Differential Geometry and Mechanics

Fan Feng

Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100087, China

1 Preliminaries

1.1 Vector space

Vector space \mathcal{V} is a set closed under + and \cdot . We usually say \mathcal{V} is a vector space over the scalar field \mathcal{F} . For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and $\alpha, \beta \in \mathcal{F}$, the following conditions are satisfied:

- Commutativity: $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- Associability: $(\mathbf{x} + \mathbf{y}) + \mathbf{z} + \mathbf{x} + (\mathbf{y} + \mathbf{z})$
- Zero vector: $\mathbf{0} \in \mathcal{V}, \, \mathbf{0} + \mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x}$
- Inverse vector: $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$
- Scalar multiplication: $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \cdot \beta) \cdot \mathbf{x}$
- Scalar distributivity: $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}$
- Vector distributivity: $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}$
- Scalar multiplication identity: $1 \cdot \mathbf{x} = \mathbf{x}$.

1.2 Euclidean space

Euclidean space is a vector space equipped with an inner product $\langle \cdot, \cdot \rangle$, e.g. \mathbb{R}^3 . An inner product satisfies

- $\bullet \ < \mathbf{x}, \mathbf{y} > = < \mathbf{y}, \mathbf{x} >$
- $\bullet \ < \mathbf{x} + \mathbf{y}, \mathbf{z} > = < \mathbf{x}, \mathbf{z} > + < \mathbf{y}, \mathbf{z} >$
- $< \alpha \cdot \mathbf{x}, \mathbf{y} >= \alpha < \mathbf{x}, \mathbf{y} >$
- $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, "=" holds if and only if $\mathbf{x} = \mathbf{0}$.

Example: In \mathbb{R}^3 , $\mathbf{x} = (x_1, x_2, x_3)$, $\mathbf{y} = (y_1, y_2, y_3)$, $\langle \mathbf{x}, \mathbf{y} \rangle = \sqrt{x_1 y_1 + x_2 y_2 + x_3 y_3}$.

1.3 Euclidean affine space

Euclidean affine space is an Euclidean space with no fixed origin **0**. Let \mathcal{V} be a vector space over \mathcal{F} , and let \mathcal{A} be a nonempty set. Now define addition $p + \mathbf{a} \in \mathcal{A}$ for any vector $\mathbf{a} \in \mathcal{V}$ and $p \in \mathcal{A}$ subject to

- $p + \mathbf{0} = p$
- (p + a) + b = p + (a + b)
- For any $q \in \mathcal{A}$, there exists an unique $\mathbf{a} \in \mathcal{V}$ such that $q = p + \mathbf{a}$. Example: the universe.

1.4 Vector product and linear algebra

Two ordered basis $e = \{\hat{e}_i\}$ and $f = \{\hat{f}_i\}$ have the same orientation if the matrix of change of basis has positive determinant, $e \sim f$.

Dot product. $\mathbf{u} = (u_1, u_2, u_3), \mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$, dot product $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$. Vector product. $\mathbf{u} \wedge \mathbf{v} \in \mathbb{R}^3$ characterized by $(\mathbf{u} \wedge \mathbf{v}) \cdot \mathbf{w} = \det(\mathbf{u}, \mathbf{v}, \mathbf{w})$, where

$$\det(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
(1)

which implies

$$\mathbf{u} \wedge \mathbf{v} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \hat{e}_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \hat{e}_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \hat{e}_3.$$
(2)

Vector product satisfies the following identities:

- $\mathbf{u} \wedge \mathbf{v} = -\mathbf{v} \wedge \mathbf{u}$
- $\mathbf{u} \wedge \mathbf{v}$ depends linearly on \mathbf{u} and \mathbf{v} . $(\alpha \mathbf{u} + \beta \mathbf{w}) \wedge \mathbf{v} = \alpha \mathbf{u} \wedge \mathbf{v} + \beta \mathbf{w} \wedge \mathbf{v}$.
- $\mathbf{u} \wedge \mathbf{v} = 0$ if and only if $\mathbf{u} \mathbf{v}$ are linearly dependent.
- $(\mathbf{u} \wedge \mathbf{v}) \cdot \mathbf{u} = 0$ and $(\mathbf{u} \wedge \mathbf{v}) \cdot \mathbf{v} = 0$
- $(\mathbf{u} \wedge \mathbf{v}) \wedge \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$
- Cyclic property: $\mathbf{w} = \mathbf{u} \wedge \mathbf{v} \implies \mathbf{v} = \mathbf{w} \wedge \mathbf{u}$ if $|\mathbf{u}| = |\mathbf{v}| = |\mathbf{w}| = 1$ and $\mathbf{u} \perp \mathbf{v}$.

1.5 Continuity

Definition 1.1. Let \mathcal{X} be a metric space. A sequence of points $x_1, x_2 \dots$ in \mathcal{X} converges if there is a point $x_{\infty} \in \mathcal{X}$ such that $|x_{\infty} - x_n|_{\mathcal{X}} \to 0$ as $n \to \infty$. That is, for every $\epsilon > 0$, $\exists N$ such that for all $n \ge N$, we have $|x_{\infty} - x_n|_{\mathcal{X}} < \epsilon$.

Definition 1.2. Let \mathcal{X} and \mathcal{Y} be matrix spaces. A map $f : \mathcal{X} \to \mathcal{Y}$ is called continuous if, for any convergent sequence $x_n \to x_\infty$ in \mathcal{X} , we have $f(x_n) \to f(x_\infty)$ in \mathcal{Y} . Equivalently, $f : \mathcal{X} \to \mathcal{Y}$ is continuous if, for any $x \in \mathcal{X}$ and $\epsilon > 0$, $\exists \delta > 0$ such that $|x - y|_{\mathcal{X}} < \delta$ implies that $|f(x) - f(y)|_{\mathcal{Y}} < \epsilon$.

1.6 Derivatives

Definition 1.3. Lipschitz condition: a function f between metric spaces is called Lipschitz if \exists a constant L s.t. $|f(x) - f(y)| \le L|x - y|$ for all values x, y in the domain of definition of f.

Definition 1.4. Let $f : [a,b] \to \mathbb{R}$ be a Lipschitz function. Then the derivative f' of f is a bounded measurable function defined almost everywhere in [a,b], and the following identity $f(b) - f(a) = \int_a^b f'(x) dx$ holds if the integral is understood in the sense of Lebesgue.

2 Curves

2.1 Parameterized curves

We need a parameterization in \mathbb{R}^3 for a 1-dimensional differentiable (or smooth) object.

Definition 2.1. A parameterized differentiable curve is a differentiable map $\alpha : I \to \mathbb{R}^3$ of an open interval I = (a, b) of the real line \mathbb{R} into \mathbb{R}^3 .

- $t \in I, \, \boldsymbol{\alpha}(t) = (x(t), y(t), z(t)) \in \mathbb{R}^3$
- x(t), y(t), z(t) are differentiable.
- t: parameter of the curve.
- $\alpha'(t) = (x'(t), y'(t), z'(t)) \in \mathbb{R}^3$: tangent vector.
- $\alpha(I) \subset \mathbb{R}^3$ is called the trace of α .

Example 1. $\alpha(t) = (a \cos t, a \sin t, bt), t \in \mathbb{R}$. **Example 2.** $\alpha(t) = (\cos t, \sin t)$ and $\beta(t) = (\cos 2t, \sin 2t)$ have the same trace.

2.2 Arc length

Let $\boldsymbol{\alpha}: I \to \mathbb{R}^3$ be a parameterized differentiable curve.

Definition 2.2. $\alpha(t)$ is regular if $\alpha'(t) \neq 0$ for all $t \in I$.

Arc length. Arc length $s(t) = \int_{t_0}^t |\alpha'(t)| dt$ where $|\alpha| = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}$.

- $ds/dt = 1 = |\boldsymbol{\alpha}'(t)|$: arc-length parameterization
- $ds/dt \neq 1$ not arc-length parameterization. We may reparameterize the curve using the arc length: $s(t) = \int_{t_0}^t |\boldsymbol{\alpha}'(t)| dt \implies t(s)$ and then $\boldsymbol{\alpha}(t(s))$ is the arc-length parameterized curve.

Example. Reparameterize $\alpha(t) = (2t, \frac{4}{3}t^{3/2}, \frac{1}{2}t^2), t \in (0, 4)$ using the arc length.

2.3 Local theory of curves parameterized by arc length

Definition 2.3. Let $\alpha : I \to \mathbb{R}^3$ be an arc length parameterized curve. $|\alpha''| = \kappa(s)$ is called the curvature of α at s.

Note. Curvature for a generally parameterized curve is given by

$$\kappa(t) = \frac{|\boldsymbol{\alpha}'(t) \times \boldsymbol{\alpha}''(t)|}{|\boldsymbol{\alpha}''(t)|^3} \tag{3}$$

Example.

- Straight line $\alpha(s) = s\mathbf{u} + \mathbf{v} \implies \kappa(s) = 0$
- Circle $\alpha = (\cos(s), \sin(s)) \implies \kappa(s) = 1$
- $s \to -s$, $\kappa(s)$ remains invariant.

Frenet frame. $\alpha''(s) = \kappa(s)\mathbf{n}(s)$ recalling $\alpha''(s) \perp \alpha'(s)$, i.e., the first derivative of a unit vector field is perpendicular to itself.

- $\mathbf{t}(s) = \boldsymbol{\alpha}'(s)$: unit tangent vector.
- $\mathbf{n}(s)$: unit normal vector
- $\mathbf{b}(s) = \mathbf{t}(s) \wedge \mathbf{n}(s)$: binormal vector, which is normal to the osculating plane spanned by \mathbf{t} and \mathbf{n} .

 $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ forms an orthonormal basis, i.e., Frenet frame associated with the curve.

Derivative of the Frenet frame.

 $\mathbf{b}'(s) = \mathbf{t}'(s) \wedge \mathbf{n}(s) + \mathbf{t}(s) \wedge \mathbf{n}'(s) = \mathbf{t}(s) \wedge \mathbf{n}'(s)$

- $\mathbf{b}'(s) = -\tau(s)\mathbf{n}(s)$. $\tau(s)$: torsion. $\tau(s) = 0$ for planar curves.
- Note. W. Chen's book defines $\mathbf{b}'(s) = -\tau(s)\mathbf{n}(s)$, but do Carmo's book defines $\mathbf{b}'(s) = \tau(s)\mathbf{n}(s)$. We use the former one.

 $\mathbf{n}'(s) = \mathbf{b}'(s) \wedge \mathbf{t}(s) + \mathbf{b}(s) \wedge \mathbf{t}'(s) = \tau \mathbf{b} - \kappa \mathbf{t}.$ Frenet equation.

$$\begin{cases} \mathbf{t}' = \kappa \mathbf{n} \\ \mathbf{n}' = -\kappa \mathbf{t} + \tau \mathbf{b} \\ \mathbf{b}' = -\tau \mathbf{n} \end{cases}$$
(4)

and equivalently,

$$\begin{pmatrix} \mathbf{t}' \\ \mathbf{n}' \\ \mathbf{b}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{pmatrix}$$
(5)

2.4 Fundamental theorem of the local theory of curves

Theorem 2.1. Given differentiable functions $\kappa(s) > 0$ and $\tau(s)$, $s \in I$, \exists a regular parameterized curve $\boldsymbol{\alpha} : I \to \mathbb{R}^3$ such that s is the arc length, $\kappa(s)$ is the curvature and $\tau(s)$ is the torsion of $\boldsymbol{\alpha}$. Any other curve $\tilde{\boldsymbol{\alpha}}$ satisfying the same condition differs from $\boldsymbol{\alpha}$ by a rigid motion $\tilde{\boldsymbol{\alpha}} = \mathbf{R}\boldsymbol{\alpha} + \mathbf{c}$, $\mathbf{RinSO}(3)$ and $\mathbf{c} \in \mathbb{R}^3$.

Proof. Sketch of proof: 1. Existence and uniqueness of solutions of ODEs. 2. Frenet frame. \Box

2.5 Planar curves

In \mathbb{R}^2 , $\alpha(s) = (x(s), y(s))$.

- unit tangent $\mathbf{t}(s) = (x'(s), y'(s)).$
- $\mathbf{t}'(s) = \kappa_r(s)\mathbf{n}(s)$. $\kappa_r(s)$: relative curvature. Here $\mathbf{n}(s)$ is defined by rotating $\mathbf{t}(s)$ counterclockwise with 90°, i.e., $\mathbf{n}(s) = (-y'(s), x'(s))$.
- $\kappa_r(s) = \mathbf{t}'(s) \cdot \mathbf{n}(s) = -x''(s)y'(s) + y''(s)x'(s)$
- Frenet equation:

$$\begin{cases} \boldsymbol{\alpha}'(s) = \mathbf{t}(s) \\ \mathbf{t}'(s) = \kappa_r(s)\mathbf{b}(s) \\ \mathbf{b}'(s) = -\kappa_r(s)\mathbf{t}(s) \end{cases}$$
(6)

Figure 1: Planar curves.

 $\theta(s)$ parameterization: $\theta(s)$ is the angle from x to $\mathbf{t}(s)$.

- $\mathbf{t}(s) = (\cos \theta(s), \sin \theta(s)), \ \mathbf{b}(s) = (-\sin \theta(s), \cos \theta(s)) \implies \kappa_r(s) = \mathrm{d}\theta(s)/\mathrm{d}(s)$
- Fundamental theorem:

$$\begin{cases} \theta(s) = \theta(s_0) + \int_{s_0}^s \kappa_r(s) \mathrm{d}s \\ x(s) = x(s_0) + \int_{s_0}^s \cos \theta(s) \mathrm{d}s \\ y(s) = y(s_0) + \int_{s_0}^s \sin \theta(s) \mathrm{d}s \end{cases}$$
(7)

2.6 Implicit planar curves

F(x,y) = 0

- Implicit function theorem: If $\frac{\partial F}{\partial y}\Big|_{(x_0,y_0)} \neq 0$, then in a neighborhood of (x_0, y_0) we can write y = f(x) where f is real function.
- Tangent. $F_x(x_0, y_0)(x x_0) + F_y(x_0, y_0)(y y_0) = 0$

• Curvature.

$$\kappa = \left| \frac{-F_y^2 F_{xx} + 2F_x F_y F_{xy} - F_x^2 F_{yy}}{(F_x^2 + F_y^2)^{3/2}} \right| \tag{8}$$

• Example. $(x^2 + y^2)^2 = x^2 - y^2$

Figure 2: Example.

2.7 Some fun global properties (do Carmo's book, Chapter 1-7)

- The isoperimetric inequality: $l^2 4\pi A \leq 0$ where l is the length of a simple closed planar curve and A is the area it bounds.
- $\int_0^l \kappa_r(s) ds = \theta(l) \theta(0) = 2\pi I$ where I is the rotation index. For simple closed planar curves, $I = \pm 1$.
- The four-vertex theorem. A vertex of a regular plane curve $\boldsymbol{\alpha} : [a, b] \to \mathbb{R}^2$ is a point $t \in [a, b]$ where $\kappa'(t) = 0$. A simple closed convex curve has at least four vertices.
- The Cauchy-Crofton formula. Let C be a regular plane curve with length l. The measure of the set of straight lines (counted with multiplicities) which meet C is equal to 2l.