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1 Preliminaries

1.1 Vector space

Vector space V is a set closed under + and ·. We usually say V is a vector space over the scalar field F .
For x,y, z ∈ V and α, β ∈ F , the following conditions are satisfied:

• Commutativity: x+ y = y + x

• Associability: (x+ y) + z+ x+ (y+ z)

• Zero vector: 0 ∈ V, 0+ x = x+ 0 = x

• Inverse vector: x+ (−x) = 0

• Scalar multiplication: α · (β · x) = (α · β) · x

• Scalar distributivity: (α+ β) · x = α · x+ β · x

• Vector distributivity: α · (x+ y) = α · x+ α · y

• Scalar multiplication identity: 1 · x = x.

1.2 Euclidean space

Euclidean space is a vector space equipped with an inner product < ·, · >, e.g. R3. An inner product
satisfies

• < x,y >=< y,x >

• < x+ y, z >=< x, z > + < y, z >

• < α · x,y >= α < x,y >

• < x,x >≥ 0, "=" holds if and only if x = 0.

Example: In R3, x = (x1, x2, x3), y = (y1, y2, y3), < x,y >=
√
x1y1 + x2y2 + x3y3.

1



1.3 Euclidean affine space

Euclidean affine space is an Euclidean space with no fixed origin 0. Let V be a vector space over F , and
let A be a nonempty set. Now define addition p+ a ∈ A for any vector a ∈ V and p ∈ A subject to

• p+ 0 = p

• (p + a) + b= p + (a+ b)

• For any q ∈ A, there exists an unique a ∈ V such that q = p+ a.

Example: the universe.

1.4 Vector product and linear algebra

Two ordered basis e = {êi} and f = {f̂i} have the same orientation if the matrix of change of basis has
positive determinant, e ∼ f .

Dot product. u = (u1, u2, u3),v = (v1, v2, v3) ∈ R3, dot product u · v = u1v1 + u2v2 + u3v3.
Vector product. u ∧ v ∈ R3 characterized by (u ∧ v) ·w = det(u,v,w), where

det(u,v,w) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ (1)

which implies

u ∧ v =

∣∣∣∣u2 u3
v2 v3

∣∣∣∣ ê1 − ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ ê2 + ∣∣∣∣u1 u2
v1 v2

∣∣∣∣ ê3. (2)

Vector product satisfies the following identities:

• u ∧ v = −v ∧ u

• u ∧ v depends linearly on u and v. (αu+ βw) ∧ v = αu ∧ v + βw ∧ v.

• u ∧ v = 0 if and only if u v are linearly dependent.

• (u ∧ v) · u = 0 and (u ∧ v) · v = 0

• (u ∧ v) ∧w = (u ·w)v − (v ·w)u

• Cyclic property: w = u ∧ v =⇒ v = w ∧ u if |u| = |v| = |w| = 1 and u ⊥ v.

1.5 Continuity

Definition 1.1. Let X be a metric space. A sequence of points x1, x2 . . . in X converges if there is a point
x∞ ∈ X such that |x∞ − xn|X → 0 as n → ∞. That is, for every ε > 0, ∃N such that for all n ≥ N , we
have |x∞ − xn|X < ε.

Definition 1.2. Let X and Y be matrix spaces. A map f : X → Y is called continuous if, for any convergent
sequence xn → x∞ in X , we have f(xn)→ f(x∞) in Y. Equivalently, f : X → Y is continuous if, for any
x ∈ X and ε > 0, ∃ δ > 0 such that |x− y|X < δ implies that |f(x)− f(y)|Y < ε.
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1.6 Derivatives

Definition 1.3. Lipschitz condition: a function f between metric spaces is called Lipschitz if ∃ a constant
L s.t. |f(x)− f(y)| ≤ L|x− y| for all values x, y in the domain of definition of f .

Definition 1.4. Let f : [a, b] → R be a Lipschitz function. Then the derivative f ′ of f is a bounded
measurable function defined almost everywhere in [a, b], and the following identity f(b)− f(a) =

∫ b
a f
′(x)dx

holds if the integral is understood in the sense of Lebesgue.

2 Curves

2.1 Parameterized curves

x

y

We need a parameterization in R3 for a 1-dimensional differentiable (or smooth) object.

Definition 2.1. A parameterized differentiable curve is a differentiable map α : I → R3 of an open interval
I = (a, b) of the real line R into R3.

t ∈ I, α(t) = (x(t), y(t), z(t)) ∈ R3

• x(t), y(t), z(t) are differentiable.

• t: parameter of the curve.

• α′(t) = (x′(t), y′(t), z′(t)) ∈ R3: tangent vector.

• α(I) ⊂ R3 is called the trace of α.

Example 1. α(t) = (a cos t, a sin t, bt), t ∈ R.
Example 2. α(t) = (cos t, sin t) and β(t) = (cos 2t, sin 2t) have the same trace.

2.2 Arc length

Let α : I → R3 be a parameterized differentiable curve.

Definition 2.2. α(t) is regular if α′(t) 6= 0 for all t ∈ I.

Arc length. Arc length s(t) =
∫ t
t0
|α′(t)|dt where |α| =

√
(x′(t))2 + (y′(t))2 + (z′(t))2.

• ds/dt = 1 = |α′(t)|: arc-length parameterization

• ds/dt 6= 1 not arc-length parameterization. We may reparameterize the curve using the arc length:
s(t) =

∫ t
t0
|α′(t)|dt =⇒ t(s) and then α(t(s)) is the arc-length parameterized curve.

Example. Reparameterize α(t) = (2t, 43 t
3/2, 12 t

2), t ∈ (0, 4) using the arc length.
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2.3 Local theory of curves parameterized by arc length

Definition 2.3. Let α : I → R3 be an arc length parameterized curve. |α′′| = κ(s) is called the curvature
of α at s.

Note. Curvature for a generally parameterized curve is given by

κ(t) =
|α′(t)×α′′(t)|
|α′′(t)|3

(3)

Example.

• Straight line α(s) = su+ v =⇒ κ(s) = 0

• Circle α = (cos(s), sin(s)) =⇒ κ(s) = 1

• s→ −s, κ(s) remains invariant.

Frenet frame. α′′(s) = κ(s)n(s) recalling α′′(s) ⊥ α′(s), i.e., the first derivative of a unit vector field
is perpendicular to itself.

• t(s) = α′(s): unit tangent vector.

• n(s): unit normal vector

• b(s) = t(s) ∧ n(s): binormal vector, which is normal to the osculating plane spanned by t and n.

{t(s),n(s),b(s)} forms an orthonormal basis, i.e., Frenet frame associated with the curve.

Derivative of the Frenet frame.
b′(s) = t′(s) ∧ n(s) + t(s) ∧ n′(s) = t(s) ∧ n′(s)

• b′(s) = −τ(s)n(s). τ(s) : torsion. τ(s) = 0 for planar curves.

• Note. W. Chen’s book defines b′(s) = −τ(s)n(s), but do Carmo’s book defines b′(s) = τ(s)n(s).
We use the former one.

n′(s) = b′(s) ∧ t(s) + b(s) ∧ t′(s) = τb− κt.
Frenet equation. 

t′ = κn

n′ = −κt+ τb

b′ = −τn
(4)

and equivalently, t′

n′

b′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

t
n
b

 (5)

2.4 Fundamental theorem of the local theory of curves

Theorem 2.1. Given differentiable functions κ(s) > 0 and τ(s), s ∈ I, ∃ a regular parameterized curve
α : I → R3 such that s is the arc length, κ(s) is the curvature and τ(s) is the torsion of α. Any other curve
α̃ satisfying the same condition differs from α by a rigid motion α̃ = Rα+ c, RinSO(3) and c ∈ R3.

Proof. Sketch of proof: 1. Existence and uniqueness of solutions of ODEs. 2. Frenet frame.
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2.5 Planar curves

In R2, α(s) = (x(s), y(s)).

• unit tangent t(s) = (x′(s), y′(s)).

• t′(s) = κr(s)n(s). κr(s) : relative curvature. Here n(s) is defined by rotating t(s) counterclockwise
with 90◦, i.e., n(s) = (−y′(s), x′(s)).

• κr(s) = t′(s) · n(s) = −x′′(s)y′(s) + y′′(s)x′(s)

• Frenet equation: 
α′(s) = t(s)

t′(s) = κr(s)b(s)

b′(s) = −κr(s)t(s)
(6)

Figure 1: Planar curves.

θ(s) parameterization: θ(s) is the angle from x to t(s).

• t(s) = (cos θ(s), sin θ(s)), b(s) = (− sin θ(s), cos θ(s)) =⇒ κr(s) = dθ(s)/d(s)

• Fundamental theorem: 
θ(s) = θ(s0) +

∫ s
s0
κr(s)ds

x(s) = x(s0) +
∫ s
s0
cos θ(s)ds

y(s) = y(s0) +
∫ s
s0
sin θ(s)ds

(7)

2.6 Implicit planar curves

F (x, y) = 0

• Implicit function theorem: If ∂F
∂y

∣∣∣
(x0,y0)

6= 0, then in a neighborhood of (x0, y0) we can write y = f(x)

where f is real function.

• Tangent. Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0) = 0
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• Curvature.

κ =

∣∣∣∣∣−F 2
yFxx + 2FxFyFxy − F 2

xFyy

(F 2
x + F 2

y )
3/2

∣∣∣∣∣ (8)

• Example. (x2 + y2)2 = x2 − y2

Figure 2: Example.

2.7 Some fun global properties (do Carmo’s book, Chapter 1-7)

• The isoperimetric inequality: l2 − 4πA ≤ 0 where l is the length of a simple closed planar curve and
A is the area it bounds.

•
∫ l
0 κr(s)ds = θ(l)−θ(0) = 2πI where I is the rotation index. For simple closed planar curves, I = ±1.

• The four-vertex theorem. A vertex of a regular plane curve α : [a, b]→ R2 is a point t ∈ [a, b] where
κ′(t) = 0. A simple closed convex curve has at least four vertices.

• The Cauchy-Crofton formula. Let C be a regular plane curve with length l. The measure of the set
of straight lines (counted with multiplicities) which meet C is equal to 2l.
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