HW5: Due June 17, Monday.

1. (20 points)

Prove a n-dimensional spherical surface is a manifold.

2. (20 points)

Use the variational principle to derive the Euler-Lagrange equation in a classic mechanical system.

3. (20 points)

PROBLEM. Let $\mathbf{x} = (x_1, \dots, x_m)$ be coordinates in a neighborhood of $\mathbf{x} \in M$, and $\mathbf{y} = (y_1, \dots, y_n)$ be coordinates in a neighborhood of $\mathbf{y} \in N$. Let $\boldsymbol{\xi}$ be the set of components of the vector \mathbf{v} , and $\boldsymbol{\eta}$ the set of components of the vector $f_{\mathbf{x}\mathbf{x}}\mathbf{v}$. Show that

$$\mathbf{\eta} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \boldsymbol{\xi}, \quad \text{i.e.,} \quad \boldsymbol{\eta}_i = \sum_j \frac{\partial y_i}{\partial x_j} \boldsymbol{\xi}_j.$$

Taking the union of the mappings f_{*x} for all x, we get a mapping of the whole tangent bundle

$$f_*: TM \to TN$$
 $f_*v = f_{*x}v$ for $v \in TM_x$.

PROBLEM. Show that f_* is a differentiable map.

4. (20 points)

PROBLEM 1. Suppose that a particle moves in the field of the uniform helical line $x = \cos \varphi$. $y = \sin \varphi$, $z = c\varphi$. Find the law of conservation corresponding to this helical symmetry.

ANSWER. In any system which admits helical motions leaving our helical line fixed, the quantity $I = cP_3 + M_3$ is conserved.

5. (20 points)

PROBLEM. Investigate the characteristic oscillations of a planar double pendulum (Figure 88).

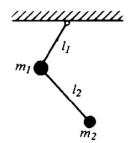


Figure 88 Double pendulum