Differential Geometry and Mechanics

Fan Feng
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100087, China

1 Preliminaries

1.1 Vector space

Vector space \mathcal{V} is a set closed under + and \cdot. We usually say \mathcal{V} is a vector space over the scalar field \mathcal{F}. For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and $\alpha, \beta \in \mathcal{F}$, the following conditions are satisfied:

- Commutativity: $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
- Associability: $(\mathbf{x}+\mathbf{y})+\mathbf{z}+\mathbf{x}+(\mathbf{y}+\mathbf{z})$
- Zero vector: $\mathbf{0} \in \mathcal{V}, \mathbf{0}+\mathbf{x}=\mathbf{x}+\mathbf{0}=\mathbf{x}$
- Inverse vector: $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$
- Scalar multiplication: $\alpha \cdot(\beta \cdot \mathbf{x})=(\alpha \cdot \beta) \cdot \mathbf{x}$
- Scalar distributivity: $(\alpha+\beta) \cdot \mathbf{x}=\alpha \cdot \mathbf{x}+\beta \cdot \mathbf{x}$
- Vector distributivity: $\alpha \cdot(\mathbf{x}+\mathbf{y})=\alpha \cdot \mathbf{x}+\alpha \cdot \mathbf{y}$
- Scalar multiplication identity: $1 \cdot \mathbf{x}=\mathbf{x}$.

1.2 Euclidean space

Euclidean space is a vector space equipped with an inner product $\langle\cdot, \cdot\rangle$, e.g. \mathbb{R}^{3}. An inner product satisfies

- $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
- $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$
- $\langle\alpha \cdot \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$
- $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0, "="$ holds if and only if $\mathbf{x}=\mathbf{0}$.

Example: $\operatorname{In} \mathbb{R}^{3}, \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right),\langle\mathbf{x}, \mathbf{y}\rangle=\sqrt{x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}}$.

1.3 Euclidean affine space

Euclidean affine space is an Euclidean space with no fixed origin $\mathbf{0}$. Let \mathcal{V} be a vector space over \mathcal{F}, and let \mathcal{A} be a nonempty set. Now define addition $p+\mathbf{a} \in \mathcal{A}$ for any vector $\mathbf{a} \in \mathcal{V}$ and $p \in \mathcal{A}$ subject to

- $p+\mathbf{0}=\mathrm{p}$
- $(\mathrm{p}+\mathbf{a})+\mathbf{b}=\mathrm{p}+(\mathbf{a}+\mathbf{b})$
- For any $q \in \mathcal{A}$, there exists an unique $\mathbf{a} \in \mathcal{V}$ such that $q=p+\mathbf{a}$.

Example: the universe.

1.4 Vector product and linear algebra

Two ordered basis $e=\left\{\hat{e}_{i}\right\}$ and $f=\left\{\hat{f}_{i}\right\}$ have the same orientation if the matrix of change of basis has positive determinant, $e \sim f$.

Dot product. $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$, dot product $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$.
Vector product. $\mathbf{u} \wedge \mathbf{v} \in \mathbb{R}^{3}$ characterized by $(\mathbf{u} \wedge \mathbf{v}) \cdot \mathbf{w}=\operatorname{det}(\mathbf{u}, \mathbf{v}, \mathbf{w})$, where

$$
\operatorname{det}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \tag{1}\\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

which implies

$$
\mathbf{u} \wedge \mathbf{v}=\left|\begin{array}{ll}
u_{2} & u_{3} \tag{2}\\
v_{2} & v_{3}
\end{array}\right| \hat{e}_{1}-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \hat{e}_{2}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \hat{e}_{3} .
$$

Vector product satisfies the following identities:

- $\mathbf{u} \wedge \mathbf{v}=-\mathbf{v} \wedge \mathbf{u}$
- $\mathbf{u} \wedge \mathbf{v}$ depends linearly on \mathbf{u} and $\mathbf{v} .(\alpha \mathbf{u}+\beta \mathbf{w}) \wedge \mathbf{v}=\alpha \mathbf{u} \wedge \mathbf{v}+\beta \mathbf{w} \wedge \mathbf{v}$.
- $\mathbf{u} \wedge \mathbf{v}=0$ if and only if $\mathbf{u} \mathbf{v}$ are linearly dependent.
- $(\mathbf{u} \wedge \mathbf{v}) \cdot \mathbf{u}=0$ and $(\mathbf{u} \wedge \mathbf{v}) \cdot \mathbf{v}=0$
- $(\mathbf{u} \wedge \mathbf{v}) \wedge \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$
- Cyclic property: $\mathbf{w}=\mathbf{u} \wedge \mathbf{v} \Longrightarrow \mathbf{v}=\mathbf{w} \wedge \mathbf{u}$ if $|\mathbf{u}|=|\mathbf{v}|=|\mathbf{w}|=1$ and $\mathbf{u} \perp \mathbf{v}$.

1.5 Continuity

Definition 1.1. Let \mathcal{X} be a metric space. A sequence of points $x_{1}, x_{2} \ldots$ in \mathcal{X} converges if there is a point $x_{\infty} \in \mathcal{X}$ such that $\left|x_{\infty}-x_{n}\right|_{\mathcal{X}} \rightarrow 0$ as $n \rightarrow \infty$. That is, for every $\epsilon>0, \exists N$ such that for all $n \geq N$, we have $\left|x_{\infty}-x_{n}\right| \mathcal{X}<\epsilon$.

Definition 1.2. Let \mathcal{X} and \mathcal{Y} be matrix spaces. A map $f: \mathcal{X} \rightarrow \mathcal{Y}$ is called continuous if, for any convergent sequence $x_{n} \rightarrow x_{\infty}$ in \mathcal{X}, we have $f\left(x_{n}\right) \rightarrow f\left(x_{\infty}\right)$ in \mathcal{Y}. Equivalently, $f: \mathcal{X} \rightarrow \mathcal{Y}$ is continuous if, for any $x \in \mathcal{X}$ and $\epsilon>0, \exists \delta>0$ such that $|x-y| \mathcal{X}<\delta$ implies that $|f(x)-f(y)| \mathcal{Y}<\epsilon$.

1.6 Derivatives

Definition 1.3. Lipschitz condition: a function f between metric spaces is called Lipschitz if \exists a constant L s.t. $|f(x)-f(y)| \leq L|x-y|$ for all values x, y in the domain of definition of f.
Definition 1.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a Lipschitz function. Then the derivative f^{\prime} of f is a bounded measurable function defined almost everywhere in $[a, b]$, and the following identity $f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) \mathrm{d} x$ holds if the integral is understood in the sense of Lebesgue.

2 Curves

2.1 Parameterized curves

We need a parameterization in \mathbb{R}^{3} for a 1-dimensional differentiable (or smooth) object.
Definition 2.1. A parameterized differentiable curve is a differentiable map $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ of an open interval $I=(a, b)$ of the real line \mathbb{R} into \mathbb{R}^{3}.
$t \in I, \boldsymbol{\alpha}(t)=(x(t), y(t), z(t)) \in \mathbb{R}^{3}$

- $x(t), y(t), z(t)$ are differentiable.
- t: parameter of the curve.
- $\boldsymbol{\alpha}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right) \in \mathbb{R}^{3}:$ tangent vector.
- $\boldsymbol{\alpha}(I) \subset \mathbb{R}^{3}$ is called the trace of $\boldsymbol{\alpha}$.

Example 1. $\boldsymbol{\alpha}(t)=(a \cos t, a \sin t, b t), t \in \mathbb{R}$.
Example 2. $\boldsymbol{\alpha}(t)=(\cos t, \sin t)$ and $\boldsymbol{\beta}(t)=(\cos 2 t, \sin 2 t)$ have the same trace.

2.2 Arc length

Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ be a parameterized differentiable curve.
Definition 2.2. $\boldsymbol{\alpha}(t)$ is regular if $\boldsymbol{\alpha}^{\prime}(t) \neq 0$ for all $t \in I$.
Arc length. Arc length $s(t)=\int_{t_{0}}^{t}\left|\boldsymbol{\alpha}^{\prime}(t)\right| \mathrm{d} t$ where $|\boldsymbol{\alpha}|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}$.

- $\mathrm{d} s / \mathrm{d} t=1=\left|\boldsymbol{\alpha}^{\prime}(t)\right|$: arc-length parameterization
- $\mathrm{d} s / \mathrm{d} t \neq 1$ not arc-length parameterization. We may reparameterize the curve using the arc length: $s(t)=\int_{t_{0}}^{t}\left|\boldsymbol{\alpha}^{\prime}(t)\right| \mathrm{d} t \Longrightarrow t(s)$ and then $\boldsymbol{\alpha}(t(s))$ is the arc-length parameterized curve.
Example. Reparameterize $\boldsymbol{\alpha}(t)=\left(2 t, \frac{4}{3} t^{3 / 2}, \frac{1}{2} t^{2}\right), t \in(0,4)$ using the arc length.

2.3 Local theory of curves parameterized by arc length

Definition 2.3. Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ be an arc length parameterized curve. $\left|\boldsymbol{\alpha}^{\prime \prime}\right|=\kappa(s)$ is called the curvature of $\boldsymbol{\alpha}$ at s.

Note. Curvature for a generally parameterized curve is given by

$$
\begin{equation*}
\kappa(t)=\frac{\left|\boldsymbol{\alpha}^{\prime}(t) \times \boldsymbol{\alpha}^{\prime \prime}(t)\right|}{\left|\boldsymbol{\alpha}^{\prime \prime}(t)\right|^{3}} \tag{3}
\end{equation*}
$$

Example.

- Straight line $\boldsymbol{\alpha}(s)=s \mathbf{u}+\mathbf{v} \Longrightarrow \kappa(s)=0$
- Circle $\boldsymbol{\alpha}=(\cos (s), \sin (s)) \Longrightarrow \kappa(s)=1$
- $s \rightarrow-s, \kappa(s)$ remains invariant.

Frenet frame. $\boldsymbol{\alpha}^{\prime \prime}(s)=\kappa(s) \mathbf{n}(s)$ recalling $\boldsymbol{\alpha}^{\prime \prime}(s) \perp \boldsymbol{\alpha}^{\prime}(s)$, i.e., the first derivative of a unit vector field is perpendicular to itself.

- $\mathbf{t}(s)=\boldsymbol{\alpha}^{\prime}(s)$: unit tangent vector.
- $\mathbf{n}(s)$: unit normal vector
- $\mathbf{b}(s)=\mathbf{t}(s) \wedge \mathbf{n}(s)$: binormal vector, which is normal to the osculating plane spanned by \mathbf{t} and \mathbf{n}. $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ forms an orthonormal basis, i.e., Frenet frame associated with the curve.

Derivative of the Frenet frame.

$\mathbf{b}^{\prime}(s)=\mathbf{t}^{\prime}(s) \wedge \mathbf{n}(s)+\mathbf{t}(s) \wedge \mathbf{n}^{\prime}(s)=\mathbf{t}(s) \wedge \mathbf{n}^{\prime}(s)$

- $\mathbf{b}^{\prime}(s)=-\tau(s) \mathbf{n}(s) . \tau(s)$: torsion. $\tau(s)=0$ for planar curves.
- Note. W. Chen's book defines $\mathbf{b}^{\prime}(s)=-\tau(s) \mathbf{n}(s)$, but do Carmo's book defines $\mathbf{b}^{\prime}(s)=\tau(s) \mathbf{n}(s)$. We use the former one.
$\mathbf{n}^{\prime}(s)=\mathbf{b}^{\prime}(s) \wedge \mathbf{t}(s)+\mathbf{b}(s) \wedge \mathbf{t}^{\prime}(s)=\tau \mathbf{b}-\kappa \mathbf{t}$.
Frenet equation.

$$
\left\{\begin{array}{l}
\mathbf{t}^{\prime}=\kappa \mathbf{n} \tag{4}\\
\mathbf{n}^{\prime}=-\kappa \mathbf{t}+\tau \mathbf{b} \\
\mathbf{b}^{\prime}=-\tau \mathbf{n}
\end{array}\right.
$$

and equivalently,

$$
\left(\begin{array}{c}
\mathbf{t}^{\prime} \tag{5}\\
\mathbf{n}^{\prime} \\
\mathbf{b}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)
$$

2.4 Fundamental theorem of the local theory of curves

Theorem 2.1. Given differentiable functions $\kappa(s)>0$ and $\tau(s), s \in I, \exists$ a regular parameterized curve $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ such that s is the arc length, $\kappa(s)$ is the curvature and $\tau(s)$ is the torsion of $\boldsymbol{\alpha}$. Any other curve $\tilde{\boldsymbol{\alpha}}$ satisfying the same condition differs from $\boldsymbol{\alpha}$ by a rigid motion $\tilde{\boldsymbol{\alpha}}=\mathbf{R} \boldsymbol{\alpha}+\mathbf{c}, \mathbf{R}$ inSO(3) and $\mathbf{c} \in \mathbb{R}^{3}$.

Proof. Sketch of proof: 1. Existence and uniqueness of solutions of ODEs. 2. Frenet frame.

2.5 Planar curves

In $\mathbb{R}^{2}, \boldsymbol{\alpha}(s)=(x(s), y(s))$.

- unit tangent $\mathbf{t}(s)=\left(x^{\prime}(s), y^{\prime}(s)\right)$.
- $\mathbf{t}^{\prime}(s)=\kappa_{r}(s) \mathbf{n}(s) . \kappa_{r}(s)$: relative curvature. Here $\mathbf{n}(s)$ is defined by rotating $\mathbf{t}(s)$ counterclockwise with 90°, i.e., $\mathbf{n}(s)=\left(-y^{\prime}(s), x^{\prime}(s)\right)$.
- $\kappa_{r}(s)=\mathbf{t}^{\prime}(s) \cdot \mathbf{n}(s)=-x^{\prime \prime}(s) y^{\prime}(s)+y^{\prime \prime}(s) x^{\prime}(s)$
- Frenet equation:

$$
\left\{\begin{array}{l}
\boldsymbol{\alpha}^{\prime}(s)=\mathbf{t}(s) \tag{6}\\
\mathbf{t}^{\prime}(s)=\kappa_{r}(s) \mathbf{b}(s) \\
\mathbf{b}^{\prime}(s)=-\kappa_{r}(s) \mathbf{t}(s)
\end{array}\right.
$$

Figure 1: Planar curves.
$\theta(s)$ parameterization: $\theta(s)$ is the angle from x to $\mathbf{t}(s)$.

- $\mathbf{t}(s)=(\cos \theta(s), \sin \theta(s)), \mathbf{b}(s)=(-\sin \theta(s), \cos \theta(s)) \Longrightarrow \kappa_{r}(s)=\mathrm{d} \theta(s) / \mathrm{d}(s)$
- Fundamental theorem:

$$
\left\{\begin{array}{l}
\theta(s)=\theta\left(s_{0}\right)+\int_{s_{0}}^{s} \kappa_{r}(s) \mathrm{d} s \tag{7}\\
x(s)=x\left(s_{0}\right)+\int_{s_{0}}^{s} \cos \theta(s) \mathrm{d} s \\
y(s)=y\left(s_{0}\right)+\int_{s_{0}}^{s} \sin \theta(s) \mathrm{d} s
\end{array}\right.
$$

2.6 Implicit planar curves

$F(x, y)=0$

- Implicit function theorem: If $\left.\frac{\partial F}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \neq 0$, then in a neighborhood of $\left(x_{0}, y_{0}\right)$ we can write $y=f(x)$ where f is real function.
- Tangent. $F_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0$
- Curvature.

$$
\begin{equation*}
\kappa=\left|\frac{-F_{y}^{2} F_{x x}+2 F_{x} F_{y} F_{x y}-F_{x}^{2} F_{y y}}{\left(F_{x}^{2}+F_{y}^{2}\right)^{3 / 2}}\right| \tag{8}
\end{equation*}
$$

- Example. $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$

Figure 2: Example.

2.7 Some fun global properties (do Carmo's book, Chapter 1-7)

- The isoperimetric inequality: $l^{2}-4 \pi A \leq 0$ where l is the length of a simple closed planar curve and A is the area it bounds.
- $\int_{0}^{l} \kappa_{r}(s) \mathrm{d} s=\theta(l)-\theta(0)=2 \pi I$ where I is the rotation index. For simple closed planar curves, $I= \pm 1$.
- The four-vertex theorem. A vertex of a regular plane curve $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{2}$ is a point $t \in[a, b]$ where $\kappa^{\prime}(t)=0$. A simple closed convex curve has at least four vertices.
- The Cauchy-Crofton formula. Let C be a regular plane curve with length l. The measure of the set of straight lines (counted with multiplicities) which meet C is equal to $2 l$.

