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1 Preliminaries

1.1 Vector space

Vector space V is a set closed under + and -. We usually say V is a vector space over the scalar field F.
For x,y,z € V and «, 8 € F, the following conditions are satisfied:

e Commutativity: x+y =y +x

e Associability: (x+y) + z+ x+ (y+ 2)

e Zero vector: 0 € V,0+x=x+0=x

e Inverse vector: x + (—x) =0

e Scalar multiplication: - (5 -x) = (a- ) - x

e Scalar distributivity: (a+ ) - x=a-x+ - %
e Vector distributivity: a- (x+y)=a-x+a-y

e Scalar multiplication identity: 1-x = x.

1.2 Euclidean space

Euclidean space is a vector space equipped with an inner product < -,- >, e.g. R3. An inner product
satisfies

o <X,y >=<Yy,x >
o <X+Yy,z>=<X,2>+<Yy,z>
e Ja-xXy>=a<Xxy>

e <x,x>>0,"=" holds if and only if x = 0.

EX&mple: In Rgv X = (131,1,'2,553), Yy = (y17y27y3)7 < X,y >= \/‘lel + T2Y2 + I3Yys.



1.3 Euclidean affine space

Euclidean affine space is an Euclidean space with no fixed origin 0. Let V be a vector space over F, and
let A be a nonempty set. Now define addition p + a € A for any vector a € V and p € A subject to

ep+0=0p
e (p+a)+b=p+ (at+t b)

e For any g € A, there exists an unique a € V such that ¢ = p + a.

Example: the universe.

1.4 Vector product and linear algebra

Two ordered basis e = {&} and f = {f;} have the same orientation if the matrix of change of basis has
positive determinant, e ~ f.

Dot product. u = (u,us,u3),v = (v1,ve,v3) € R, dot product u - v = uyv1 + ugvs + ugvs.

Vector product. u A v € R? characterized by (u A v) - w = det(u, v, w), where

up  uz  ug
det(u,v,w) =|v; v2 w3 (1)
w1 w2 wWs
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Vector product satisfies the following identities:
e uAv=-vAu
e u A v depends linearly on u and v. (au+ fw) Av=auAv+ wAV.

e uAv =0 if and only if u v are linearly dependent.

(uAv)-u=0and (uAvV)-v=0

(uAV)AW=(u-w)v—(v-w)u

Cyclic property: w =uAv = v=wAuif lu/=|v|=|w|=1and u L v.

1.5 Continuity

Definition 1.1. Let X be a metric space. A sequence of points x1,xs ... in X converges if there is a point
Too € X such that |xoo — xplx — 0 as n — oo. That is, for every e > 0, AN such that for alln > N, we
have |xoo — xn|x < €.

Definition 1.2. Let X and ) be matrix spaces. A map f : X — Y is called continuous if, for any convergent
sequence T, — Too in X, we have f(xy) — f(2so) in Y. Equivalently, f: X — Y is continuous if, for any
x € X and € >0, 35 > 0 such that |z — ylx < & implies that | f(x) — f(y)]y < e.



1.6 Derivatives

Definition 1.3. Lipschitz condition: a function f between metric spaces is called Lipschitz if 3 a constant
L s.t. |f(x) — f(y)| < Lz — y| for all values x,y in the domain of definition of f.

Definition 1.4. Let f : [a,b] — R be a Lipschitz function. Then the derivative f' of f is a bounded

measurable function defined almost everywhere in [a,b], and the following identity f(b) — f(a) = f(f f(x)dx
holds if the integral is understood in the sense of Lebesgue.

2 Curves

2.1 Parameterized curves

We need a parameterization in R? for a 1-dimensional differentiable (or smooth) object.

Definition 2.1. A parameterized differentiable curve is a differentiable map o : I — R3 of an open interval
I = (a,b) of the real line R into R3.

tel, aft) = (z(t),y(t), z(t) € R3

o x(t),y(t), 2(t) are differentiable.

e t: parameter of the curve.

o o(t) = (z/(t),y'(t),'(t)) € R3: tangent vector.
e () C R? is called the trace of a.

Example 1. a(t) = (acost,asint, bt),t € R.
Example 2. a(t) = (cost,sint) and B(t) = (cos 2t,sin 2t) have the same trace.

2.2 Arc length

Let a : I — R3 be a parameterized differentiable curve.
Definition 2.2. «(t) is reqular if &/(t) #0 for allt € 1.
t
Arc length. Arc length s(t) = [, |a/(t)|dt where || = V@) + (' (1)2 + (2(1))2.

e ds/dt =1 = |d/(t)|: arc-length parameterization

e ds/dt # 1 not arc-length parameterization. We may reparameterize the curve using the arc length:
s(t) = ftto |a/(t)|dt = t(s) and then «(t(s)) is the arc-length parameterized curve.

Example. Reparameterize a(t) = (2t, %t3/2, 3t?),t € (0,4) using the arc length.
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2.3 Local theory of curves parameterized by arc length

Definition 2.3. Let o : I — R3 be an arc length parameterized curve. || = k(s) is called the curvature
of a at s.

Note. Curvature for a generally parameterized curve is given by

_Je(t) x (1)

k(1) e OF (3)
Example.

e Straight line a(s) =su+v = k(s) =0

e Circle a = (cos(s),sin(s)) = k(s) =1

e s — —s, k(s) remains invariant.

Frenet frame. a”(s) = k(s)n(s) recalling o’ (s) L a/(s), i.e., the first derivative of a unit vector field
is perpendicular to itself.

e t(s) = &/(s): unit tangent vector.

e n(s): unit normal vector

e b(s) =t(s) An(s): binormal vector, which is normal to the osculating plane spanned by t and n.
{t(s),n(s),b(s)} forms an orthonormal basis, i.e., Frenet frame associated with the curve.
Derivative of the Frenet frame.

b/(s) = t'(s) An(s) +t(s) An'(s) =t(s) An'(s)

e b/(s) = —7(s)n(s). 7(s) : torsion. 7(s) = 0 for planar curves.

e Note. W. Chen’s book defines b’(s) = —7(s)n(s), but do Carmo’s book defines b’(s) = 7(s)n(s).
We use the former one.

n'(s) =b'(s) At(s) +b(s) At/(s) =7b — kt.
Frenet equation.

t' = kn
n = —kt+7b (4)
b’ = —mn
and equivalently,
t/ 0 w 0 t
n|=|-x 0 7 n (5)
b’ 0 -7 0 b

2.4 Fundamental theorem of the local theory of curves

Theorem 2.1. Given differentiable functions k(s) > 0 and 7(s), s € I, 3 a reqular parameterized curve
a : I — R3 such that s is the arc length, k(s) is the curvature and 7(s) is the torsion of . Any other curve
& satisfying the same condition differs from o by a rigid motion & = Ra + ¢, RinSO(3) and c € R3.

Proof. Sketch of proof: 1. Existence and uniqueness of solutions of ODEs. 2. Frenet frame. 0



2.5 Planar curves
In B2, a(s) = (a(s), y(s)):

e unit tangent t(s) = (2/(s),y'(s)).

o t'(s) = kr(s)n(s). k.(s) : relative curvature. Here n(s) is defined by rotating t(s) counterclockwise

with 90°, i.e., n(s) = (—y/(s),2/(s)).
o rir(s) = t'(s) - m(s) = —2"(s)y'(s) + ¢"(s)2'(s)

e Frenet equation:

a(s) = t(s)
t'(s) = kr(s)b(s) (6)
b'(s) = =k, (s)t(s)
y
0(s)
T Kkr >0
X
Figure 1: Planar curves.
0(s) parameterization: 0(s) is the angle from z to t(s).
o t(s) = (cosf(s),sinf(s)), b(s) = (—sinb(s),cosb(s)) = kr(s) = db(s)/d(s)
e Fundamental theorem:
0(s) = 6(so) + fsso kr(s)ds
x(s) = x(sg) + fsso cosO(s)ds (7)
y(s) = y(so) + fsso sinf(s)ds
2.6 Implicit planar curves
F(z,y) =0
e Implicit function theorem: If %—5 # 0, then in a neighborhood of (¢, yp) we can write y = f(x)

(zo,y0)
where f is real function.

e Tangent. F,(zo,yo)(x — zo) + Fy(zo,v0)(y —yo) =0



e Curvature. , )
—Fy Fow +2F, FyFpy — F2Fy,

x
(F2+ F2)3°
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e Example. (22 + y?)? = 22 — ¢?
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Figure 2: Example.

2.7 Some fun global properties (do Carmo’s book, Chapter 1-7)

e The isoperimetric inequality: [? — 4mA < 0 where [ is the length of a simple closed planar curve and
A is the area it bounds.

. fol kr(s)ds = 0(1) —0(0) = 271 where [ is the rotation index. For simple closed planar curves, [ = £1.

e The four-vertex theorem. A vertex of a regular plane curve « : [a,b] — R? is a point ¢ € [a, b] where
k'(t) = 0. A simple closed convex curve has at least four vertices.

e The Cauchy-Crofton formula. Let C' be a regular plane curve with length . The measure of the set
of straight lines (counted with multiplicities) which meet C' is equal to 2I.
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