ensures that scattered pressure is correlated for a possible destructive interference to
occur. It has also been shown that leading-edge serration can effectively reduce the
far-field noise at even high Mach numbers. However, larger serrations might be
needed especially in the relatively low frequency regimes. From the far-field noise
directivity patterns, it has been observed that more sound reduction occurs at small
aft angles and the noise directivity at high frequencies changes from a cardioid shape
to a tilted dipole-like pattern. The mathematical model developed in this paper has
shown that destructive sound interference is the primary noise-reduction mechanism,
especially in the mid- to high-frequency regime where leading-edge noise is most
effectively reduced using serrations. Further work is needed to address the issue of
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perfect coherence for the incoming turbulence in the streamwise direction, which
might not be an accurate assumption at low frequencies.
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Appendix A
A.1. Second iterated results

The zero- and first-order solutions of Φt(x, 0) are given by (2.42) and 2.43,
respectively, in § 2. The second-order solution is given by C(2)

n′ (x) as follows:

C(2)
n′ (x) = −Φia(1+ i)eik1x

∞∑
m=−∞

{
βn′m(ik1)

2(E∗(µn′x)− E∗(µmx))

+ (βn′mik1 + γn′mi(k1 −µm))

√
µm

2πx
(e−iµn′ x − e−iµmx)

−
γn′m

2

(√
µm

2πx
1
x
(e−iµn′ x − e−iµmx)+ i(µn′ −µm)

√
µm

2πx
e−iµn′ x

)}
, (A 1)

where

βln =

∞∑
m=−∞

(αlnam − (Blm/(k2
2l − k2

2n))an)αnm, (A 2)

γln =

∞∑
m=−∞

(αlnam

√
µm/µn − (Blm/(k2

2l − k2
2n))an)αnm. (A 3)

Similarly, P(2)n′ (x) can be expressed as

P(2)n′ (x) = ρ0UΦia(1+ i)eik1x

∞∑
m=−∞

{
βn′m(ik1)

2 1
√

2πx
(
√
µn′e−iµn′ x −

√
µme−iµmx)

− (βn′mik1 + γn′mi(k1 −µm))

[
i
√
µm

2πx
(µn′e−iµn′ x −µme−iµmx)

+
1
2

√
µm

2πx
1
x
(e−iµn′ x − e−iµmx)

]
+ γn′m

[
i
1
2

√
µm

2πx
1
x
(µn′e−iµn′ x −µme−iµmx)

+
1
2

3
2

√
µm

2πx
1
x2
(e−iµn′ x − e−iµmx)

+ i
(µn′ −µm)

2
(iµn′

√
µm

2πx
e−iµn′ x +

1
2

√
µm

2πx
1
x

e−iµn′ x)

]}
. (A 4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

42
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

en
dl

eb
ur

y 
Li

br
ar

y 
of

 M
us

ic
, o

n 
09

 Ju
n 

20
19

 a
t 1

0:
43

:1
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.429
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


232 B. Lyu and M. Azarpeyvand

Finally, Θ (2)
n′ can be found as

Θ
(2)
n′ =

∞∑
m=−∞

{
βn′m(ik1)

2(
√
µn′Sn′n′ −

√
µmSn′m)

− (βn′mik1 + γn′mi(k1 −µm))[i
√
µm(µn′Sn′n′ −µmSn′m)+

√
µm(Tn′n′ − Tn′m)]

+ γn′m

[
i
√
µm(µn′Tn′n′ −µmTn′m)+

√
µm(Vn′n′ − Vn′m)

+ i
(µn′ −µm)

2
(iµn′
√
µmSn′n′ +

√
µmTn′n′)

]}
, (A 5)

where function Vnm is given by

Vnm =

1∑
j=0

{
1
σj

eiκij(λj+(c−εj)/σj)

×

[
1√

2π(c− εj)
e−iηBnmj(c−εj) −

1√
2π(c− εj+1)

e−iηBnmj(c−εj+1)

]
+

1
iκnj

(
−iηAm
√
ηAm
[eiκnjλj+1E∗(ηAm(c− εj+1))− eiκnjλjE∗(ηAm(c− εj))]

+
iηBnmj
√
ηBnmj

eiκnj(λj+(c−εj)/σj)

×[E∗(ηBnmj(c− εj+1))− E∗(ηBnmj(c− εj))]

)}
. (A 6)
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