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Abstract— Considering the reliability of the data storage
system, it is essential to accurately and timely predict impending
failures of hard disk drives (HDDs) so as to prevent data
loss and reduce recovery cost. Over the past decades, taking
as input the SMART (Self-Monitoring, Analysis and Report-
ing Technology) attributes, many supervised machine learning
based methods have been proposed for HDD failure prediction.
However, these methods are conducted on different datasets or
different preprocessing treatments and thus lack comparative
analysis. To fill this gap, we provide a systematic study in
this paper on three key steps of the failure prediction, i.e.,
feature selection strategies, data preprocessing treatments and
classification models. A feature selection strategy is proposed
by testing the significance of difference between healthy and
failed samples. Data relabeling, together with some other data
preprocessing treatments are applied and proven to be effective
in the case study. The performance of seven classification
models are compared, among which the Random Forest model
achieves the best performance with 53.95% failure detection
rate (FDR) and 6.0% false alarm rate (FAR). Moreover, the
Gini importance of SMART attributes is calculated, where two
attributes, SMART 197 and SMART 187 are found closely
related to the HDD failures.

I. INTRODUCTION

With the rapid development of social informatization, the
data storage volume has been growing explosively, which
puts forward higher requirements for the reliability of data
storage system. Among all components of the storage system,
hard disk drives (HDDs) have a higher annual failure rate
e.g., 2% to 4%, and thus are replaced more frequently [1],
[2]. For instance, about 78% of the hardware replacements
result from the hard drive failures in the data centers of
Microsoft [3]. The hard drive failures could cause temporal
unavailability or even permanent loss of stored data, posing a
great threat to the security and reliability of storage system. If
a potential failure of the drive could be predicted, timely data
backup and hardware replacement can be done to prevent
data loss and reduce recovery cost.

A standard monitoring system named SMART (Self-
Monitoring, Analysis and Reporting Technology) has been
widely applied to HDDs since 1995 [4]. In order to predict
potential hardware failures, SMART detects and reports
various attributes of drive’s health condition. Typical at-
tributes include power-on hours, temperature, read error rate,
reallocated sectors count and current pending sectors count.
In analysis stage, a will-fail warning would be issued if any
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single attribute value exceeds its predefined threshold. These
thresholds are set conservatively to achieve a low false alarm
rate (0.1%). As a result, the failure detection rate is extremely
low (3%-10%) [5], which is far from satisfactory.

To simultaneously improve the failure detection rate and
keep a low false alarm rate, several statistical and machine
learning based methods have been proposed. In this paper,
we focus on the supervised classification methods. It is worth
mentioning that other failure prediction methods, such as the
remaining useful life (RUL) prediction models in [6], [7],
could also be applied to HDD failure prediction problem.

Hughes et al. [4] were the first to focus on the hard
drive failure prediction problem. Since they found that
many of the SMART attributes are non-parametrically dis-
tributed, they proposed two algorithms using distribution-
free statistical hypothesis tests, namely multivariate rank-
sum test and ORing single attribute rank-sum test. These
two algorithms both achieved a failure detection rate around
60% with a 0.5% false alarm rate on a dataset containing
3744 drives. Since then, many machine learning methods
were applied to improve the prediction performance, includ-
ing the Bayesian method NBEM (Naive Bayes-Expectation-
Maximization) and supervised naive Bayes classifier in [4],
rank-sum method and support vector machines (SVMs) in
[9], multiple-instance naive Bayes (mi-NB) in [5], hidden
Makov models (HMM) and hidden semi Markov models
(HSMM) in [10], a two-step parametric method in [11] and
Gaussian Mixture Model in [12].

However, the above methods are designed for a small
amount of drives, which are not suitable to today’s big data
environment. More recent researches focus on establishing
prediction models on large datasets. Zhu et al. [13] col-
lected the data of 23395 drives from Baidu data center,
and proposed a model based on a neural network, whose
failure detection rate could be raised up to 95% with a
reasonable low false alarm rate of 0.48%. Li et al. [14]
compared Decision Tree (DT) model and Gradient Boosted
Regression Tree (GBRT) model on the same dataset. Yang
et al. [15] further expanded the size of the dataset, on which
a simple logistic regression method achieved a high failure
detection rate. Based on other large datasets, Li et al. [16]
developed a classification and regression tree model. Xu et al.
[17] introduced a novel method based on Recurrent Neural
Networks (RNN) to estimate a health degree of the HDDs.
Xu et al. [18] developed a ranking-based model, learning
characteristics in the past and estimating the error proneness
in the near future. Ganguly et al. [19] combined decision tree
model and logistic regression model.
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TABLE I
THE DATASETS, ALGORITHMS, PREDICTION PERFORMANCE OF EXISTING RESEARCHES.

Dataset size Existing researches Algorithms Performance (FAR,FDR)

1936 drives
Hughes et al. (2000) Rank-sum tests (0.5%, 60%)

Hamerly and Elkan (2001)
NBEM (0.67%, 33%)

naive Bayes classifier (0.82%, 56%)

369 drives

Murray et al. (2003) Rank-sum tests (0.6%, 43.1%)
Murray et al. (2005) SVM (0%, 50.6%)
Zhao et al. (2010) HMM joint model (0%, 52%)
Wang et al. (2014) two-step parametric method (0%, 68.4%)

Queiroz et al. (2018) FDGE (0%, 80.24%)

23395 drives
Zhu et al. (2013)

ANN (0.48%, 95%)
SVM (0.3%, 80.0%)

Li et al. (2017)
DT (0.01%, 93%)

GBRT (0%, 90%)
220,022 drives Yang et al. (2015) logistic regression (0.3%, 97.82%)
25792 drives Li et al. (2014) classification and regression tree (0.09%, 95.5%)
71619 drives Xu et al. (2016) RNN (0.06%, 97%)

Not given Xu et al. (2018) Ranking model (0.1%, 25-45%)
Not given Ganguly et al.(2016) DT and logistic regression (0%, 40-50%)

Around 36531 drives

Xiao et al. (2018) online random forests (0.66%,98.08%)
Shen et al. (2018) part-voting random forest (0.44%,94.89%)
Jiang et al. (2019) GAN (0%,85%)
Shen et al. (2021) LSTM (2.43%,77.33%)

In general, these methods could be divided into three
categories: non-parametric statistical tests [4], [5], [9], [11],
[12], [18], supervised classification [5], [8], [9], [13]–[16],
[19] and time-series prediction [10], [17]. By comparison, the
methods in the latter two categories perform better in larger
datasets. Details of the mentioned models are summarized in
Table I.

Although recent researches have reached extraordinary
high failure detection rate, two serious problems are ne-
glected. Firstly, it is difficult to make a valid comparison
of the prediction performance among the proposed models.
The scale and quality of the training dataset is different for
most works. In addition, varying feature selection strategies
and data preprocessing treatments could also make different
influence on the prediction results. Therefore, it is unrea-
sonable to make a comparison conclusion for these models
solely relying on the FAR and FDR. Secondly, the time
span of the collected data is much shorter than the average
life span of HDDs. There is a 90% chance that a HDD
will survive for three years, while the datasets only contain
SMART attributes information within less than two months.
Supposing the health condition gradually degrades over time,
the prediction model may not be applicable to all periods
since the training data may belong to only one or several
periods that are not representative for the whole period.

In order to address these problems, we use the open
dataset from BlackBaze Inc., which contains the SMART
attributes of 36514 drives over five years, and provide
a systematic study about feature selection strategies, data
preprocessing treatments and classification models. Note that
similar datasets have been used in several researches [20]–
[23]. In this paper, 11 SMART attributes are selected whose

probability distribution in the failure state is significantly
different from that in the healthy state. Several data pre-
processing treatments, including discretization, adding time
features, data relabeling, are proposed and demonstrated
to be efficient in the case study. Seven prediction models,
including decision tree (DT) model, support vector machines
(SVM) model, naive Bayes model, Adaboost model, Random
Forests (RF) model, Multilayer Perceptron (MLP) neural
network model and Long Short Term Memory (LSTM)
model are trained, and their capabilities for long-period drive
failure prediction can be well evaluated and compared under
the same settings. The results show that Random Forest
model achieves the best performance. Based on the analysis
of the Gini importance of features, two SMART attributes
are found closely related to the HDD failures. The analysis
of the time in advance (TIA), which describes how long in
advance we can detect impending failures, shows that a large
part of the failures occurs suddenly, without signs until in the
last three days of the life.

The rest of this paper is organized as follows. In Section II,
we describe the new SMART dataset in detail and give a brief
analysis of the SMART attributes. In Section III, the feature
selection strategies, data preprocessing treatments and seven
classification models used in this paper are introduced. The
results of experiments are presented in Section IV. Section
V provides a brief conclusion of this study.

II. DATASET DESCRIPTION

The dataset contains time series of SMART attributes from
36514 HDDs running in the data center of Backblaze Inc. All
the HDDs are of the same model named “ST4000DM000”.
Denote all the attributes of the HDD i at the time t as a
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sample xit . The data of one HDD xi1,xi2, . . . ,xini includes ni
samples in a chronological order. The samples were collected
once a day over 5 years from 2014 to 2018 and the running
time ni is different for different drives. If one HDD failed or
was judged to be about to fail, the data collection stopped.
The last collected sample was labeled as failed and the
previous samples were labeled as healthy. As shown in Table
II, 3335 HDDs finally failed and the remaining 33179 HDDs
maintained healthy in our dataset. It should be noticed that
the judgement for the failing HDDs is not entirely correct,
i.e., the HDDs labeled as failed may still maintain healthy
in reality. Therefore, the dataset itself determines that there
exists an upper limit of prediction accuracy for all the
prediction models.

TABLE II
OVERVIEW OF THE DATASET.

Dataset Disk model Class No. Disks

ST ST4000DM000
healthy 33179
failed 3335

Each sample contains raw value and normalized value for
each SMART attributes. The raw value refers to the actual
value of the SMART attributes. The normalized value is
obtained through compressing the raw value to a range of 0-
100 or 0-120 by an unclear normalization strategy. Generally,
the HDD is more likely to fail with a small normalized value.

SMART attributes can be classified into three categories,
the error count attributes, whose values maintain zero at most
of the time; the volatile attributes, whose values fluctuate
with time; and the cumulative attributes, whose values in-
crease over time. Apart from these attributes, each sample
contains the information of the drive’s serial number, model,
capacity bytes and the recording date as well.

III. METHODOLOGY DEVELOPMENT

In this section, we will describe the training process of
failure prediction models in detail. The training process
consists of three steps. Firstly, 11 features are selected
from the SMART attributes. Secondly, some effective data
preprocessing treatments are conducted to establish the train-
ing dataset. Finally, seven popular classification models are
trained based on the processed dataset.

A. Feature Selection

For some SMART attributes, the data are either missing
or unchanging over time. These two types of attributes are
eliminated and there remain 21 SMART attributes with each
containing raw or normalized values. The 21 SMART at-
tributes include 10 error count attributes, 3 volatile attributes
and 8 cumulative attributes. We propose several novel feature
selection strategies for these three types of attributes, aiming
at making the data distribution of failure state and healthy
state significantly discriminative.

1) Error count attributes: The data are simply divided
into two categories, stable state data and unstable state data.
A data is classified as a stable state data if it is at the
stable value, and an unstable state data otherwise. Assume

TABLE III
THE CONFIDENCE INTERVALS OF BINOMIAL DISTRIBUTIONS’

PARAMETERS FOR THE ERROR COUNT ATTRIBUTES.

Attribute ID
Confidence Intervals

Difference
Failed Healthy

SMART 5 Raw (0.207,0.235) (0.002,0.006) T
SMART 5 Normalized (0.068,0.086) (0.000,0.002) T
SMART 183 Raw (0.263,0.293) (0.146,0.170) T
SMART 183 Normalized (0.263,0.293) (0.146,0.170) T
SMART 184 Raw (0.020,0.031) (0.000,0.003) T
SMART 184 Normalized (0.020,0.031) (0.000,0.003) T
SMART 187 Raw (0.393,0.427) (0.001,0.016) T
SMART 187 Normalized (0.393,0.427) (0.001,0.016) T
SMART 188 Raw (0.085,0.105) (0.051,0.067) T
SMART 188 Normalized (0.000,0.000) (0.000,0.000) F
SMART 189 Raw (0.412,0.445) (0.300,0.331) T
SMART 189 Normalized (0.412,0.445) (0.300,0.331) T
SMART 192 Raw (0.468,0.502) (0.340,0.373) T
SMART 192 Normalized (0.000,0.000) (0.000,0.000) F
SMART 197 Raw (0.492,0.525) (0.003,0.008) T
SMART 197 Normalized (0.088,0.108) (0.000,0.000) T
SMART 198 Raw (0.492,0.525) (0.003,0.008) T
SMART 198 Normalized (0.088,0.108) (0.000,0.000) T
SMART 199 Raw (0.029,0.042) (0.019,0.029) T
SMART 199 Normalized (0.000,0.000) (0.000,0.000) F

TABLE IV
THE MANN-WHITNEY U TEST AND THE K-S TEST RESULTS FOR THE

VOLATILE ATTRIBUTES.

Attribute ID
Mann-Whitney U test K-S test
statistic p value statistic p value

SMART 1 Raw 8.41e8 0.426 0.0124 0.679
SMART 1 Normalized 7.56e8 3e-25 0.0825 3e-20
SMART 190 Raw 8.02e8 9e-7 0.0321 0.002
SMART 190 Normalized 8.02e8 7e-7 0.0324 0.002
SMART 194 Raw 8.02e8 9e-7 0.0321 0.002
SMART 194 Normalized 8.02e8 9e-7 0.0321 0.002

that the probability of a recorded value deviating from the
stable value is constant for both healthy samples and failed
samples of one attribute. The samples of stable state and
unstable state could be considered following two binomial
distributions. Hypothesis testing could be used to find out
whether the data distribution of failure state and healthy
state are significantly different. The confidence intervals of
two binomial distributions’ parameters are estimated with
95% confidence. If the two confidence intervals have no
intersection, it can be regarded that the two distributions are
different and the deviation of this attribute is more related to
the failure of HDDs.

After hypothesis testing, as shown in Table III, we find
that all the 10 SMART error count attributes show signifi-
cant difference on the distribution at least in the raw data.
Meanwhile, if the results of raw data and normalized data
are similar, normalized data is chosen as the selected feature
for a simpler value range.
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2) Volatile attributes: The distributions of healthy sam-
ples and will-fail samples are compared through two non-
parametric statistical tests, the Mann-Whitney U test and
the Kolmogorov–Smirnov test, which give similar results.
With 95% confidence, we cannot reject that the two volatile
attributes show significant difference. Thus, these two at-
tributes are chosen as the selected features. More details are
shown in Table IV.

3) Cumulative attributes: The value of the cumulative
attributes grows steadily over time and the attributes are
highly correlated with running time. Thus, these attributes
are not directly related to the failure of HDD, and only one
cumulative attribute is selected as the time feature.

For the SMART attributes with high correlations, i.e.,
sharing the same value most of the time, only one of the
attributes will be kept as selected features. Eventually, 11
features are selected, which are shown in Table V, including
9 error count attributes, 1 volatile attribute and 1 cumulative
attribute. The histograms of four representative attributes are
illustrated in Figure 1. The error count attribute SMART
197 and SMART 187 show great difference between healthy
samples and failed samples.

Fig. 1. Histograms of four representative attributes, (a-b) from the
error count attributes, (c) from volatile attributes and (d) from cumulative
attributes.

B. Data Preprocessing

1) Missing data processing: There remain a few samples
with missing data for the features selected above. These sam-
ples are found only existed at the beginning of recorded data
in certain hard disk, and have little effect on the subsequent
prediction. Therefore, we simply delete the samples with
missing data.

2) Deleting short time series: Since the HDDs will stop
recording after the failure and then new HDDs are added
halfway, the running time of each HDD is not the same.

TABLE V
THE ELEVEN SELECTED FEATURES.

Attribute ID Attribute name Date type
SMART 5 Reallocated Sectors Count Raw
SMART 9 Power-On Hours Raw
SMART 183 SATA Downshift Error Count Normalized
SMART 184 End-to-End error / IOEDC Normalized
SMART 187 Reported Uncorrectable Errors Normalized
SMART 188 Command Timeout Raw
SMART 189 High Fly Writes Normalized
SMART 192 Power-off Retract Count Raw
SMART 194 Tempreature Normalized
SMART 197 Current Pending Sector Count Raw
SMART 199 UltraDMA CRC Error Count Raw

When the running time is too short, it is difficult to extract
enough effective information. The prediction under such
circumstance is very difficult and it is not common in
practical applications. Therefore, we delete the data of HDDs
whose running time is less than 90 days.

3) Discretization: Nine of the eleven selected features
are of the error count attributes. Once these features deviate
from the stable value, it is regarded that the hard disk has a
high probability of failure. To expand the difference between
deviating and stable values, we divide the value region of
these features into several classes by numerical discretization
and separate the stable values into one class. If the data is
divided into two classes, it will be further converted into
binary data. In this paper, binary discretization is taken for
the nine error count attributes.

4) Adding time features: Since the recorded data is time
series data, the failure of HDD may be not only related to
the data information of the current sample. The previous state
of a HDD also provides critical information in inferring the
health condition. Therefore, the changes of data along time
are added as new features. The first order difference could
represent the change rate and the second order difference
could represent the change trend. Specifically, three change
rate features and three change trend features with intervals
being 1 sample, 5 samples and 15 samples respectively are
added.

5) Data relabeling: In our SMART dataset, only the last
sample of a failed HDD is marked as failed. However, some
HDDs show signs of imminent failure a few days before the
failure date. In order to expand the data size under the failure
state, the last 30 samples of the failed HDDs are labeled as
failed instead.

6) Datasets partition: The preprocessed dataset is divided
into training set, validation set and test set. The training set is
used to train the models. The validation set is used to adjust
the parameters to optimize the prediction effect. And the
test set is taken to test the proposed model finally. Samples
of the same HDD cannot be put into these three datasets
concurrently considering that there exists a great correlation
among them. Therefore, the training set, the validation set
and the test set are divided according to the ID of the HDD.
After preprocessing, the data set contains the data of 36,670
drives, among which 24,937 drives are classified into the
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TABLE VI
THE STRUCTURE OF THE MLP MODEL AND THE LSTM MODEL.

Layer Nodes Number of parameters

MLP model
Dense 1 128 9984
Dense 2 32 4128
Dense 3 1 33

LSTM model

LSTM 1 32 15232
Dense 1 128 4224
Dense 2 32 4128
Dense 3 1 33

training set, 6233 drives are classified into the validation set
and 5500 drives are classified into the test set (500 failed
drives and 5000 healthy drives).

7) Data sampling: We do not take all healthy samples into
our training set, as the training would be too complex and
time-consuming. Instead, we randomly select three samples
from the healthy samples for each HDD, which also balances
the amount of samples belonging to the two states.

C. Classification methods

In this section, we briefly introduce some of the classifica-
tion models used in our work. Some basic settings of these
models are also provided.

1) AdaBoost based model and Random Forest based
model: AdaBoost model is a representative of ensemble
learning models, whose main steps are as follows. Firstly,
a base classification algorithm is used to train the first
classifier. Then, based on the predicted results of the previous
classifier on the training set, the weight of each sample
is adjusted, i.e., assigning a greater weight to the samples
that are not accurately classified. This process continues
iteratively until the number of classifiers reaches the limi-
tation or the performance of the new classifier is too bad.
Different with AdaBoost model, Random Forest model train
multiple classifiers simultaneously. In order to widen the
distinction between classifiers, bootstrap sampling is used
to create different training sets for those classifiers. For both
the ensemble learning models, Decision Tree (DT) models
are used as base estimators in our paper.

2) Multilayer Perceptron based model and Long Short
Term Memory based model: These two models are both
originated from Artificial Neural Network (ANN), whose
main idea is to construct a network structure composed of
numerous artificial neurons. Multilayer Perceptron (MLP)
model contains several neural layers and each layer consists
of many neurons. Layers are linked by the dense connections
between neurons. Long short-term memory (LSTM) model
is a variant of artificial recurrent neural network architecture,
which further takes the time correlation of data into consid-
eration. In the following experiments, three dense layers are
used in the MLP model. One LSTM layer and two dense
layers are used in the LSTM model. The structure of the
MLP model and the LSTM model is shown in Table VI.

IV. PERFORMANCE EVALUATION AND
COMPARISON

A. Performance metrics

The prediction effect of the model can be measured by
two types of performance metrics. The first type is measured
in terms of single sample. Specifically, each sample has
two kinds of real states and two kinds of predicted states
classified by the model. Then, all samples could be divided
into four categories named true positive (tp), true negative
(tn), false positive (fp) and false negative (fn), where true and
false represent the real state, positive and negative represent
the predicted state. We aim to get both a higher True Positive
Rate (TPR) and a lower False Positive Rate (FPR).

T PR = t p/(t p+ f n),FPR = f p/( f p+ tn).

The second type of performance metrics is measured in
terms of single HDD. Since each HDD will eventually fail,
we aim to correctly predict the drive failure in advance, e.g.,
less than certain days before the failure, throughout its life.
Denote γ as the predefined upper bound for the time in
advance (TIA), which is set 30 in this paper. For those finally
failed drives, the failure is considered correctly predicted if
it is classified as failure at any time with remaining useful
life RUL ≤ γ , and vice versa. For those drives maintaining
healthy, it means that all samples are classified as healthy.
Similar to the first type of performance metrics, all the
detection could be divided into four categories named TP,
TN, FP and FN. We aim to get both a higher Failure
Detection Rate (FDR) and a lower False Alarm Rate (FAR).

FDR = T P/(T P+FN),FAR = FP/(T N +FP).

In the dataset, the label of the samples are not completely
accurate. Only the last sample of the failed HDDs are marked
as failed. It is difficult for us to know exactly when the HDD
fails. As a result, the first type of performance metrics are
greatly affected. In addition, the second type of performance
metrics are more important and more meaningful in real
applications. Therefore, we choose FDR and FAR as the final
performance metrics in the case study.

B. Experiment results and comparison

We assume that all samples after preprocessing are inde-
pendent during the training. For the LSTM model, our input
is a 30-day time series and the output is the predicted state of
the last sample. For the other six models, the input is a single
sample and the output is its predicted state. Seven models
are compared based on the second type of performance
metrics at last. The FDR-FAR curves of the seven models
are illustrated in Figure 2. Details of the performance are
summarized in Table VII. The bold values indicate the
best performance among these models with respect to the
corresponding metric.

The results demonstrate that Random Forest model pos-
sesses the best prediction performance with FAR= 6.0% and
FDR = 53.95%. The performance of SVM model, Adaboost
model and MLP model are slightly worse. Decision Tree
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TABLE VII
THE FAILURE PREDICTION PERFORMANCE OF SEVEN MODEL.

Model
FDR(%)
FAR=4%

FDR(%)
FAR=6%

Area Under
FDR-FAR Curve

Running
time(s)

DT 2.36 3.54 0.5456 2308.9
SVM 36.79 53.09 0.5553 12700.8
Bayes 33.74 37.76 0.5211 2256.1

Adaboost 39.35 46.13 0.5735 2470.7
RF 40.76 53.95 0.5579 1839.4

MLP 38.33 49.20 0.6074 4312.9
LSTM 16.89 23.20 0.4498 27063.3

model, naive Bayesian model and LSTM based model do
not perform well in this prediction problem.

In terms of the training time, SVM model and LSTM
model require much longer training time but do not achieve
better performance. Therefore, these two models are consid-
ered not suitable for HDD failure prediction problem.

Fig. 2. Comparisons of FDR-FAR curves for seven models.

C. Feature importance analysis

The Gini importance of each feature, which is defined as
the total decrease in node impurity brought by that feature,
could be calculated in the Random Forest based model. The
most important 10 features are listed in Figure 3.

Two error count attributes, named SMART 197 Current
Pending Sector Count and SMART 187 Reported Uncor-
rectable Errors, are most related to HDD failures. Among
the ten most important features, six of them (including four
time features) are connected to the two attributes. This is
consistent with our results in feature selection process, where
the deviation ratio from stability of these two attributes,
51.4% and 41.0%, are the largest for failed samples. It
suggests that when these two attributes deviate from the
stable value, there is a great chance that the HDD will fail
in 3 days.

D. Performance improvement by data preprocessing steps

In this section, we re-trained the Random Forest model by
applying the aforementioned data preprocessing techniques

Fig. 3. The most important 10 features in the Random Forest based model.
The notation * and ** refer to the change trend features with intervals being
5 samples and 15 samples respectively.

(adding time features, data relabeling) progressively, and
illustrate the effectiveness of our method in Figure 4. After
adding time features, the number of features increases from
11 to 77, and the Failure Detection Rate increases from
38.64% to 40.00%. Further relabeling the last 30 samples
of the failed HDDs, the Failure Detection Rate reaches at
40.76%. The experimental results show the significance of
our data preprocessing process.

Fig. 4. Improvements in FDR (%) by adding different data preprocessing
techniques. We have fixed FAR to 4%.

E. Time in advance analysis

Besides the prediction performance, it is also critical that
how much time in advance the failure is predicted before
the underlying true failure. Time In Advance (TIA) of the
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Random Forest model with a 6% FAR and 53.95% FDR is
shown in Figure 5.

In the 191 HDDs whose failure was predicted correctly
in advance, 51 failures (26.70%) are predicted on the last
sample and 80 failures (41.88%) are predicted on the last
three samples, indicating that a large part of the failure occurs
suddenly.

Fig. 5. The histogram of Time In Advance of the Random Forest model
with a 6% FAR and 53.95% FDR.

V. CONCLUSIONS
In our study, we build up a long-period data set for HDD

failure prediction. The data of 36514 drives are collected
daily over 5 years. Seven prediction models are trained and
compared with the same feature selection strategies and
data preprocessing treatments. The Random Forest model
achieves the best performance (FAR = 6.0% and FDR =
53.95%). Two error count attributes are found closely related
to the HDD failures.

The prediction results of most models are very similar.
It infers that it is the quality of the data set rather than
the model that mainly limit the prediction accuracy. As
mentioned in Section II, the marking of a HDD failure is
subjective to some degree and not entirely correct. Some
healthy drives may be wrongly labeled in the existing data
set. In addition, the recording interval is one day in our
dataset, which is too long especially considering a large part
of the failures occur suddenly in three days. Datasets with
longer time spans, shorter record intervals and more accurate
labels are demanded.

In addition, we simply predict whether the HDD will
fail within 30 days, which may not be flexible in real ap-
plications. Condition monitoring and RUL prediction could
be a more flexible alternative. Moreover, all the HDDs in
our dataset are of the same model named “ST4000DM000”.
How to apply our prediction methods to other HDD models
needs our further research, where transfer learning could be
discussed in depth.
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