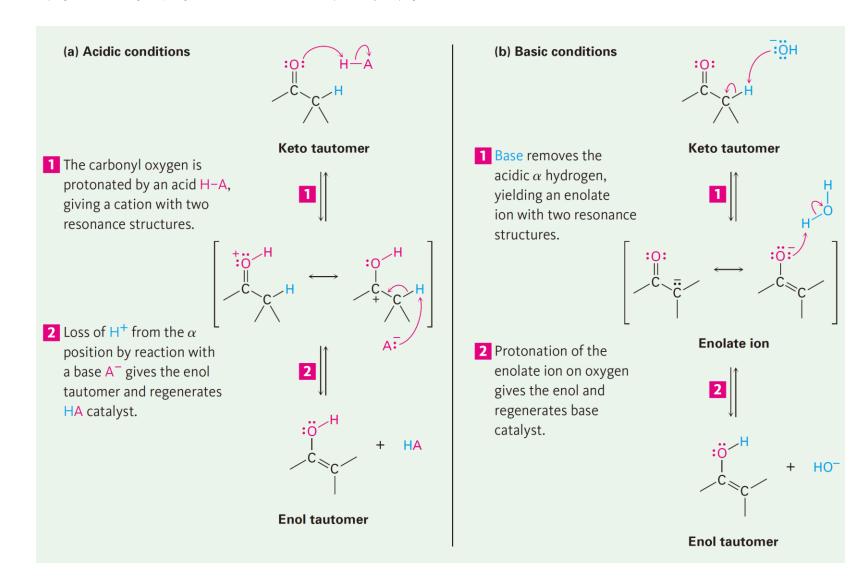
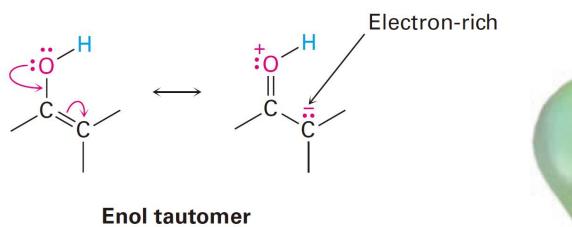

22

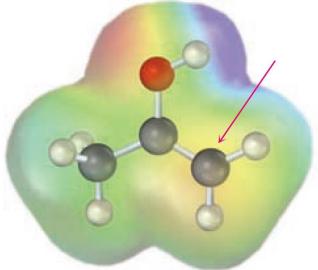
The tear gas used by police and military for riot control is a simple chloro ketone made by a carbonyl α -substitution reaction. Image copyright JustASC 2010. Used under license from Shutterstock.com

羰基alpha位的取代反应


22.1 酮和烯醇式的互变异构

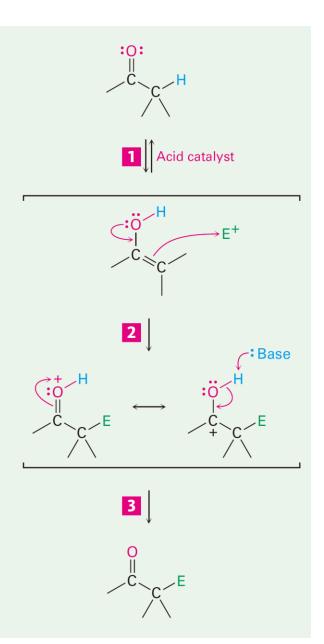
• 互变异构中烯醇式很少, 但确实存在这样的平衡。烯醇式的多少和羰基化合物的结构有关。


22.1 酮和烯醇式的互变异构


• 酸性条件和碱性条件下都可以互变异构

22.2 烯醇的反应性

• 烯醇式具有亲核性


22.2 烯醇的反应性

• 烯醇式对亲电试剂的进攻

1 Acid-catalyzed enol formation occurs by the usual mechanism.

2 An electron pair from the enol oxygen attacks an electrophile (E⁺), forming a new bond and leaving a cation intermediate that is stabilized by resonance between two forms.

3 Loss of a proton from oxygen yields the neutral alpha-substitution product as a new C=O bond is formed.

22.3 醛酮的alpha位卤化

A particularly common α -substitution reaction in the laboratory is the halogenation of aldehydes and ketones at their α positions by reaction with Cl_2 , Br_2 , or I_2 in acidic solution. Bromine in acetic acid solvent is often used.

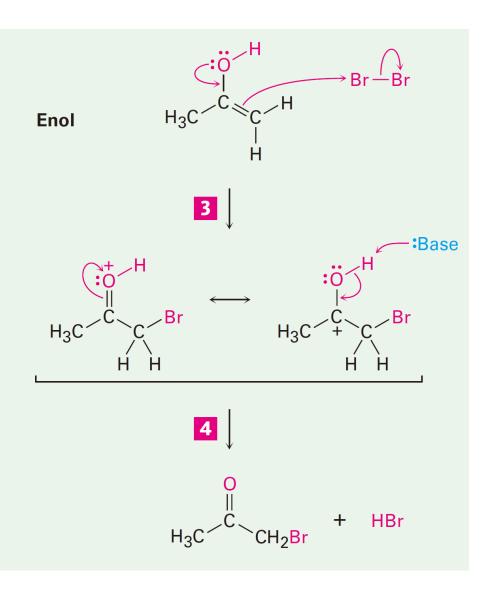
$$\begin{array}{c|c}
C \\
C \\
H \\
H
\end{array}$$

$$\begin{array}{c|c}
Br_2 \\
Acetic acid
\end{array}$$

Acetophenone

 α -Bromoacetophenone (72%)

Remarkably, ketone halogenation also occurs in biological systems, particularly in marine alga, where dibromoacetaldehyde, bromoacetone, 1,1,1-tribromoacetone, and other related compounds have been found.


From the Hawaiian alga Asparagopsis taxiformis

22.3 醛酮的alpha位卤化

机理

3 An electron pair from the enol attacks bromine, giving an intermediate cation that is stabilized by resonance between two forms.

4 Loss of the –OH proton then gives the alpha-halogenated product and generates more acid catalyst.

22.3 醛酮的alpha位卤化

• 其他应用

$$\begin{array}{c|c}
C \\
C \\
C
\end{array}$$

$$\begin{array}{c|c}
D_3O^+ \\
\hline
\end{array}$$

$$\begin{array}{c|c}
C \\
\hline
\end{array}$$

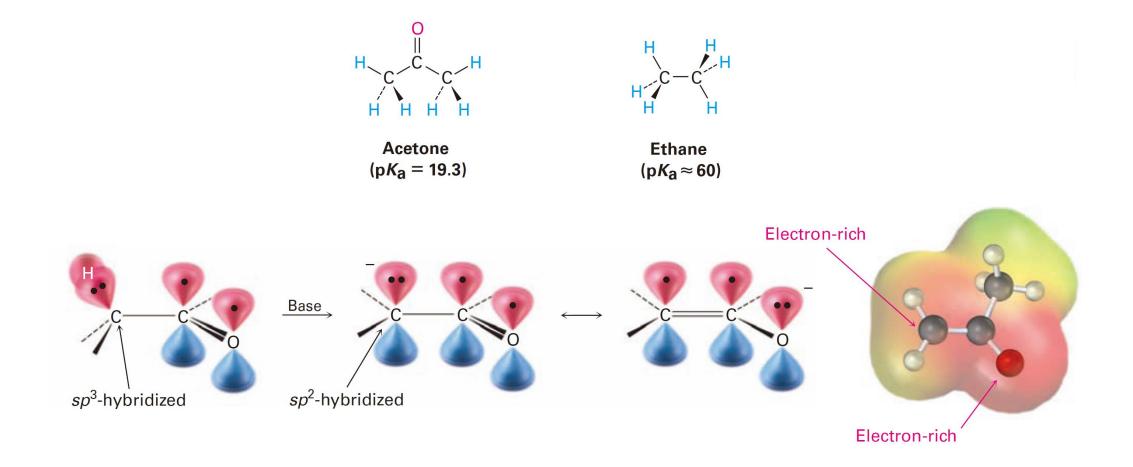
$$\begin{array}{c|c} & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & &$$

2-Methylcyclohexanone 2-Bromo-2-methylcyclohexanone 2-Methyl-2-cyclohexenone (63%)

22.4 羧酸的alpha位卤化

• 条件和醛酮的alpha位卤化有所不同:Br₂, PBr₃

The α bromination of carbonyl compounds by Br₂ in acetic acid is limited to aldehydes and ketones because acids, esters, and amides don't enolize to a sufficient extent. Carboxylic acids, however, can be α brominated by a mixture of Br₂ and PBr₃ in the *Hell–Volhard–Zelinskii* (HVZ) reaction.


22.4 羧酸的alpha位卤化

• 课堂练习

Problem 22.6

If methanol rather than water is added at the end of a Hell-Volhard-Zelinskii reaction, an ester rather than an acid is produced. Show how you could carry out the following transformation, and propose a mechanism for the ester-forming step.

$$\begin{array}{c|cccc} \mathsf{CH}_3 & \mathsf{O} & & \mathsf{CH}_3 & \mathsf{O} \\ & | & | & ? & | & | \\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CHCH}_2\mathsf{COH} & & & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CHCHCOCH}_3 \\ & & & | & & | \\ \mathsf{Br} & & & \mathsf{Br} \end{array}$$

• 酸性比较

Table 22.1 Acidity Constants for Some Organic Compounds

Functional group	Example	pK _a
Carboxylic acid	O CH ₃ COH	5
1,3-Diketone	O O CH ₃ CCH ₂ CCH ₃	9
3-Keto ester	O O CH ₃ CCH ₂ COCH ₃	11
1,3-Diester	O O CH ₃ OCCH ₂ COCH ₃	13
Alcohol	CH ₃ OH	16
Acid chloride	O CH ₃ CCI	16

Aldehyde	O CH ₃ CH	17
Ketone	O CH ₃ CCH ₃	19
Thioester	O CH ₃ CSCH ₃	21
	O	
Ester	∏ CH ₃ COCH ₃	25
Nitrile	CH ₃ C≡N	25
	O	
<i>N,N</i> -Dialkylamide	$CH_3^{II}CN(CH_3)_2$	30
Dialkylamine	HN(<i>i</i> -C ₃ H ₇) ₂	36

• LDA: 一种实验室常用的大位阻的碱,广泛用于羰基化合物alpha位去质子

• 1,3双羰化合物, alpha位氢酸性很强

$$H_3C$$
 C
 C
 C
 C
 C
 C
 C
 C

2,4-Pentanedione (p $K_a = 9$)

Identifying the Acidic Hydrogens in a Compound

Identify the most acidic hydrogens in each of the following compounds, and rank the compounds in order of increasing acidity:

(a) O O (b) O (c) O
$$\parallel$$
 CH $_3$ CHCOCH $_3$ CH $_3$

Strategy

Hydrogens on carbon next to a carbonyl group are acidic. In general, a β -dicarbonyl compound is most acidic, a ketone or aldehyde is next most acidic, and a carboxylic acid derivative is least acidic. Remember that alcohols, phenols, and carboxylic acids are also acidic because of their -OH hydrogens.

Solution

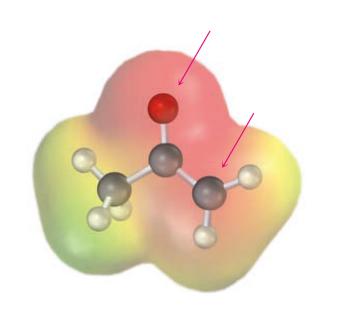
The acidity order is (a) > (c) > (b). Acidic hydrogens are shown in red.

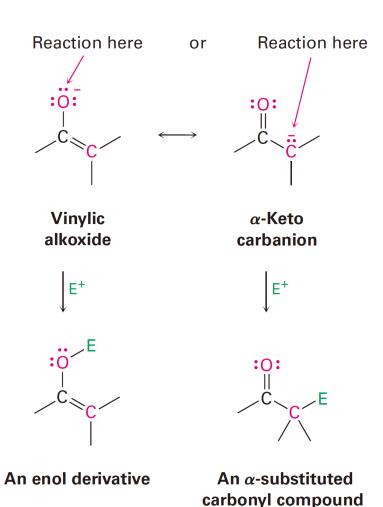
• 课堂练习

Problem 22.7

Identify the most acidic hydrogens in each of the following molecules:

- (a) CH_3CH_2CHO (b) $(CH_3)_3CCOCH_3$ (c) CH_3CO_2H


- (d) Benzamide (e) CH₃CH₂CH₂CN (f) CH₃CON(CH₃)₂


Problem 22.8

Draw a resonance structure of the acetonitrile anion, $^{-}$: CH₂C \equiv N, and account for the acidity of nitriles.

22.6 烯醇负离子的反应性

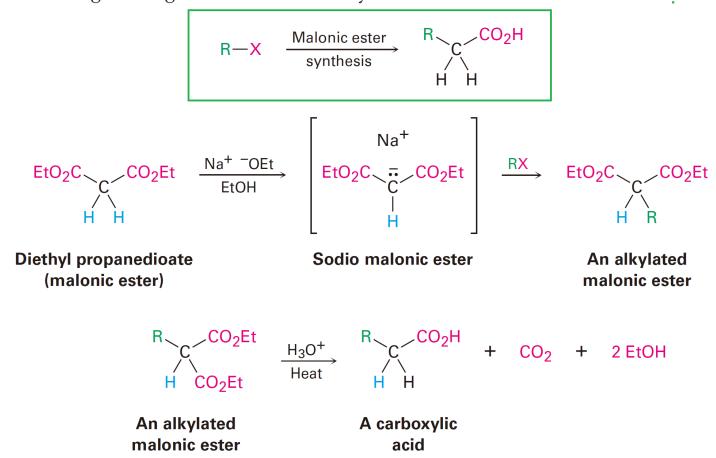
• 作为亲核试剂,对亲电试剂进攻

Figure 22.5 The electrostatic potential map of acetone enolate ion shows how the negative charge is delocalized over both the oxygen and the α carbon. As a result, two modes of reaction of an enolate ion with an electrophile E⁺ are possible. Reaction on carbon to yield an α -substituted carbonyl product is more common.

22.6 烯醇负离子的反应性

• 卤仿反应

• 重要: 构建C-C键


Perhaps the most useful reaction of enolate ions is their alkylation by treatment with an alkyl halide or tosylate, thereby forming a new C-C bond and joining two smaller pieces into one larger molecule. Alkylation occurs when the nucleophilic enolate ion reacts with the electrophilic alkyl halide in an S_N2 reaction and displaces the leaving group by backside attack.

R-X: Tosylate > -I > -Br > -Cl
R-: Allylic
$$\approx$$
 Benzylic > H₃C- > RCH₂-

• 丙二酸酯的合成应用

The Malonic Ester Synthesis

One of the oldest and best known carbonyl alkylation reactions is the **malonic ester synthesis**, a method for preparing a carboxylic acid from an alkyl halide while lengthening the carbon chain by two atoms.

• 机理

A diacid

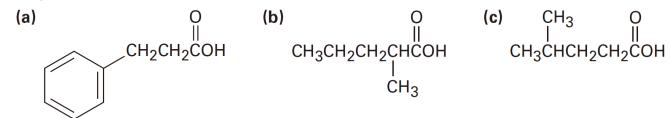
An acid enol

A carboxylic acid

$$A = \frac{C}{C} + \frac{C}{C}$$

• 应用举例

• 应用举例

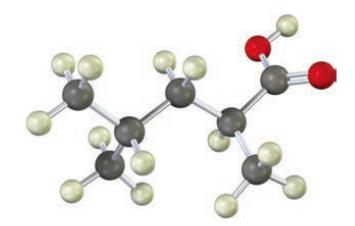

1,4-Dibromobutane

Cyclopentanecarboxylic acid

・课堂练习

Problem 22.10

How could you use a malonic ester synthesis to prepare the following compounds? Show all steps.



Problem 22.11

Monoalkylated and dialkylated acetic acids can be prepared by the malonic ester synthesis, but trialkylated acetic acids (R₃CCO₂H) can't be prepared. Explain.

Problem 22.12

How could you use a malonic ester synthesis to prepare the following compound?

• 乙酰乙酸乙酯的合成应用

The Acetoacetic Ester Synthesis

Just as the malonic ester synthesis converts an alkyl halide into a carboxylic acid, the **acetoacetic ester synthesis** converts an alkyl halide into a methyl ketone having three more carbons.

$$R-X \xrightarrow{\text{Acetoacetic ester} \\ \text{synthesis}} R \xrightarrow{R} C \xrightarrow{C} CH_3$$

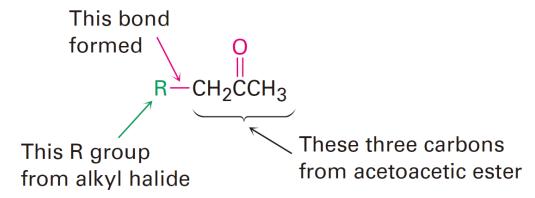
Ethyl acetoacetate (acetoacetic ester)

Sodio acetoacetic ester

A monoalkylated acetoacetic ester

An alkylated acetoacetic ester

A methyl ketone


• 应用举例

Ethyl 2-oxocyclohexanecarboxylate (a cyclic β-keto ester)

• 应用举例

Strategy

The acetoacetic ester synthesis yields a methyl ketone by adding three carbons to an alkyl halide.

Thus, the acetoacetic ester synthesis of 2-pentanone must involve reaction of bromoethane.

Solution

$$CH_{3}CH_{2}Br + EtOCCH_{2}CCH_{3} \xrightarrow{1. Na^{+} - OEt} CH_{3}CH_{2}CH_{2}CCH_{3}$$

$$2-Pentanone$$

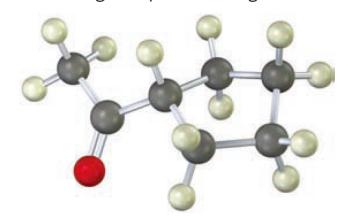
・课堂练习

Problem 22.13

What alkyl halides would you use to prepare the following ketones by an acetoacetic ester synthesis?

(a)
$$\begin{array}{ccc} \text{CH}_3 & \text{O} \\ & | & | \\ & \text{CH}_3\text{CHCH}_2\text{CH}_2\text{CCH}_3 \end{array}$$

(b)
$$CH_2CH_2CH_2CCH_3$$


Problem 22.14

Which of the following compounds *cannot* be prepared by an acetoacetic ester synthesis? Explain.

- (a) Phenylacetone
- **(b)** Acetophenone
- (c) 3,3-Dimethyl-2-butanone

Problem 22.15

How would you prepare the following compound using an acetoacetic ester synthesis?

• 酮,酯和腈的直接alpha位烷基化

Direct Alkylation of Ketones, Esters, and Nitriles

Lactone

Butyrolactone

2-Methylbutyrolactone (88%)

Ester

Ethyl 2-methylpropanoate

Ethyl 2,2-dimethylpropanoate (87%)

· 酮的alpha位烷基化,使用LDA作为碱

Ketone

2-Methylcyclohexanone

2,6-Dimethylcyclohexanone (56%)

2,2-Dimethylcyclohexanone (6%)

• 腈的alpha位烷基化,使用LDA作为碱

Nitrile

$$\begin{array}{c|c} & & & \\ &$$

Phenylacetonitrile

2-Phenylpropanenitrile (71%)

• 举例

Using an Alkylation Reaction to Prepare a Substituted Ester

How might you use an alkylation reaction to prepare ethyl 1-methylcyclohexanecarboxylate?

Strategy

An alkylation reaction is used to introduce a methyl or primary alkyl group onto the α position of a ketone, ester, or nitrile by S_N2 reaction of an enolate ion with an alkyl halide. Thus, we need to look at the target molecule and identify any methyl or primary alkyl groups attached to an α carbon. In the present instance, the target has an α methyl group, which might be introduced by alkylation of an ester enolate ion with iodomethane.

Solution

$$\begin{array}{c|c} \text{CO}_2\text{Et} \\ \text{H} \\ \hline \begin{array}{c} \text{1. LDA, THF} \\ \hline \text{2. CH}_3\text{I} \end{array} \end{array}$$

Ethyl cyclohexanecarboxylate Ethyl 1-methylcyclohexanecarboxylate

• 练习

Problem 22.16

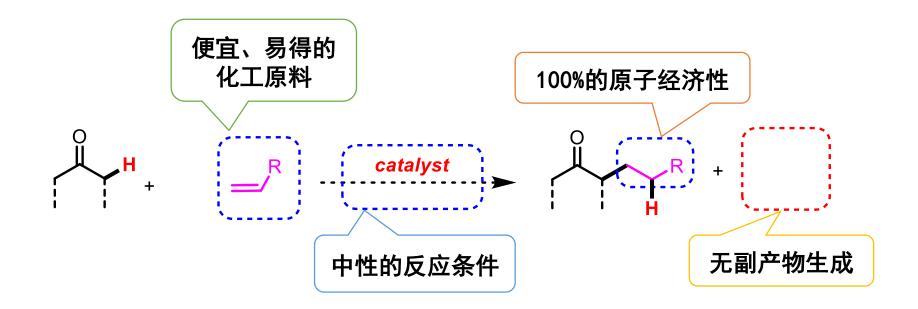
Show how you might prepare the following compounds using an alkylation reaction as the key step:

(b)
$$CH_2CH_3$$

 $CH_3CH_2CH_2CHC \equiv N$

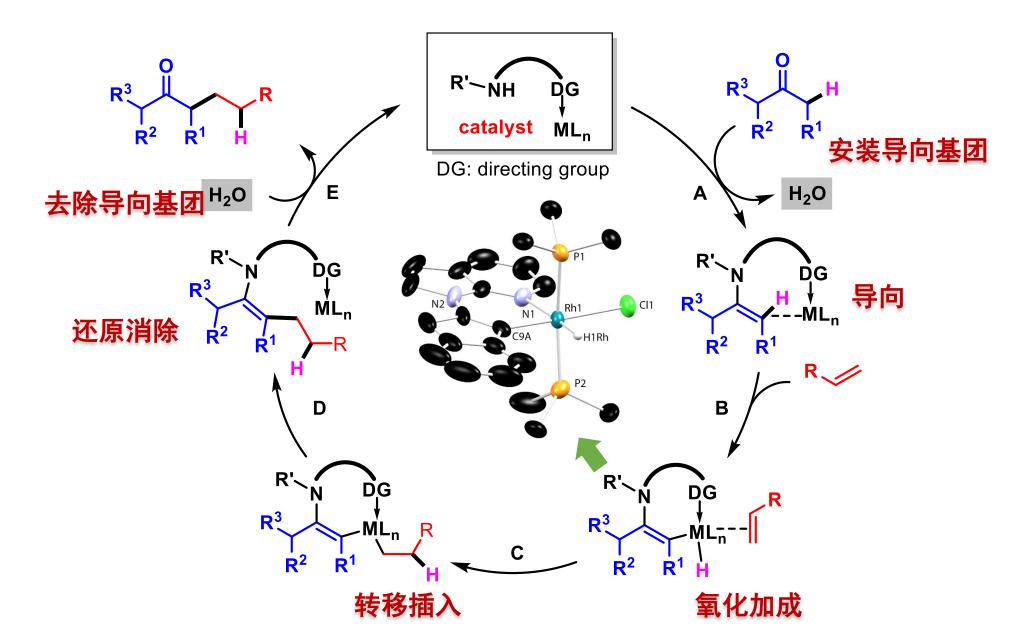
(c)
$$CH_2CH=CH_2$$

(d)
$$H_3C$$
 CH_3 CH_3

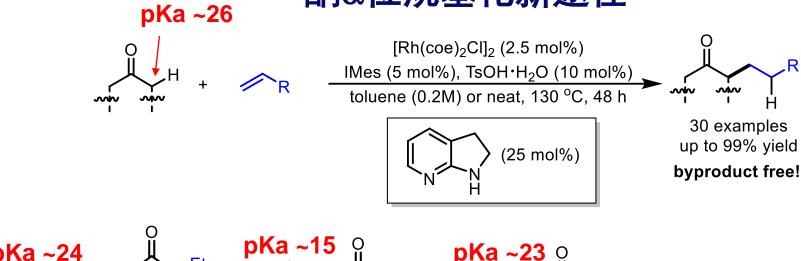

$$\begin{array}{ccc} \textbf{(f)} & \text{CH}_3 & \text{O} \\ & | & || \\ & \text{CH}_3\text{CHCHCOCH}_3 \\ & | \\ & \text{CH}_2\text{CH}_3 \end{array}$$

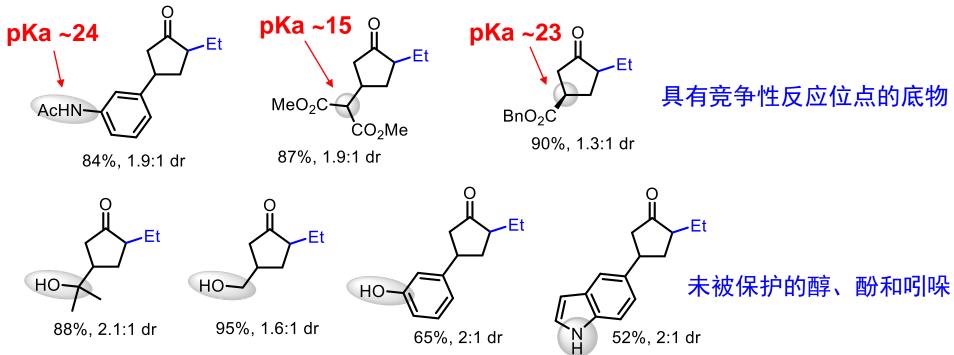
作业

• 22.25, 22.29, 22.31, 22.36, 22.47, 22.50, 22.54


传统方法的一些局限性

- ▶ 低温——能耗
- ▶ 强碱——底物适用性
- ▶ 卤代烃的使用——环境不友好
- ▶ 副产物——原子经济性差




H ₂ C=CH ₂	\$1/kg	\$0.028/mol
	VS	
ICH ₂ CH ₃	\$280/kg	\$43.7/mol
BrCH ₂ CH ₃	\$55/kg	\$6.0/mol

反应过程设计——机理

Mo, Fanyang.; Dong, Guangbin.* Science 2014, 345, 68. http://www.sciencemag.org/content/345/6192/68.abstract