HW1: Due March 11, Monday.

1. 10 pts

Let $\alpha: I \to R^3$ be a parametrized curve, with $\alpha'(t) \neq 0$ for all $t \in I$. Show that $|\alpha(t)|$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

2. 20 pts

(Straight Lines as Shortest.) Let $\alpha: I \to R^3$ be a parametrized curve. Let $[a, b] \subset I$ and set $\alpha(a) = p, \alpha(b) = q$.

a. Show that, for any constant vector v, |v| = 1,

$$(q-p)\cdot v = \int_a^b \alpha'(t)\cdot v\,dt \le \int_a^b |\alpha'(t)|\,dt$$

b. Set

$$v = \frac{q-p}{|q-p|}$$

and show that

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| \, dt;$$

that is, the curve of shortest length from $\alpha(a)$ to $\alpha(b)$ is the straight line joining these points.

3. 10 pts

Show that an equation of a plane passing through three noncolinear points $p_1 = (x_1, y_1, z_1), p_2 = (x_2, y_2, z_2), p_3 = (x_3, y_3, z_3)$ is given by

$$(p-p_1) \wedge (p-p_2) \cdot (p-p_3) = 0,$$

where p = (x, y, z) is an arbitrary point of the plane and $p - p_1$, for instance, means the vector $(x - x_1, y - y_1, z - z_1)$.

4. 20 pts (Helix is the fundamental example of space curves)

Given the parametrized curve (helix)

$$\alpha(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right), \quad s \in \mathbb{R},$$

where $c^2 = a^2 + b^2$,

- **a.** Show that the parameter *s* is the arc length.
- **b.** Determine the curvature and the torsion of α .
- c. Determine the osculating plane of α .
- **d.** Show that the lines containing n(s) and passing through $\alpha(s)$ meet the z axis under a constant angle equal to $\pi/2$.
- e. Show that the tangent lines to α make a constant angle with the z axis.
- 5. 10 pts (Compute torsion for an arc-length curve)

Show that the torsion τ of α is given by

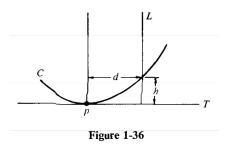
$$\tau(s) = -\frac{\alpha'(s) \wedge \alpha''(s) \cdot \alpha'''(s)}{|k(s)|^2}.$$

6. 20 pts (this gives an alternative interpretation of curvature)

Let C be a plane curve and let T be the tangent line at a point $p \in C$. Draw a line L parallel to the normal line at p and at a distance d of p (Fig. 1-36). Let h be the length of the segment determined on L by C and T (thus, h is the "height" of C relative to T). Prove that

$$|k(p)| = \lim_{d\to 0} \frac{2h}{d^2},$$

where k(p) is the curvature of C at p.



7. Bonus 20 pts

If a closed plane curve C is contained inside a disk of radius r, prove that there exists a point $p \in C$ such that the curvature k of C at p satisfies $|k| \ge 1/r$.