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Abstract

Automatic extraction of filler morphology (size, orientation, and spatial distribution) in
Scanning Electron Microscopic (SEM) images is essential in many applications such as auto-
matic quality inspection in composite manufacturing. Extraction of filler morphology greatly
depends on accurate segmentation of fillers (fibers and particles), which is a challenging task
due to the overlap of fibers and particles and their obscure presence in SEM images.
Convolution Neural Networks (CNNs) have been shown to be very effective at object recog-
nition in digital images. This paper proposes an automatic filler detection system in SEM
images, utilizing a Mask Region-based CNN architecture. The proposed system can simul-
taneously classify, detect, and segment fillers in SEM images, making it suitable for morphol-
ogy analysis of fillers and automatic quality inspection. We also propose a novel SEM image
simulation procedure to overcome the data scarcity for training a deep CNN architecture. The
proposed filler detection system is trained on the simulated images. It is shown that the
trained network can detect and segment fillers with higher accuracy even in the overlapping
and obscure situations. The performance and robustness of the proposed system are evaluated
using both simulated and real microscopic images.

Introduction

Product quality inspection is one of the most important steps in the manufacturing process
(Chin and Harlow, 1982). The tasks of inspection involve detection, measurements, or diag-
nosis and require a substantial amount of reasoning capability to make the final decision
on product quality. Traditionally, inspection tasks are assigned to human experts for manual
inspection. Today’s competitive market and modern manufacturing system need to shift the
manual inspection to an automated level to speed up the production rate while maintaining
rigorous production quality. However, the attempts to automate the inspection tasks is pro-
gressing in slow pace compare to other fields such medical inspection and diagnosis.
Considering this fact, recently many researchers have focused in this area to facilitate an auto-
mated inspection procedure by integrating cutting-edge technologies and computation
methods (Esmaeilian et al., 2016). Hence, it is necessary to introduce effective and efficient
methodologies into manufacturing systems to take advantage of the automation in order to
meet the demand of the 21st century.

Composite materials, such as fiber and particle reinforced materials, have been reported to
have the potential to revolutionize almost any industry sector ranging from engineering struc-
ture, electronics, energy and biomedical to aerospace (Liu, 1997; Mangino et al., 2007; Kim
et al., 2009; Scholz et al., 2011; Liu et al., 2016; Wu et al., 2016, 2017). In composite manu-
facturing, fillers (e.g., fibers and particles) are reinforced into the base materials to achieve
superior properties over the original materials. The spatial homogeneity, length, alignment
orientation, and fiber–particle mixing ratio in the underlying material play a decisive role in
determining the final properties of the composites (Doshi and Charrier, 1989; Yu et al.,
1994). For example, the thermal conductivity of copper filled composites depends on the
shape and size, and the volume fraction and spatial arrangement of the filler particles in
the polymer matrix (Tekce et al., 2007). The fiber orientation greatly affects the wear behavior
of polymer composite materials (Cirino et al., 1988). Besides, the composites possess stronger
mechanical properties in the direction of fiber alignment (Frangopol and Recek, 2003).
Therefore, the morphological characteristics of fillers in the base material need to be inspected
and controlled to achieve desirable material properties.
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The Scanning Electron Microscopic (SEM) images are com-
monly used to perform the morphology analysis of product qual-
ity (Kovacs et al., 2007; Mortell et al., 2014). However, manual
inspection of SEM images is often subjective and time-
consuming. It is prone to missing relevant pattern/distribution
and incorrectly identifying the fibers and particles in SEM images.
Besides, it is not able to extract quantitative information of the fil-
ler alignment and spatial distribution for quality characterization.
Automated visual inspection can overcome these shortcomings by
making the procedure free of human involvement and can be uti-
lized to facilitate consistent and cost-effective quality inspection.
However, the tasks of automatic identification and segmentation
of fibers and particles in SEM images still remain challenging in
the automated inspection and computer vision domains. These
challenges are due to overlapping or cross-linking effects among
fibers and particles, and contrast problems in SEM images, as
shown in Figure 1. Moreover, the task of identifying fibers and
particles becomes more difficult when a large number of fibers
and particles are embedded into the base material.

The detection and segmentation of rounded and circular par-
ticles using traditional image processing and computer vision
techniques has been intensely studied, especially in the field of
biomedical and material science (Yin et al., 2010; Park et al.,
2012a; Wang, 2016; Rahman et al., 2021a). One of the popular
methods is edge-based image segmentation, where the boundary
of the object is detected using some algorithms, for example,
Moore neighborhood (Sharma et al., 2013), ellipse fitting tech-
nique (Rosin, 1993), or watershed techniques (Mangan and
Whitaker, 1999). Edge-based segmentation has been applied to
segment uniformly distributed particles from the background
with reasonable accuracy (Kothari et al., 2009; Luo et al., 2017).
However, the edge-based approach fails to segment individual
objects or cells when they overlap with each other. These methods
are only able to segment or detect boundary of disjoint objects. A
number of researchers have proposed background subtraction
method. This method extracts the background of a processed
image and leaves the foreground containing the objects and ran-
dom noise (Wang and Liao, 2002; Nacereddine et al., 2005).
However, the background subtraction method is very sensitive
to noise and overlapping issue. A graph-cut method has also
been applied in particle segmentation. The method constructs a
graph by treating each image pixel as a node. Each pair of
nodes is connected by an edge with similarity between pixel inten-
sities. It finds a normalized minimum cut of the graph, which
naturally segments an image (Felzenszwalb and Huttenlocher,

2004). This approach does not separate overlapping objects well,
especially when the overlapping objects have similar intensity
levels. Hough Transform (HT) is another very popular method
to identify a certain class of shapes, such as lines, circles, and
ellipses, by a voting procedure (Illingworth and Kittler, 1988).
Literature also reports the use of partition-based HT, gradient-
based HT, and break-merge method to detect the fibers from
SEM images (Rahman et al., 2018, 2021b). This method integrates
the partitioning step and gradient information into the HT algo-
rithm to tackle the issue of overlapping fibers. The break-merge
method used the density-based clustering (DBSCAN) algorithm
to identify the overlapping pixels as the breaking point and
later merged together based on proximity and orientation test
among the broken fibers. However, the application of these
methods is limited to extract short fibers and are not fully
automated.

Filler detection and segmentation is similar to the problem of
defect detection in X-ray or SEM imaging for industrial applica-
tions. In 2006, Li et al. integrated some traditional image process-
ing methods and wavelet technique to facilitate automatic
detection of air holes and foreign objects in X-ray images. A
range of feature extraction-based methods have also been pro-
posed in the literature. In Strecker (1983) and Zheng and Basart
(1988), each image pixel is classified as defect or not depending
on features that are usually computed from a pixels neighbor-
hood.. A number of features are manually identified to classify
individual pixels. Common features include statistical descriptors
such as mean, standard deviation, skewness, kurtosis, and loca-
lized wavelet decomposition. Several Bayesian networks and mul-
tivariate image analysis approaches have also been proposed (Jung
et al., 2008; Sarkar et al., 2009), but these techniques have largely
been superseded by modern deep learning-based computer vision
techniques. Object detection is a very popular approach in mod-
ern computer vision domain, which deals with fitting a bounding
box around a certain class of objects in digital images or videos
(Voulodimos et al., 2018). Similarly, semantic segmentation refers
to the process of linking each pixel in images to a class label. The
process of semantic segmentation can be considered as image
classification at the pixel level. This kind of detection and segmen-
tation can be very useful in applications that are used to count the
number of objects and their shapes. The literature is well docu-
mented with many state-of-the-art object detection systems
based on the regional-based convolution neural network
(RCNN; Toth et al., 2017). The RCNN algorithm places a number
of boxes in the image and checks if any of these boxes contain any

Fig. 1. Illustration of the challenges in fiber and particle identification and segmentation (a) and (b) fibers and particles are overlapped with each other; (c) the
presence of fibers and particles in the SEM images is vague due to poor contrast.
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of the objects. RCNN uses selective search to extract these boxes
from an image, which are referred to as potential regions. Selective
search identifies the basic features (e.g., scales, colors, textures,
intensity, or enclosure) from the images. Based on that, various
regions are proposed. Once the proposals are made, RCNN
reshapes all the regions to a uniform square size and passes it
through a feature extractor. A support vector machine (SVM)
classifier is trained to classify the objects and the background.
One binary SVM is trained for each class. Later, a linear regres-
sion model is used to fit the bounding boxes for each identified
object in the image. In most of recent object detection architec-
tures, for example the region-based fully convolution networks
(R-FCN), each component of the object detection network is
replaced by a deep neural network (Dai et al., 2016).

In this paper, we propose a deep learning-based filler detection
system to extract the filler morphology (size distribution, orienta-
tion distribution, and spatial homogeneity) from SEM images.
The filler detection system is developed based on Mask
Region-based CNN (Mask R-CNN) architecture (He et al.,
2017) which is one of the state-of-the-art architectures in compu-
ter vision. It can simultaneously solve the object detection and
segmentation problems which facilitates the filler morphology
analysis. Major applications of Mask R-CNN include identifying
common objects in natural images with big sizes and elongated
shapes. It is now making its way with various applications in
nearly every domain with different modified architectures (Zhao
et al., 2018; Ganesh et al., 2019; Uribe et al., 2019; Wessel
et al., 2019). The automated visual inspection in composite man-
ufacturing involves objects that are relatively small and morpha.
To fit our specific problem, the structure of Mask R-CNN is mod-
ified and customized to perform the simultaneous classification,
detection, and segmentation of fillers. To train and evaluate the
CNN model, sufficient data are often needed. However, it is not rea-
listic or easy to collect a large number of SEM images. To this end,
this paper also proposes an artificial SEM image simulation proce-
dure. The procedure is publicly available on GitHub page for open
access (Image Synthesis With Annotation, 2019). This procedure
can generate SEM images to meet the demand for training data,
which is of separate interest to the research community. The pro-
posed deep learning method is trained using the simulated images.
The performance and robustness of the trained model are thor-
oughly investigated using three different simulated test datasets.

The rest of the paper is organized as follows. Section
“Methodology” describes in details the methodologies for

detection and segmentation of embedded fillers in SEM images,
including the SEM simulation procedure, image mask generation,
and various components of the deep neural network architecture.
In Section “Experimental design and training”, the experimental
design, training hyperparameters, and the implementation proce-
dure are discussed in detail. Section “Result and discussion” dis-
cusses the accuracy and efficiency of the proposed method for
three different cases based on simulated SEM images and real
SEM images. Section “Conclusion and discussion” presents the
conclusion and discussion.

Methodology

In this section, a fillers detection system is proposed to classify,
detect, and segment fibers and particles in SEM images. The
detection system is designed based on the Mask R-CNN (He
et al., 2017). The detection system is composed of four modules,
namely, the feature extraction, region proposal network (RPN),
region-based detector (RBD), and segmentation network. The
details are described in the section “Filler detection system”.
Due to the scarcity of available SEM images, we propose an arti-
ficial SEM images generation approach as described in the section
“SEM image simulation procedure”. Section “Ground truth and
annotation file generation” describes the procedure to generate
the ground truth and annotation file, which will be used to
train the filler detection system.

Filler detection system

The proposed system simultaneously performs fillers detection,
classification, and segmentation, making it useful in automated
visual inspection. We designed the filler detection system moti-
vated by the novel architecture Mask R-CNN (He et al., 2017).
The proposed detection system can be subdivided into four
major modules, namely, feature extraction, RPN, RBD, and seg-
mentation network, as shown in Figure 2.

Module 1: This module works as the backbone of the other
three modules. It is a feature pyramid network (FPN; Lin et al.,
2017)-based neural network that generates a superficial featured
representation of an input image. Many CNN-based object detec-
tion systems use the VGG-16 and ResNet-101 architecture to
extract features from the raw images (Girshick et al., 2014;
Ferguson et al., 2018). The ResNet-101 feature extractor is a
very deep convolutional neural network with 101 trainable layers,

Fig. 2. The deep learning architecture for detection, classification, and segmentation of fibers and particles.
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whereas the VGG-16 architecture only contains 16 trainable
layers. Considering the computational complexity, we choose
the VGG-16 architecture as the backbone for the feature extrac-
tion. Some feature maps from different layers of the feature
extraction module are shown in Figure 3. The advantage of this
feature extraction module is that it can correlate the most impor-
tant features with the fibers and particles and discards the redun-
dant features.

Module 2: In this module, a small neural network called region
proposal network (RPN) is employed to scan all feature maps
obtained from the previous module. This proposes potential
regions which may contain fibers and particles. The output of
the RPN is a vector containing the bounding box coordinates
and likeliness of objects at the current sliding position, commonly
known as RPN regression (rpnreg) and RPN class (rpncls), respec-
tively. While scanning the feature map, it is necessary to bind fea-
tures to their raw image location. This is done by using the
concept of anchor boxes. Anchors are a set of boxes with prede-
fined locations and scales related to the original image.
Depending on object size and shape, the anchor boxes vary in
aspect-ratio and scale, so that they can cover all potential objects
in the image. In our situation, the size of the fibers and particles

varies from small to medium with circular and rectangular shape,
respectively. In this paper, anchor boxes with four different scale
factors (4, 8, 16, 32) and three aspect-ratios (1:1, 1:2, 2:1) are used,
that is, 12 (4 × 3) anchors for each sliding position of the feature
map, as shown in Figure 4. Note that, as the fillers are relatively
small, a larger scale factor such 64 or aspect-ratios like 3:1
would be redundant in our case and increase the computational
cost. The total number of anchors for each image is 12WH,
where W and H are the width and height of the feature map,
respectively. These anchors are assigned to different labels based
on the best match with the ground truth box. The best match is
determined using the intersection-over-union (IoU) metric,
which is defined as

IoU = area(bboxi > bboxgt)

area(bboxi < bboxgt)
, (1)

where bboxi > bboxgt denotes the intersection of any specific
anchor i and ground truth bounding boxes and bboxi < bboxgt
denotes their union. Here, the anchors with IoU value higher

Fig. 3. Feature extraction from the different layers of VGG-16 network.

Fig. 4. Illustration of anchor boxes used for any specific position in
the feature map.
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than 0.7 are considered as the best match bounding box with
respect to the ground truth.

For RPN, we utilize a small network by sliding a 3 × 3 window
over the feature map to convert the features to a 512-dimensional
feature vector followed by a ReLU layer. This feature vector is fed
into two siblings 1 × 1 convolution layers, namely, the box-
regression (boxreg) layer and box-classification (boxcls) layer. The
box-classification layer estimates the probability of fillers and
non-fillers for each anchor box, whereas the box-regression
layer predicts the bounding box coordinate for each proposal.
The RPN network is trained to minimize the two types of loss,
that is, the location-based loss and the classification loss. For
each anchor, i, the best matching filler bounding box b is selected
using the IoU metric. If such a match is found, anchor i is
assumed to have an object (fibers or particles) and is assigned a
ground truth class label c* = 1 or 2 (1 for fiber and 2 for particle).
Besides, a vector encoding bounding box b is created with respect
to anchor i. This vector encoding is denoted as w(bi;i). If no
match is found, it is assumed that anchor i does not contain
any fibers or particles and the class label is set to as c* = 0.
During the training process of RPN, if the predicted bounding
box encoding for anchor i is Pbox(I;i, θ) and the corresponding
ground truth is w(bi;i), the location-based loss is defined as

Lbbox(i, I; u) = c∗·t(w(bi; i)− Pbox(I; i, u)), (2)

where τ( ⋅ ) is the l1 smooth loss as defined in Girshick (2015), I is
the image, and θ is the model parameter. The vector encoding of
box b with respect to anchor i is defined as

w(b; i) = xc
wi

,
yc
hi
, logw, log h

[ ]T
, (3)

where xc and yc are the center coordinates of the box, w and h are
the width and height of the box, respectively. Continuing, wi and
hi are the width and height of the anchor i. Again, if the predicted
class is Pcls(I;i, θ), then the classification loss is defined as

Lcls(i, I; u) = r(c∗, Pcls(I; i, u)), (4)

where ρ is the cross-entropy loss function and c* is the ground
truth class label. The total loss for anchor i is expressed as the
weighted sum of the location-based loss and the classification loss

L(I; u) = a · Lbbox(i, I; u)+ b · Lcls(i, I; u), (5)

where α and β are weights chosen to balance localization and clas-
sification losses (Huang et al., 2017). To train the fillers detection
model, Eq. (5) is then averaged over the set of anchors and mini-
mized with respect to the parameter θ.

Module 3: This module selects the top n anchor boxes
(regions) based on the probability of the box-classification (boxcls)
obtained from module 2. In this module, the RBD is used to clas-
sify the fillers in each region and fine-tune the bounding box
coordinates. The reader is referred to Girshick (2015) for more
detailed description on RBD. According to the regressed bound-
ing box (boxreg), the output of the VGG-16 feature extractor is
cropped and fed into the RBD as its input. Note that the size of
the input depends on the size of the bounding box. However,
the architecture of RBD requires that all are of a fixed size. This
issue has been addressed using the concept of ROIAlign layer
(He et al., 2017). ROIAlign works by making every target cell
have the same size. It applies interpolation to calculate the feature
map values precisely within the cell, which produces a significant
improvement in the accuracy. The resulting feature vectors are fed
into the RBD network. Here, the RBD network contains two con-
volutional and fully connected (FC1 and FC2) layers as shown in
Figure 5. This small network produces two outputs vectors, where
the first vector (boxcls) contains the probability estimation for each
K object classes and the second vector (boxreg) refines the position
of the bounding box of the K classes. The RBD is trained by mini-
mizing the joint regression and classification loss function, similar
to the one used for the RPN.

Module 4: This module deals with pixel-wise segmentation of
fibers and particles. Fillers are segmented by deploying a CNN
network alongside the RBD, as shown in Figure 5. This CNN net-
work is referred to as the instance segmentation network which
predict a segmentation mask for each RoI (region of interest).
The segmentation network uses a block of features cropped
from the output of the feature extractor as its input and generates
k binary masks of m ×m pixels, one for each of the k classes.
Here, a per-pixel sigmoid function is used to train the segmenta-
tion network. The loss function Lmask is defined as the average of
the binary cross-entropy loss. Note that only the binary mask cor-
responding to the ground truth class K contribute to the Lmask,
while the other output masks do not contribute to the loss func-
tion. Thus, Lmask allows the segmentation network to generate
masks for every class without competition among the classes.
This module is trained by minimizing the joint RBD and mask
loss. During testing, a total of k masks are predicted, one for
each class. However, the mask corresponding to the predicted
class from the RBD branch is used. The m ×m floating-number

Fig. 5. Region-based detector and segmentation
network.
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mask output is then resized to the RoI size, which is later binar-
ized using a threshold value of 0.5.

SEM image simulation procedure

The deep learning method requires voluminous data to train the
network. Collecting a large amount of data is very time-
consuming and difficult, especially in industrial applications.
Considering this fact, we propose a simulation approach to gener-
ate artificial SEM images for training of the filler detection system.
The SEM images used in this paper contain two types of fillers,
that is, fibers and particles. The fibers are rectangular-shaped,
whereas the particles are mostly circular and amorphous in shape.

The fibers are artificially generated by specifying their corre-
sponding centroid, width, length, and orientation. Given the
image resolution, the centroids are randomly selected within the
image. The length (l ) of the fibers follows a normal distribution
with mean of 40 pixels and standard deviation of 5 pixels. The
fiber width remains fixed at 4 pixels. The fiber orientation angles
(α) are uniformly distributed between −π/2 and π/2. The intensity
of the gray level image at each pixel follows a truncated normal dis-
tribution N(μ = 192, σ = 32) within the range of 0 to 255. Following
the fiber generation, a 2D Gaussian filter with standard deviation 2
is applied to smooth the fibers. A schematic diagram of fiber gen-
eration is shown in Figure 6a. The particles are generated according
to the principle of Bezier curve formation. A Bezier curve is a para-
metric curve used in computer graphics and related fields
(Mortenson, 1999). It is used to smooth any curves while scaling
indefinitely. The underline principle of Bezier curve formation uti-
lizes Bernstein polynomials which are defined by a set of control
points p0 through pn where n is called the order of Bezier curve.

In this paper, we used cubic Bezier curves to generate the par-
ticles, which implies that we need four control points p0, p1, p2,
and p3. Here, p0 and p3 represent the start and end points, respec-
tively. As the particles are in circular shape, we specify the start
point ( p0) and end point ( p3) at the same coordinate to create
the closed form. The other two control points p1 and p2 control
the shape of the particle, as shown in Figure 6b. Each particle is
generated by randomly picking the four points under the con-
straint of a maximum distance among the points. The upper
bound of this distance is a parameter to control the size of parti-
cles, which is set as 30 in our case.

Artificial SEM images are generated using different combina-
tion of fibers and particles. Each simulated image can contain

any number of fillers with different mixing ratios. Here, we gen-
erate images with 50 fillers with 50%–50% (fibers–particles) mix-
ing ratio. In other words, each simulated image contains 25 fibers
and 25 particles. The image resolution is set to 256 × 256 pixels.
Apart from these fibers and particles, the rest of the image is con-
sidered as background which has the pixel value of 0 (black). But
in real SEM images, the background does not appear as black,
rather it remains very obscure. To make the simulated image
more realistic, a uniform random noise (U[0, 0.4]) is added to
the image background. In each image, the positions of fibers
and particles are randomly chosen. This makes every image dif-
ferent and more natural.

Ground truth and annotation file generation

To train a deep learning network, each training dataset should
have its corresponding ground truth. Besides the training, ground
truth is also used to quantify how good an automated segmenta-
tion is with respect to the true segmentation. Ground truths are
the true or accurate segmentations that are typically made by
one or more human experts from the corresponding field. In
this paper, as we are using simulated images, the ground truth
can be generated without expert’s help. While simulating the
images, we generate the ground truth for each image; here we
call it as mask. This mask is a binary image with the pixels
value of 1 for fillers and 0 otherwise, that is, for the backgrounds.
To generate the ground truth, we take a 256 × 256 image and ini-
tially set the value of zero (0) to all of pixels. Later, we change the
pixel value to 1 if it belongs to fibers or particles, as shown in
Figure 7b. Note that we have two categories of fillers – fibers
and particles. The pixel value of 1 along cannot tell us whether
it is from a fiber or particle. Moreover, the overlapping phenom-
enon of fibers and particles may add the complexity in the filler
differentiation. So, we need to keep track of pixels for accurate fil-
ler distinction. This is done by creating an annotation file. The
annotation file is a list of dictionaries which contains the keys: seg-
mentation, image_id, category_id, id, bbox, and area. The segmen-
tation key has two attributes: fibers and particles. These two
attributes are two separate lists to keep record of pixel coordinate.
Once we detect the pixels inside the fibers or particles boundary,
we append them to the annotation file under segmentation key
and respective category. The other keys in the annotation file
help track some additional information related to the image and
ground truth. For example, image_id indicates the identification

Fig. 6. (a) Fiber generation and (b) particle generation.
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number of the image; category_id is used to track the category of
the pixels (1 for fibers and 2 for particles); bbox refers to the
bounding box coordinate of the respective category and the
area keeps record of the total area of the bounding box. The
ground truth and annotation file for each image are generated
simultaneously. The procedure is shown in Table 1.

Experimental design and training

This section describes the experimental design and implementa-
tion of the fillers detection system demonstrated in the previous

section. The SEM images are simulated based on the procedure
described in the section “SEM image simulation procedure”.
While generating the images, we also generate the corresponding
ground truth and annotation file for each image, as described in
the section “Ground truth and annotation file generation”.
These ground truth and annotation files are used to train the
model. A total of 4000 images are generated with size of 256 ×
256 pixels. Among them, 3200 (80%) images are used for training,
800 (20%) images are used for validation purpose. For testing, we
generate three different test datasets, namely, testset-I, testset-II,
and testset-III. Each test dataset has 100 images with different
number of fillers. Each image of testset-I, testset-II, and
testset-III has 20, 50, and 100 fillers, respectively, among which
50% are fibers and 50% are particles. The primary motivation
behind generating three different test datasets is to show the
robustness of the proposed methodology to detect, classify, and
segment fillers from SEM images with different filler densities.

The training phase of a deep learning network requires a large
number of images for reliable detection and segmentation results,
whereas we only have 4000 images for training the model.
Although we can generate any number of images using our pro-
posed image simulation procedure, it is not feasible to get an
enormous amount of SEM images in practical applications.
Considering this fact, we intentionally generate a limited number
of images to train our model. However, we integrate image aug-
mentation technique and transfer leaning to overcome the limita-
tions and improve the accuracy. In image augmentation
procedure, each image is rotated 90◦, 180◦, and 270◦ during
the training process. This strategy eventually increases the training
datasets by a factor of three. Besides, Transfer Learning helps
improve the generalization of a setting by utilizing the learned fea-
tures from another setting. The model is trained by loading the
pre-trained weights from the Microsoft COCO dataset (Lin
et al., 2014). Nonetheless, our model still needs to be fine-tuned
according to our own purpose as the COCO dataset is trained
to predict other 80 object classes. Here, our dataset contains
only three classes, that is, fibers, particles, and background. So,
the region-based detector and the segmentation network are fine-
tuned accordingly. Due to the use of integration of transfer learn-
ing, we use a two-step training procedure. In the first step, we
train only the head layers of the model and keep all parameters
fixed for other layers. The model is trained for 30 epochs with
the learning rate of 0.001 in this setting. In the second step, we
train the end-to-end network for another 30 epochs with the
learning rate of 0.0001. The model is trained on a 3.6 GHz Intel

Fig. 7. (a) Artificial SEM image and (b) mask (ground
truth) of the image.

Table 1. Ground truth and annotation file generation procedure

1. Create a 256 × 256 array (image) and all of the pixel values to zero.
2. Create an annotation file with list of dictionaries and set the keys to

segmentation, image_id, category_id, id, bbox, and area.
3. Keep track and record the pixels for each fiber and particle under the

segmentation key according to step 4 and 5.
4. For each fiber:

a. identify the pixels coordinates (x, y) inside of the fiber boundary

b. Set 1 to all the pixels coordinates (x, y)

c. Append all the (x, y) coordinates to annotation file under
segmentation key

d. Append 1 to category_id

e. Calculate the top-left coordinate, width and height of each
boundary and append to the bbox keys

f. Calculate the area of the bbox and append to the area keys
5. For each particle:

a. Identify the pixels coordinates (x, y) inside the particle boundary

b. Set 1 to all the pixels coordinates (x, y)

c. Append all the (x, y) coordinates to annotation file for segmentation
key

d. Append 2 to category_id

e. Calculate the top-left coordinate, width and height of the boundary
and append to the bbox keys

f. Calculate the area of the bbox and append to the area keys
6. Append the image identification number to the image_id key.
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(R) Core (TM) i7-7700 CPU, 16GB RAM, and a single NVIDIA
GTX 1080 Ti Graphics Processing Unit (GPU). We use the mini-
batch of two images per GPU and each image has 100 sampled
RoIs. It took 6 h and 40 min to finish the entire training for the
simulated SEM images dataset. The model is trained to jointly
minimize the regression and classification loss function for both
in RPN and RBD network. For segmentation network, a per-pixel
sigmoid function is used to define the mask loss based on the
average of the binary cross-entropy. The results of the loss func-
tions are shown in Figure 8. At the end of the 60-epoch long
training, we achieve 0.0133 and 0.1114 for class loss and boundary
box regression loss, respectively, for RPN. For the region-based
detector, the class loss and boundary box regression loss are
0.0589 and 0.0663, respectively. A segmentation loss of 0.1445
is achieved for filler segmentation.

Results and discussion

The performance of the proposed method is evaluated based on
three quantitative evaluation criteria: (1) segmentation analysis,
(2) morphology analysis of segmented fillers, and (3) application
to real SEM images. The segmentation performance is discussed
in the subsection “Segmentation analysis”. In Subsection
“Morphology analysis”, we discuss about the extraction of filler
morphology. Later, we show the segmentation result for real
SEM images in the subsection “Application to real SEM images”.

Segmentation analysis

The trained model is tested with the three different sets of SEM
dataset as mentioned in the section “Experimental design and
training”. The model is trained using the dataset where each
image contains 50 fillers (fibers and particles). One should
remember that a good trained model should be capable of detect-
ing fillers from a wide range of variation. Real SEM images of
composite product may vary significantly in terms of filler-matrix
mixing ratio, overlapping, low contrast imaging, obscure fillers
with respect to the background, etc. Considering this fact, we
infuse these variations into the test dataset for robustness testing.
Some representative detection results are shown in Figure 9.

The first row shows the result for a 20-fillers case. The second
and third row demonstrate the result for the 50 and 100-filler

cases, respectively. Clearly, the filler detection system can accu-
rately detect and segment the fillers from the images, especially
for the 20 and 50-filler cases. Notice that, in Figure 10, the fibers
and particles are well segmented even though they are overlapped
with each other. However, some misdetection and segmentation
error are observed for the 100-filler case, as demonstrated in
Figure 11. This type of error is not unusual when the number
of filler-matrix mixing ratio is high and they severely overlap
with each other. Although some misdetection and segmentation
error are observed, the filler detection system can still classify
most fibers and particles with a very high accuracy. From
Figures 9–11, we can see that the detection system can place
tight bounding box around each of the fillers along with its clas-
sification probability. Obviously, each of the bounding box
achieves a very high accuracy (approximately 99% in most of
the cases) in classifying the fillers.

To evaluate and benchmark the method, two performance
metrics were used: mean average precision (mAP) and the miss
detection rate (MDR). The mAP is calculated using the intersec-
tion over union (IoU) ranges from 0.5 to 0.95 with the step size of
0.05. The IoU metric is used to determine whether a bounding
box prediction is to be considered correct. To be consider a cor-
rect detection, the area of overlap ao between the predicted
bounding box Bp and ground truth bounding box Bgt must exceed
0.5 according to the formula:

ao =
area(Bp > Bgt)

area(Bp < Bgt)
, (6)

where Bp > Bgt denotes the intersection of the predicted and
ground truth bounding boxes and Bp < Bgt denotes their union.
The average precision is reported both for the bounding box pre-
diction (mAPbbox) and segmentation mask prediction (mAPmask)
for all of the three test cases (testset-I, testset-II, and testset-II).

MDR is the percentage of fillers that were missed to identify
and segment in SEM images. We compute the number of
miss-detected fillers for each of the images from three test cases
and averaged to calculate the MDR. The MDR is determined
based on the miss-detection rate over 50 images. The performance
metrics are reported in Table 2.

The performance of the filler detection system is quantitatively
compared with other methods based on the segmentation and

Fig. 8. Result of the loss function (a) classification and box regression loss for RPN and (b) classification and box regression loss for region-based detector and
mask loss for segmentation network.
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MDR metrics. One particular issue is that the available literature
provides a thorough investigation of segmentation result for med-
ical images. Recently, deep learning has gained popularity for
investigating images from industrial applications. However, most
of the available literature used the NDT images, especially X-ray
images of casting product. In literature, there is a very limited

use of composite manufacturing SEM images in the research
domain mentioned in this paper. To make the comparison con-
sistent, we only compare our result with other researchers who
used SEM and X-ray images as shown in Table 3.

From the comparison table, it is clear that the proposed filler
detection system shows a promising performance with respect to

Fig. 9. Detection and segmentation of fibers and particles; column (a) simulated SEM images; column (b) detection, classification, and segmentation results; col-
umn (c) ground truth of corresponding SEM images in column (a).

Fig. 10. Example of filler detection and segmentation for overlapped particles and fibers.
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the three metrices mentioned above. While the gradient-based HT
method has the highest performance for MDR, this method was
only designed for fibers, whereas in this paper we used both for
fibers and fillers with intensive overlapping phenomena. In
terms of average precision, our method performs better than
Faster R-CNN, but slightly inferior to that of Ferguson et al.
(2018). It is worth mentioning that the application domain of
Ferguson et al. is different from ours. In this paper, we mainly
deal with the overlapping phenomena, while GDXray dataset is
related to the casting defects with very limited overlapping issues.
The filler detection system proposed in this paper shows almost
the same performance when the degree of overlapping is low.

The average computational cost of the detection system is
shown in Table 4 for each of three datasets. The execution time
includes detection, classification, and segmentation of fibers and
particles using GPU. It is observed that the execution time
increases with the increase of filler number. For example, the

test image with 20 fillers takes 0.127 s, whereas the image with
100 fillers takes 0.172 s on an average.

Morphology analysis

Extraction of filler morphology refers to the accurate determina-
tion of filler size, orientation, and spatial distribution. Once the

Fig. 11. Example of some misdetection and segmentation error.

Table 2. Performance metrics of filler detection system

Cases Degree of overlap Total number of fillers Number of Detected Fillers MDR mAPbbox mAPmask

Testset-I (Fig. 9, row 1) Low 20 20 0 0.947 0.932

Testset-II (Fig. 9, row 2) Medium 50 49 0.02 0.932 0.918

Testset-III (Fig. 9, row 3) High 100 96 0.04 0.915 0.903

Table 3. Comparison of performance of fillers detection and segmentation

Method Dataset MDRa mAPbbox
b mAPmask

c

Normalized-Cut (Shi and Malik, 2000) SEM (particles only) 0.04/0.52 − −

Particle separation and contour inference (Park et al., 2012a) SEM (particles only) 0/0.21 − −

Multistage Cluster approach (Park et al., 2012b) SEM (Particles only) 0.04/0.15 − −

Gradient-Based HT (Rahman et al., 2018) Artificial SEM (fibers only) 0/0.04 − −

Faster R-CNN VGG-16 (Ferguson et al., 2017) GDXRay (Casting defect) − 0.865 −

Faster R-CNN ResNet-101 (Ferguson et al., 2017) GDXRay (Casting defect) − 0.921 −

Faster RCNN + Mask RCNN (Ferguson et al., 2018) GDXRay (Casting defect) − 0.957 0.930

Ours Artificial SEM (fibers and fillers) 0/0.06 0.947/0.915 0.932/0.903

aThe MDR is averaged for the low and high degree of overlapped (separated by /) cases from the references.
bThe highest mAPbbox reported from the references.
cThe highest mAPmask reported from the references.

Table 4. The averaged execution time per image

SEM image
cases

Execution time (detection + segmentation) per image
using GPU (Sec)

Testset-I 0.127

Testset-II 0.154

Testset-III 0.172
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fillers are classified and segmented, we can easily extract the filler
morphology for the test cases. The test images consist of two types
of fillers – fibers and particles. Therefore, we extract the morphol-
ogy for both of the fillers separately based on the detected bound-
ing box. Notice that, while segmenting the fillers, the algorithm
also generates a tight bounding box around each of the fillers as
shown in Figure 12.

For composite manufacturing, the size and orientation distri-
bution are two importation determinants for quality control
(Cirino et al., 1988; Doshi and Charrier, 1989; Yu et al., 1994).
According to Figure 12a, we can determine the fiber length (L)

and orientation (θ) using Eqs (7) and (8), respectively.

Lij =
�����������
W2

j +H2
j

√
, i = 1, 2, . . . n and j = 1, 2, . . .m, (7)

uij = tan−1 Hj

Wj

( )
, i = 1, 2, . . . n and j = 1, 2, . . .m, (8)

where n is the number of SEM images and m is the number of
fibers in any particular image. To determine the length and orien-
tation distribution, we used 50 (n) images for each of the test cases
(m = 20, 70, and 100 fillers). We determined the length and orien-
tation for each of the segmented fibers in each of the 50 images.
Later, their distribution is observed in comparison to the actual
distribution. The distribution is shown in Figure 13.

Though length and orientation distribution are the two critical
factors for fibers, but for particles it is different. For amorphous
or circular particles, the concept of orientation is meaningless.
Hence, we only determined the length and width distribution for
fibers. The length and width are derived directly from the length
and width of the bounding box around the particles (Fig. 12b).
The actual and observed size distribution is shown in Figure 14.

Fig. 12. Filler segmentation with bounding box (a) fiber and (b) particle.

Fig. 13. Fiber morphology (a) length distribution and (b) orientation distribution.

Fig. 14. Particle morphology (a) height distribution and (b) width distribution.
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Spatial homogeneity is another quality determinant for com-
posite manufacturing. Ideally, the fillers should be distributed
uniformly in the base materials. Intensive agglomeration of fillers
deteriorates the characteristics of composites (Huang et al., 2015).
The spatial homogeneity can be qualitatively analyzed by plotting
and observing the position of fillers from a selected reference
point. Here, we used the top left corner of SEM image as the ref-
erence. We characterize the agglomeration by determining the
barycenter of the fillers c = {xc, yc}, where

xc = 1
N

∑N
i=1

xi, yc = 1
N

∑N
i=1

yi, (9)

where xi, yi are the coordinates of N pixels making up the fibers or
particles. Figure 15 shows the spatial distribution of centroids
alongside corresponding image. Looking into this distribution
provides the qualitative evaluation on the agglomeration. A
large number of centroids positioned in the close proximity refers
to the agglomeration of fillers.

Application to real SEM images

The proposed filler detection system is also applied to real SEM
images. Here, we use two real SEM images: one includes examples
of short fibers and another one shows particle instances. The
images are shown in Figure 16 (first row) and the corresponding

Fig. 15. Demonstration of spatial homogeneity.

Fig. 16. Detection and segmentation of fibers and parti-
cles. The first row: real SEM images; the second row:
detection, classification, and segmentation results of
corresponding image in the first row.
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detection results are shown in Figure 16 (second row). As the
ground truth of the real SEM images are not available, we did
not evaluate the detection result quantitatively. However, from
the detection result, it is obvious that, the proposed method can
classify, detect, and segment the fibers and fillers in real SEM
images with superior accuracy. Note that the system can perform
its intended tasks for fibers and particles separately, even though
we trained the network for both fibers and particles combined.
The detection results clearly demonstrate the applicability of the
proposed filler detection system for the real-world examples.

Conclusion and discussion

In this paper, we proposed a filler detection system to simultane-
ously detect, classify, and segment the fibers and particles from
SEM images. The Mask R-CNN is used as the backbone of this
filler detection architecture. To serve our purpose, the architecture
is modified or customized. Through the training, we were able to
minimize the classification, detection, and segmentation loss down
to 0.0589, 0.0663, and 0.1445, respectively. It is also observed that
the model can predict the fillers’ class with approximately 99% accu-
racy in most of the cases. The potential of this model is very prom-
ising in the field of automated visual inspection applications. This
promising result has been obtained by leveraging a number of
powerful techniques in machine learning, including transfer learn-
ing, dataset augmentation, and multi-task learning.

The outcome of this research has threefold benefits. First, this
paper shows a procedure to generate artificial SEM images. This
provides a way of generating sufficient SEM images for deep
learning model training. Second, the output of this model pro-
vides good visualization of fiber and particles detection and seg-
mentation results. The outcome of this research provides a way
to better understanding of filler morphology in the base material
during the post-manufacturing analysis to characterize the com-
posite quality. Finally, this method can be used in many other
application domains like defect detection from nondestructive
testing, surface defect detection, or fault detection in additive
manufacturing applications. The proposed detection system is
accurate and fast enough to be applied in real-time manufacturing
settings. However, we leave some open issues for future investiga-
tion. First of all, future investigations will include testing the
model in an industrial scenario and applications in other domains
with more advanced CNN architectures to further boost the per-
formance. Second, this paper only focuses on size, orientation,
and spatial distribution for morphology analysis using 2D SEM
images. In future, this work can be extended for 3D morphology
analysis by incorporating “depth” using 3D imaging techniques.
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