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Gaussian Process Latent Variable Model-Based
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Abstract— The rapid development of sensor technologies allows
the acquisition of high dimensional sensing data. Multi-output
modeling techniques have been developed to leverage the data
for decision making. However, the data often contain segments
of missing values, which cause great information loss and thus
affect the modeling performance. This study explores the missing
pattern and the correlation structure of missing segments and
maximally exploits useful information in the data to improve
multi-output modeling accuracy. Specifically, a new multi-output
modeling method is developed based on Gaussian Process Latent
Variable Model (GPLVM). A decision score is developed to seek
an optimal modeling strategy and then a tailored Expectation-
Maximization (EM) algorithm based on GPLVM is designed to
estimate the missing segments while optimizing model parame-
ters. The proposed method demonstrates superior performance
in both a simulation study and a case study, which makes it a
powerful tool to enable process automation.

Note to Practitioners—In real-life applications, missing values
are constantly present in multi-output sensing data, which
greatly affects data-driven decision-making. Modeling of such
data becomes more difficult when consecutive observations within
or across different outputs are missing. Existing methods often
discard the missing values and extract information only from the
available observations. However, the pattern of missing values
may contain important messages that can potentially boost the
modeling performance. This research develops a new framework
based on GPLVM to model multi-output data with segmented
missing patterns. A tailored EM algorithm is developed to itera-
tively impute the missing values and optimize model parameters.
In addition, a decision score that quantifies both the missing
pattern and correlation is designed to determine an optimal
modeling strategy. The proposed method can benefit many
applications across different industries that require modeling
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of multi-output incomplete data, especially when the data have
many segments of missing observations.

Index Terms— Gaussian process latent variable model, multi-
output modeling, missing data, expectation maximization.

I. INTRODUCTION

THE rapid development of sensor technologies enables
fast and convenient information acquisition, which gen-

erates an unprecedented amount of data. This provides great
opportunities for effective monitoring, prognosis, and control
of complex systems [1], [2], [3]. These data are usually
multi-output in nature, i.e., multiple variables will be recorded
at a single input. For example, in a machining process, the
time-varying measurements of force and vibration provide
two-output data, in which two observations are collected at
each time. In addition, data are correlated within each output
and/or across multiple outputs. The within-output correlation
reflects the functional relationship between the input and each
output. For example, the battery capacity (output) decreases
over time (input) [4] and the stress (output) varies accord-
ing to strain (input) [5] in mechanical property data. The
cross-output correlation indicates the functional relationship
among different outputs. For example, after operating for the
same period of time, bearings under higher loads often degrade
more severely [6]; another example is that, at a specific
strain level, the stress of steel decreases as testing temper-
ature increases [5]. To capture the within- and cross-output
correlations in multi-output data, many modeling methods
have been developed, such as functional principle component
analysis [7], and multi-output Gaussian Process (MOGP) [8],
[9]. These methods often require a complete data set for model
training. However, incomplete data, i.e., data with missing
values, are common in practice [7], and the missing values
greatly challenge the existing techniques.

In real-life applications, missing data are often in different
patterns, which can be generally categorized into sparse and
segmented patterns [7]. In the sparse pattern, values in a
subset of outputs are missing at scattered input locations.
This pattern is often caused by the removal of outliers [10],
e.g., measurements exceeding the sensor range. Many methods
have been developed to deal with sparse missing data. For
example, Rodrigues et al. [11] constructed a MOGP model
based on a convolution process to impute the missing speed
in road sections. Fang et al. [7] utilized functional princi-
ple component analysis to extract features from degradation
signals and applied a kernel smoother to deal with missing
values. Song et al. [12] assumed a parametric form for the
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Fig. 1. Examples of segmented missing patterns. (a) Within-output segmented
pattern. (b) Cross-output segmented pattern.

degradation signals and used observable values to estimate
model parameters and missing values. In addition, matrix [13],
[14] and tensor completion methods [15], [16], [17] have also
been developed for missing value imputation. Although these
methods showed good performance, they are designed for
imputing data with sparse missing patterns; their performance
for data with segmented missing patterns needs validation.

As for the segmented pattern, consecutive observations are
missing, and there are two different types. The first type is the
within-output segmented pattern, where one or more outputs
lose their observations at consecutive inputs. A common
reason for this type of missing pattern is sensor failure [10].
Another reason is that some outputs have higher sampling rates
than others. An example of this pattern is shown in Fig. 1 (a),
which has five different vital signs, i.e., blood urea nitrogen
(BUN), respiratory rate (RR), heart rate (HR), pH, and systolic
blood pressure (SBP), of a patient in the Intensive Care Unit
(ICU). For demonstration purposes, these signals have been
shifted and scaled. In the figure, consecutive recordings are
missing in the BUN and pH signals due to their lower sam-
pling rates, which causes segments of missing values within
the outputs. The second type is the cross-output segmented
pattern, where the observations across multiple outputs are lost
at some inputs. This missing pattern can be caused by system
breakdown [10] or limited sensing budget [18], an example
of which is shown in Fig. 1 (b). The data show the change
of drain-to-source currents Ids according to the gate-to-source
voltage Vgs under five different conditions [10]. In the figure,
the observations of some neighboring outputs are missing at
several voltages, causing the missing segments across outputs.
Segmented missing patterns usually lead to greater information
loss than the sparse patterns and are often more difficult to deal
with. Therefore, we will focus on modeling the incomplete
data with segmented missing patterns in this study.

Among existing multi-output modeling methods, Gaussian
Process Latent Variable Model (GPLVM) has been reported
with the capability to quantify the input-output relation-

ship when the data contain segmented missing values [19].
In GPLVM, a latent variable is introduced at each input to
link the input with different outputs, which can capture both
within- and cross-output correlation. When modeling data with
missing values, the GPLVM approach will delete the missing
values in each output and use the available observations to
optimize the model. This modeling process can work well
when the available observations contain enough information
for model optimization [19]. However, it cannot deal with
data containing many missing segments because the missing
segments cause significant information loss, and available
observations alone are too sparse to provide good accuracy.
To address this issue, a straightforward idea is to complete
the data with imputed values before model training. However,
inaccurate imputation might affect the data quality and further
influence the performance of the GPLVM model.

Moreover, modeling of missing data with segmented pat-
terns should exploit all useful information both within an
output and across multiple outputs. When the information loss
within outputs is notable and the within-output correlation is
low, the modeling efforts should focus on learning the inter-
actions across different outputs. On the other hand, when the
data has more cross-output missing values and the cross-output
correlation is weak, the modeling efforts should concentrate on
exploring within-output correlations. However, GPLVM deals
with different missing patterns following the same procedure.
To the best of our knowledge, few studies have considered
the missing patterns, e.g., the size and distribution of the
missing segments, in multi-output modeling. Therefore, new
techniques should be developed to model incomplete data with
different segmented missing patterns.

In this paper, we propose a new modeling framework to
fill the above-mentioned gaps. The framework is developed
based on the GPLVM but has two novel designs to address
the limitations of GPLVM. Given the data with segments of
missing values, we propose to iteratively impute the missing
values and optimize model parameters through a tailored
Expectation-Maximization (EM) algorithm. Under this frame-
work, GPLVM is built using both the observed data and
the imputed missing values, and the imputation accuracy is
improved across different iterations to obtain a better mod-
eling result. In addition, two modeling options, i.e., within-
and cross-output modeling, are considered. Both options can
simultaneously capture the within- and cross-output correla-
tions in the multi-output data, but each option has its focus
on either the within- or cross-output correlation, depending
on the proportion and distribution of the missing segments.
To choose between the two options, a decision score is
developed based on missing patterns and correlations. The
intuition to incorporate missing pattern is that different missing
patterns can lead to different information loss. For example,
the missing pattern in Fig. 1 (a) causes significant information
loss within each output and across different outputs, while
the missing pattern in Fig. 1 (b) causes more information
loss across different outputs. Further, correlation also has a
significant impact on the modeling performance. For example,
if outputs are independent, i.e., cross-output correlation is zero,
then cross-output modeling cannot extract useful information
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from the data. Therefore, we propose to incorporate both the
missing pattern and the correlation information in the decision
score. With the combination of the decision score and the EM
algorithm, the proposed modeling framework can maximally
exploit useful information and find an accurate representation
of the multi-output data.

It is worth mentioning that other methods have been
developed to deal with data containing segmented missing
values. For example, Parra and Tobar [20] developed a spectral
mixture kernel with a phase shift for MOGP to model the
cross-covariance of different outputs. Zhao and Sun [21] devel-
oped a variationally dependent multi-output dynamic model
for time series modeling. Although these methods achieved
promising results, their performance on the data with many
missing segments needs further validation. In addition, the
focus of this study is different from the previous studies.
We intend to build a new modeling framework that can learn
the missing patterns and correlation structure of data and
further leverage the learned information to obtain a better
modeling performance. Thus, to summarize, the contributions
of this paper are as follows:

1) A decision score is developed to characterize the missing
pattern and correlations in the data, which informs the
decision on within- or cross-output modeling.

2) A tailored EM algorithm is developed to iteratively update
the imputation for missing values and optimize model
parameters, which enables accurate modeling of incom-
plete data with segmented missing patterns.

3) The performance of the proposed modeling framework is
verified with a simulation study and a case study using the
transfer characteristics of a graphene field-effect transistor
(GFET). The superiority of the proposed method makes it
a powerful tool for extracting valuable information from
the data for process automation.

The rest of the paper is organized as follows. In Section II,
assumptions and the problem formulation are provided.
Section III provides the details of the proposed method.
Section IV presents the performance comparisons of the
proposed framework to some existing methods. Conclusions
and future works are given in Section V.

II. GAUSSIAN PROCESS LATENT VARIABLE MODEL
BASED MULTI-OUTPUT MODELING

A. Assumptions

To facilitate the multi-output modeling based on GPLVM,
two assumptions are specified below:
A1 The input space is the same for different outputs, i.e., the

input space of different outputs is of same dimension.
A2 The underlying function corresponding to each output is

smooth. This assumption is made due to the adoption of
GP prior with a squared exponential covariance function
for the mapping between latent variables and outputs.

These two assumptions are general assumptions for Gaus-
sian Process (GP) based multi-output modeling methods.
Therefore, our proposed method is applicable to all scenarios
where standard GP applies. The input dimension of the data
is assumed to be one in the following sections. A single

dimensional input is general enough since the input of many
multi-output modeling problems in real-world applications is
in one dimension, e.g., the medical data described in Fig. 1 (a).
In addition, to testify the performance in high dimensional
input space, a simulation study has been done, and the results
are provided in Appendix B.

B. Problem Formulation

In this section, we will first introduce the standard GPLVM
and explain its limitations for modeling multi-output data with
many missing segments. GPLVM is chosen because it can
effectively capture complex correlation between multi-variate
data using latent variables. Suppose there are M outputs
and each with N observations at the input vector s =

[s1, · · · , sN ]
T . For the m th output, m = 1, · · · ,M , we assume

the observation vector is ym = [ym(s1), · · · , ym(sN )]
T .

By grouping different outputs together, we have a data matrix
Y = [y1, · · · , yM ]

T . In addition, we denote x(sn) ∈ RL as the
latent variable corresponding to the input sn and L < M . With
these notations, the observation at the nth input of m th output
is assumed to be:

ym(sn) = fm(x(sn))+ ε(sn) (1)

where ε(·) is the measurement noise with independent and
identically distributed (i.i.d.) normal distribution N (0, β−1).
Please note that the i.i.d. noise assumption can be relaxed to
incorporate correlated noise structure in the model. To simplify
the notation, we will use xn to represent x(sn) henceforth.
In addition, fm(·)s are functions to be estimated and assumed
to follow the same GP, that is, for m = 1, · · · ,M ,

fm(xn) ∼ GP
(
µ(xn), k(xn, xn′)

)
(2)

where n, n′
= 1, · · · , N , µ(·) is the mean function and

k(·, ·) is the covariance function. It worth noting that, when
xn is unknown, different fms are correlated. Since any finite
collection of random variables from a GP has a multivari-
ate normal distribution (MVN ) [22], we have fm |X, s ∼

MVN (fm |µ,K), where fm = [ fm(x1), · · · , fm(xN )]
T is the

function value vector, X = [x1, · · · , xN ]
T collects all latent

variables, µ = [µ(x1), · · · , µ(xN )]
T is the mean vector, K

is the covariance matrix between the function values and the
item in the i th row and j th column equals k(xi , x j ). Since
the mean function is usually assumed to be zero, we have
µ = 0. Due to the normal assumption for the observation
noise, we further have ym |X ∼ MVN (ym |0,6) with 6 =

K + β−1 I N as the covariance matrix of ym and I N an
N × N identity matrix. Then, for all M outputs, we have
p(Y|X) =

∏M
m=1 p(ym |X, s) =

∏M
m=1MVN (ym |0,6). With

this likelihood function, a variational inference method [19]
has been proposed by assuming a variational distribution for
the latent variable, i.e., q(X; θX), which derives a lower bound
for the log marginal likelihood log p(Y), that is,

log p(Y) ≥ J (θX, θM) = −
1
2

M∑
m=1

yT
mVym +H (3)

where θM represents other model parameters, V and H are
both functions of θX and θM. Under the case with complete
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observations, this bound is maximized to obtain an estimation
of θX and θM, which are then used to estimate fm(·). It should
be noted that within-output modeling is utilized in this section
to demonstrate the modeling process of GPLVM. As for cross-
output modeling, the procedure is the same but instead take
each column of Y as an output. Specifically, the transpose of
the original data matrix Ỹ = YT is taken as the new data
matrix, which is of size N × M . Under this scenario, each
row of Ỹ, i.e., ỹn = [y1(sn), · · · , yM(sn)]

T , n = 1, · · · , N is
taken as an output and the latent variables are used to capture
the correlation between different ỹns.

As seen in Eq. 3, the lower bound is decomposed across
different outputs ym , and H is independent of the obser-
vations. Thus, missing values will only affect the calcula-
tion of the term

∑M
m=1 yT

mVym . Standard GPLVM discards
the missing values in ym and the corresponding rows and
columns in V. It can be observed that, when many yms
have segments of missing values, i.e., within-output segmented
patterns, the remaining components in

∑M
m=1 yT

mVym cannot
provide enough information for model optimization. However,
for the data with significant within-output information loss,
we might be able to extract more useful information across
different outputs. Thus, for an arbitrary data set with missing
values, a decision should be made on whether to perform
within-output modeling or cross-output modeling. Standard
GPLVM does not have such decision process, which limits
its applicability in handling data with significant information
loss.

III. PROPOSED FRAMEWORK FOR MODELING OF
MULTI-OUTPUT DATA WITH SEGMENTED MISSING

PATTERNS

This section provides details of the proposed modeling
framework for multi-output data with different missing pat-
terns. Section III-A presents the tailored EM algorithm, which
optimizes the model in a sequential manner with a continually
improved imputation. Section III-B presents the design of the
decision score, which quantifies both the size and distribution
of missing segments and the within- and cross-output corre-
lation. The general scheme of the proposed method is shown
in Fig. 2. Specifically, given a set of multi-output data with
segments of missing values, a decision score is first calculated
based on the missing pattern and correlation; then the decision
score is used to determine whether within- or cross-output
modeling should be conducted; lastly, a tailored EM algorithm
is implemented to optimize the model.

A. Customized Expectation-Maximization Algorithm

In this subsection, within-output modeling is used to demon-
strate the proposed EM algorithm. Notations for observed
and missing values are provided as follows. We denote
yOm = [ym(sOm1), · · · , ym(sOm NOm

)]T and sOm = [sOm1, · · · , sOm NOm
]
T

as the observed values and the corresponding input vector
for the m th output, respectively. Similarly, we use yUm =

[ym(sUm1), · · · , ym(sUm NUm
)]T and sUm = [sUm1, · · · , sUm NUm

]
T to

denote the components corresponding to the missing section
of the m th output. It should be noted that, for m = 1, · · · ,M ,

Fig. 2. Scheme of proposed method.

we have ym = yOm
⋃

yUm , s = sOm
⋃

sUm and N = NOm + NUm .
By grouping M outputs together, YO = {yO1 , · · · , yOM} and
YU = {yU1 , · · · , yUM} are used to correspondingly denote the
observed and missing values in the data. It should be noted
that the missing mechanism is missing at random in this study,
which indicates that the missingness depends on the observed
values [23].

As illustrated in Fig. 3, the algorithm starts with an initial
imputation. With the imputed data, the model parameters
are then optimized in the M-step which maximizes a lower
bound of the marginal log-likelihood of the available obser-
vations. Further, the estimation of the missing observations
will be updated with the optimized model from its posterior
distribution in the E-step. Under this framework, the model
is optimized from a continually improved imputation, which
alleviates the drawback of GPLVM and avoids the negative
effect from inaccurate imputations.

We will first introduce the M-step, which optimizes model
parameters given the estimation of missing segments YU . Let
λm = E(fm |YO) = [λm(x1), · · · , λm(xN )]

T be the posterior
mean for the m th output (m = 1, · · · ,M) and λ̂m be its
estimation. Let λ̂

O
m and λ̂

U
m be the observed part and missing

part, respectively. Then, the following lemma is proposed to
optimize model parameters.

Lemma 1: If the modeling assumption of Eqs. 1 and 2
are satisfied and p

(
YU |YO, s

)
=

∏M
m=1 p

(
yUm |YO, s

)
=∏M

m=1 δ
(
yUm − λ̂

U
m

)
is the posterior density of the unobserved

segments of the data, then maximizing the log marginal
likelihood of data, i.e., log p(YO; θ), is equivalent to the
maximization of the following lower bound:

L(θ) = −
β

2

M∑
m=1

ỹT
m

(
IN − W(θ)

)̃
ym + F(θ) (4)

where δ(·) is the Dirac delta function, θ is the vector con-
taining all unknown parameters including β. ỹm is the pseudo
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observation obtained by replacing the unobserved segments
in ym with λ̂

U
m . We can similarly denote the segments corre-

sponding to observed and missing values as ỹOm and ỹUm , then
ỹOm = yOm and ỹOm = λ̂

O
m . The detailed expression for W(θ)

and F(θ) as well as the proof of Lemma 1 are provided in
Appendix A.

Remark 1: The assumption p
(
YU |YO, s

)
=∏M

m=1 p
(
yUm |YO, s

)
in Lemma 1 means that missing

values can be recovered using observed values and the input
sequence. Please note that this assumption can be violated
at the input location where observations from all outputs are
missing, i.e., at the location s̃ =

⋂M
m=1 sUm .

Remark 2: Due to the nonlinear mapping fm(·), there is no
closed form expression for p

(
yUm |YO, s

)
and some approxi-

mations are needed to derive the lower bound. In this paper,
we choose to use a simple approximation which assumes a
point mass on the estimated posterior mean. The justification
is that it offers a straightforward bound for optimization and,
at the same time, achieves an accurate estimation. However,
if the research aim is different, other approximations can be
easily incorporated. For example, some research may require
the uncertainty estimation of YU for the construction of control
charts [24], then a normal distribution with the estimated
posterior mean and variance can be adopted.

We can now move to the E-step, in which the estimation of
the missing segments is updated. After optimizing the lower
bound in Eq. 4, an estimation of the model parameters θ̂

can be obtained. With the optimized latent variables, the GP
prediction with uncertain inputs [25] can be used to estimate
the posterior mean, i.e., λ̂m = W(θ )̃ym . By doing so, the
estimation of λm and θ are coupled with each other, which
completes the design of the customized EM algorithm.

To better formulate the EM algorithm, a superscript denot-
ing the sequentially updated estimations and parameters is
introduced to the current notation system. For example, λ̂

(i)
m

and θ̂
(i)

respectively denote the estimation of posterior mean
and model parameters at iteration i . We can similarly denote
ỹ(i)m as the pseudo observation vector of the m th output at iter-
ation i . With these notations, implementation of the proposed
algorithm is summarized in Fig. 3, which starts by assuming
the mean of the missing values as zero, i.e., ỹU(0)m = 0 and
ỹO(0)m = yOm . At each iteration, we optimize the lower bound
in Eq. 4 to obtain θ̂

(i)
during the M-step and then calculate

the posterior mean using λ̂
(i)
m = W(θ (i))̃y(i−1)

m in the E-step
for the next iteration. The algorithm ends when either the
maximum number of iterations is reached or the difference of
the estimated posterior mean between consecutive iterations
decreases to a predefined threshold. After convergence, the
posterior mean will be calculated and compared to the true
values to evaluate the modeling performance.

B. Decision Score for Information Evaluation

In real-world applications, it is difficult to determine the
missing pattern and correlation structure of the data from
visual inspection. It is important to design a quantitative index
to describe such information and further incorporate them in
the modeling process. In this subsection, a decision score

Fig. 3. Expectation-maximization algorithm.

is developed to suggest performing within- or cross-output
modeling. In addition, since the data are grouped into a 2D
data matrix with each row corresponding to an output, within-
output and cross-output modeling are equivalent to row-wise
and column-wise modeling, respectively. That is, within-output
(row-wise) modeling treats each row as an output, while cross-
output (column-wise) modeling considers each column as an
output. It should be noted that both modeling options can
simultaneously capture the within- and cross-output correla-
tions in the multi-output data, but each option has its emphasis
on either the within- or cross-output correlation to achieve the
best modeling performance.

Two indices, τr and τc, are defined to quantify the miss-
ing pattern when within-output (row-wise) and cross-output
(column-wise) modeling are respectively conducted. To calcu-
late τr and τc, two matrices Br and Bc in the same size as the
data matrix are first generated to label the missing segments.
The entries of Br are determined in a row-wise manner by
taking each row of the data matrix as a unity. Specifically,
if there is a missing segment in a row, the corresponding terms
in Br will be labeled by the length of the segment divided by
the number of columns/inputs (i.e., N ); otherwise, the terms
are labeled as zeros. An example of calculating Br is shown in
Fig. 4. In the figure, the missing pattern of a 4×5 data matrix
is shown, where white and black blocks respectively indicate
the position of missing and observed values. The first three
rows have missing values, where the 1st row contains a missing
segment of length one, the 2nd row contains two missing
segments of length two and one, and the 3rd row contains
two missing segments of length one. Thus, the corresponding
terms in the three rows in Br are set to the length of the missing
segments divided by the column number 5. Alternatively, the
entries of Bc are determined in a column-wise manner by
taking each column as a unity. With the missing pattern in
Fig. 4, an example of Bc is also computed. There are three
columns contain missing values, i.e, the 2nd , 4th and 5th

column, and each contains a missing segment of length two.
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Fig. 4. Demonstration for the calculation of Bc and Br .

Thus, the terms in Bc corresponding to the missing values
are all 2/4. The defined matrices provide information on the
size and the distribution of missing segments as well as the
proportion of information loss in each row or column, which
will serve as a good indicator of missing patterns.

Given Br and Bc, two new matrices are calculated as
Rr = (1N M − Br )(1N M − Br )

T /N and Rc = (1N M −

Bc)
T (1N M − Bc)/M , where 1N M is an N × M matrix with all

ones. Rr (or Rc) describes the information preserved in each
row (or column) and the correlation of the missing patterns
across different rows (or columns). Lastly, τr = ∥Rr∥F and
τc = ∥Rc∥F , where ∥·∥F represents the Frobenius norm. Based
on the calculation procedure, we can find that a larger value
of τr encourages within-output modeling while a larger value
of τc prefers cross-output modeling.

In addition, another two quantities ρc and ρr are intro-
duced to determine the correlations among columns and rows,
correspondingly. As for within-output modeling, each row is
considered as an integrity, and the Pearson’s correlation matrix
Gr with dimension M×M is calculated. Then, ρr is calculated
as ρr = 1/(1 + exp(−10(∥Gr∥F − 0.5))). ρc can be similarly
calculated by considering each column as an integrity.

Based on the calculation, we can see that a larger value
of τc (or τr ) indicates less influence of missing segments on
the cross-output (or within-output) modeling. On the other
hand, a smaller value of ρc (or ρr ) denotes less information
could be extracted from the data using the within-output
(or cross-output) modeling. Consequently, we propose to use
τc/ρc and τr/ρr to respectively indicate the preference for
the cross-output and within-output modeling. In summary,
the following decision score is developed to determine the
modeling choice:

γ =
τc/ρc

τr/ρr
(5)

Thus, if γ > 1, cross-output modeling should be conducted,
and, if γ ≤ 1, within-output modeling is preferred.

IV. MODEL PERFORMANCE

In this section, a simulation study and a case study with
one dimensional input space are conducted to investigate the
performance of the proposed method. Please note we have
also conducted a simulation study with two dimensional input
space. Due to space limit, we present the results in Appendix
B. As for the simulation study, outputs with strong or weak

correlations as well as different missing patterns are generated
to evaluate our method. Then the transfer characteristics of
GFET will be adopted in the case study to further test the mod-
eling performance. Two multi-output modeling methods, i.e.,
the standard GPLVM and the MOGP based on the linear model
of coregionalization (LMC) [8], and a matrix completion (MC)
method [26] are used as benchmarks. As for the LMC model,
the number of latent functions is set as 2 in all the experi-
ments. In addition, within- and cross-output modeling using
the proposed EM algorithm are represented as ‘EM-Within’
and ‘EM-Cross’, respectively. Squared exponential covariance
function is adopted for the GPs. To evaluate the modeling
performance, the root mean squared error (RMSE) between
the true and estimated function values is computed and all
experiments are repeated for at least 20 times for each γ to
report the results. All the experiments are implemented on an
Intel core Xeon CPU (@2.3GHz) and 64 GB RAM Windows
PC with MATLAB 2020a. We also test the performance under
alternative settings, and the results are consistent with those
in this paper.

A. Simulation Study

To validate the performance of the proposed method and
the effectiveness of the decision score, multi-output data with
different missing patterns and varying correlations are simu-
lated in this section. The complete data includes 12 signals
and each has 30 observations generated using the following
equation:

ym(z) = exp(ζm)
(m

2
+ sin

(
(z + 2φm)π

))
+ ϵm(z) (6)

where m = 1, · · · , 12 is the index of the outputs, z ∈

(−π/2, π/2), ϵm(z) is i.i.d. observation noise with N (0, 0.12),
ζm and φm controls the modulation level and the phase shift,
respectively. We will vary the value of φm to control the
correlation between different signals. In addition, the missing
data are generated as follows: First, 6 out of the 12 signals are
randomly selected; then a segment containing 30% to 60% of
all observations in a signal is removed.

We applied the proposed method and the standard GPLVM
to model the simulated data, and the results are shown in
Fig.5. Fig. 5 (a) presents the estimations of six outputs by
GPLVM, EM-Cross and EM-within in one experiment with γ
equals 1.1. The observations used to develop the multi-output
models and the true values are respectively marked by blue
cross symbols and solid black lines. From the figure, we can
find that the EM-Cross model provides the best estimation for
all signals in the entire input domain. The EM-within model
does not perform as good as the EM-Cross model for signal
y8 and signal y9. The reason is that the two signals have more
within-output missing segments; cross-output modeling can
learn the correlations across different outputs to compensate
the information loss, while within-output model can not.
This observation is consistent with the decision score since
γ > 1 indicates the EM-Cross model is preferred over the
EM-Within model. However, the EM-Within model can still
provide better results than the GPLVM. The estimated missing
values of the GPLVM differ significantly from the true values,
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Fig. 5. Results for the simulation study. (a) Function prediction for one
replication with γ = 1.1. RMSE ratio between (b) EM-Cross and GPLVM,
(c) EM-Within and GPLVM, (d) EM-Cross and EM-Within.

which verifies that it cannot perform well when there are many
missing segments in the data.

Moreover, additional experiments were done to compare
the performance of the proposed method to GPLVM using
data with different missing patterns. We computed the RMSE
ratios of EM-Cross to GPLVM, EM-Within to GPLVM, and
EM-Cross to EM-Within for different values of γ and the
box plots of the ratios are shown in Fig. 5 (b), (c) and (d)
respectively. From Fig. 5 (b) and (c), we can find that both
the EM-Cross model and the EM-Within model have smaller
RMSEs than the GPLVM model for different values of γ
(i.e., the medians of RMSE ratios < 1). It is worth noting
that, when the value of decision score is around 1, the boxes
in 5 (b) and (c) are wider and/or with long whiskers. It is
because, when the decision score approaches 1, the missing
patterns in rows and in columns become similar, and the data
contains more uncertainty. Subsequently, the model accuracy
shows large variations across different replications. Despite the
higher variation, the proposed method performs consistently
better than GPLVM at all scenarios. Fig. 5 (d) shows that the
median of the RMSE ratios between the EM-Cross model and
the EM-Within model deceases as γ increases and the median

Fig. 6. Results for the simulation study. RMSE ratio between (a) EM-Cross
and LMC, (b) EM-Within and LMC, (c) EM-Cross and MC, (d) EM-Within
and MC.

becomes smaller than 1 when γ exceeds 1. This verifies
the effectiveness of the proposed decision score in selecting
between the within-output and cross-output modeling.

To further verify the accuracy of the proposed method,
we compared the RMSEs of the proposed method with the
RMSEs of the LMC model and MC method. The RMSE ratios
of EM-Cross to LMC and EM-Within to LMC at different
values of γ were computed and shown in Fig. 6 (a) and (b),
while the RMSE ratios of EM-Cross to MC and EM-Within
to MC are respectively shown in Fig. 6 (c) and (d). From the
figure, we can find both the EM-Cross and EM-Within model
achieved better results than the LMC model as well as the
MC method for all values of γ . These results demonstrate
that modeling the correlation structure in the original input
space is not effective when the data have many segments
of missing values, and thus justifies our selection of a latent
variable model in this study. Moreover, from Fig. 6, we can
find the EM-Cross model performs better when γ > 1 while
the EM-Within model provides better results when γ < 1,
which also justifies the effectiveness of the proposed decision
score in choosing between the EM-Cross model and the EM-
Within model.

B. Case Study

In this case study, the transfer characteristic curves of a
GFET are used to further validate the proposed method. GFET
is a type of popular transistors and the high carrier mobility of
graphene has made it a competitive product for high electron
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Fig. 7. Results for the case study. (a) Data with γ = 1.1. RMSE ratio between
(b) EM-Cross and EM-Within, (c) EM-Cross and GPLVM, (d) EM-Cross and
LMC, (e) EM-Cross and MC.

mobility transistors. With a more sophisticated analysis of the
carrier mobility, Tian et al. [27] has come up with a model
that can accurately predict the measurements from different
GFETs. Therefore, this model is used to generate the data for
the case study.

The transfer characteristic curve of an GFET describes the
evolution of the drain-to-source current Ids with respect to the
gate-to-source voltage Vgs at different drain-to-source voltages
Vds . In this study, the characteristic curves of a 5-µm GFET
are simulated with the parameters presented in [27]. In total,
10 different curves are produced by varying the drain to source
voltage between 0.05V to 0.5V. The observation noise with a
distribution N (0, 0.22) are added to the curves to generate
the complete data. To generate the missing data, we randomly
choose 5 different curves and a segment with 30% to 60% of
the whole observations is set as missing within each curve.
Fig. 7 (a) shows an example of the data with γ = 1.1.

The modeling results are displayed in Fig. 7 (b)−(e), which
show the box plots of RMSE ratios for different values of γ .
For the data in this case study, the rows and columns are
all highly correlated with each other, i.e., ρc/ρr ≈ 1, and
thereby the decision score is mainly determined by the missing
pattern, i.e., γ = (τc/ρc)/(τr/ρr ) ≈ τc/τr . In addition, τc ≥ τr

in all experiments, which indicates the data contains more
within-output information loss. Therefore, the values of γ are
greater than or equal to one in all the experiments. Fig. 7 (b)
shows the EM-Cross model has smaller RMSEs than the
EM-Within model in all the experiments. This is expected
as γ ≥ 1 suggests that the EM-Cross model will provide
better estimations, which further justifies the effectiveness of
the proposed decision score. Fig. 7 (c)−(e) exhibit that the
EM-Cross model generates consistently better results than
other methods, which also validates the advantage of the
proposed method in dealing multi-output data with segmented
missing values.

V. CONCLUSION

This paper develops a new method based on the GPLVM
theory to model multi-output data with missing data in seg-
mented patterns. The method has a tailored EM algorithm to
sequentially impute missing values while optimizing the model
parameters. In addition, a decision score that quantifies the
missing pattern and correlation is designed to choose between
within- and cross-output modeling. With a simulation study
and a case study, the proposed method was tested to perform
better than the standard GPLVM, the LMC-based MOGP, and
the MC method. The decision score was verified as a good
indicator of the best modeling strategies (within- or cross-
output modeling). The customized EM algorithm was shown
to significantly boost the accuracy of standard GPLVM and
attained good performance even when the outputs have lost
60% of the observations. This makes the proposed method
a useful tool for different industries that require multi-output
modeling with missing data.

Despite the improved performance of our method in dealing
with incomplete data, there are some questions worth further
investigation. In this paper, we assume the input space of
different outputs are of same dimension in Assumption A1,
which can be relaxed when modeling multi-output data with
different input space, e.g., when the input space of one output
is time and the input space for the other output is time and
location. Also, the noise in our model is assumed to be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peking University. Downloaded on March 08,2023 at 08:00:25 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: GPLVM-BASED MULTI-OUTPUT MODELING OF INCOMPLETE DATA 9

i.i.d., which can be violated in some applications, such as
astronomical datasets. Thus, further studies can be done to
investigate the extension to applications with correlated noise.
Moreover, another important category of missing data is that
with missing not at random, which requires the modeling of
missing pattern. In the future, an extension for the investigation
of such missing data will also be valuable.

APPENDIX A
PROOF OF LEMMA 1

To prove the lemma, we will firstly obtain a lower bound
for the log marginal likelihood of complete data Y. A bunch
of inducing points are introduced, which are the function
values at a group of auxiliary latent inputs Z = [z1, · · · , zJ ]

T .
We denote um = [ fm(z1), · · · , fm(zJ )]

T as the inducing points
for the m th output, and U = [u1, · · · ,uM ]

T includes all of
the inducing points. Based on the i.i.d. GP assumption, the
conditional density of F given U and X is:

p(F|U,X) =

M∏
m=1

MVN (fm |αm,�mm) (7)

where αm = K f uK−1
uu um and �mm = K f f − K f uK−1

uu Ku f

are respectively the mean and covariance. The matrices
Kων(ω, ν = f, u) are the covariance matrix between dif-
ferent components. For example, K f u is the covariance
between fm and um (m, n = 1, · · · ,M) with k(xi , z j )

as the element at the i th row and j th column. Then a
special variational density approximating the posterior den-
sity p(F,U,X|Y) is introduced, that is, p(F,U,X|Y) ≈

q(F,U,X) = p(F|X,Y)q(U)q(X), wherer q(U and q(X)
are the variational approximation for p(U|Y) and p(X|Y),
respectively. Based on this, we have

log p(Y)

= log
{ ∫

p(Y|F)p(F|U,X)p(U)p(X)dFdUdX
}

= log
{ ∫

p(F|U,X)q(U)q(X)
p(Y|F)p(U)p(X)

q(U)q(X)
dFdUdX

}
≥

∫
p(F|U,X)q(U)q(X) log

{ p(Y|F)p(U)p(X)
q(U)q(X)

dFdUdX
}

=

∫
q(U)q(X)p(F|U,X) log

{ p(Y|F)p(U)
q(U)

}
dFdUdX

−KL
(
q(X)||p(X)

)
(8)

where KL
(
q(X)||p(X)

)
is the Kullback-Leibler divergence

between q(X) and p(X). It should be noted that model param-
eters have been omitted for notational simplicity. To calculate
the first term, we have:

h(U,X) =

∫
p(F|U,X) log p(Y|F)dF

=

M∑
m=1

∫
p(fm |um,X) log p(ym |fm)dfm

=

M∑
m=1

[log{N (ym |αm, β
−1 I N )} −

β

2
tr(�mm)] (9)

Fig. 8. Results for the simulation study with 2D input case.

where tr(·) represents the trace. Then, we further have

h̃(U) =

∫
q(X)h(U,X)dX

=

M∑
m=1

{ N
2

log
β

2π
−
β

2
yT

mym + βyT
mEq(X)[αm]

−
β

2
Eq(X)[α

T
mαm] − tr

(
Eq(X)[�mm]

)}
(10)

where Eq(X)[·] represents the expectation with respect to the
density q(X). Then using Jensen’s inequality, we have∫

q(U)
{

h̃(U+log
p(U)
q(U)

)
}

dU ≤ log
{ ∫

q(U)
eh̃(U) p(U)

q(U)
dU

}
= log

{ ∫
eh̃(U) p(U)dU

}
=

M∑
m=1

{
1
2

log
(β/2)N

|Kuu |

|β92 + Kuu |

−
β

2

[
yT

m

(
I N − β91(β92 + Kuu)

−19T
1

)
ym

+ψ0 − tr(K−1
uu 92)

]}
(11)

where ψ0 = tr(Eq(X)[K f f ]), 91 = Eq(X)[K f u] and 92 =

Eq(X)[Ku f K f u]. Plugging this result into Eq. 8, we can obtain
the lower bound as follows:

log p(Y) ≥ −
β

2

M∑
m=1

yT
m

(
I N − W(θ)

)
ym + F(θ) (12)

where W(θ) = β91(β92 + Kuu)
−19T

1 and F(θ) =

1
2 log

(
βN

|Kuu |

(2π)N |β92+Kuu |
−

β

2 (ψ0 − tr(K−1
uu 92)). To simplify the

notation, we will drop the θ in W(θ) and F(θ).
Under the scenario of missing values, the data we got is

YO. Using the Bayesian theorem, the log marginal likelihood
of YO can be expanded as follows:

log p(YO; θ) = log p(YO,YU ; θ)− log p(YU |YO; θ) (13)

where θ is introduced to specify the dependence on some
unknown model parameters. By taking integration with respect
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to p(YU |YO; θ∗) on both sides of Eq. 13, we have:∫
p(YU |YO; θ∗) log p(YO; θ)dYU = 3(θ , θ∗)− 0(θ , θ∗)

(14)

where 3(θ , θ∗) =
∫

p(YU |YO; θ∗) log p(YU ,YO; θ)dYU
and 0(θ , θ∗) =

∫
p(YU |YO; θ∗) log p(YU |YO; θ)dYU . The

integration on the left hand side is just log p(YO; θ).
By Jensen’s inequality, 0(θ , θ∗) is maximized as a function
of θ when θ = θ∗ [28]. Thus, if θ = θ̂ maximizes 3(θ , θ∗),
we have:

log p(YO; θ̂)− log p(YO; θ∗)

=
[
3(̂θ , θ∗)−3(θ∗, θ∗)

]
−

[
0(̂θ , θ∗)− 0(θ∗, θ∗)

]
≥ 3(̂θ , θ∗)−3(θ∗, θ∗) ≥ 0 (15)

This means that the maximization of log p(YO; θ) with respect
to θ is equivalent to the maximization of 3(θ , θ∗). Then, from
Eq. 8, we have:

3(θ , θ∗)

=

∫
p(YU |YO; θ∗) log p(YO,YU ; θ)dYU

≥

∫
p(YU |YO; θ∗)

{
−
β

2

M∑
m=1

[
yT

m

(
I N − W(θ)

)
ym

]
+F(θ)

}
dYU

= −
β

2

M∑
m=1

∫
δ
(
yUm − λ̂

U
m

)[
yT

m

(
I N − W(θ)

)
ym

]
dyUm + F(θ)

= −
β

2

M∑
m=1

ỹT
m

(
I N − W(θ)

)̃
ym + F(θ) (16)

where ỹm is obtained by replacing the unobserved part in
ym with λ̂

U
m , i.e., ỹOm = yOm and ỹUm = λ̂

U
m . It should be

noted that λ̂
U
m is a function of θ∗. Therefore, the maximization

of log p(YO; θ) is equivalent to the maximization of the
following lower bound:

L(θ) = −
β

2

M∑
m=1

ỹT
m

(
IN − W(θ)

)̃
ym + F(θ) (17)

This completes the proof of Lemma 1.

APPENDIX B
SIMULATION STUDY FOR HIGH-DIMENSIONAL INPUT

In order to demonstrate the performance of the proposed
method in high-dimensional input scenarios, a simulation
study with two-dimensional (2D) input is conducted here.
To generate complete data, the following model is adopted:

vz(x, y) = sin
(
ωx (x + φx )+ ωy(y + φy)+ ωz(z + φz)

)
+ϵz(x, y) (18)

where ϵz(x, y) is observation noise with i.i.d Gaussian dis-
tribution N (0, σ 2). The correlation strength across different
dimensions is controlled through the variation of angular
frequencies ωx , ωy , ωz and phases φx , φy , φz . In this sim-
ulation, the phase shift in different dimension is generated

by uniformly sampling from the interval [0, 0.2π]. Under the
scenario of 2D input case, our modeling structure provides
three different options, i.e., x-direction, y-direction and z-
direction. To choose from these options, decision scores are
calculated following the procedure described in Section III-B.
We denote the decision score for each direction as γx , γy and
γz . Similarly, the model constructed are respectively denoted
as Mx , My and Mz .

The results for the simulation study are shown in Fig. 8,
which are separated into three different groups based on
the relative value of decision scores. Based on the results,
we can find that the larger the decision score the smaller the
RMSE value. This validates the effectiveness of the proposed
decision score in determining the best modeling choice under
high dimensional input scenarios. In addition, under high
dimensional input case, the complex missing pattern and
correlation structure inhibit decision making based on visual
check, which justifies the necessity of the proposed decision
score. Therefore, the proposed modeling structure is flexible
even in high-dimensional input scenarios.
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