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Estimating Size and Number
Density of Three-Dimensional
Particles Using Truncated
Cross-Sectional Data
The need for estimating three-dimensional (3D) information based on two-dimensional
(2D) images has been increasing in numerous fields. It is essential in quality assessment,
quality control, and process optimization. However, all the existing methods have not con-
sidered the data truncation issue, which is commonly faced in metrology. This paper pro-
poses a new statistical approach to infer size distribution and volume number density (VND)
of 3D particles based on 2D cross-sectional images with data truncation considered. In
order to estimate the size distribution, a linkage is established between 3D particles and
2D observations with the existence of data truncation. Subsequently, this paper derives
the likelihood function of 2D observations and an efficient Monte Carlo expectation-
maximization algorithm is developed to estimate the parameters of size distribution. In addi-
tion, an explicit relationship between the 3D and 2D particle number densities is established
and leveraged to estimate the VND and volume fraction. The effectiveness of the proposed
method is demonstrated through both simulation study and real case studies in metal
additive manufacturing and metal-matrix nanocomposites manufacturing.
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1 Introduction
Recent years have witnessed the tremendous increase in the need

for measuring three-dimensional (3D) particles in the field of man-
ufacturing, material science, biology, etc. [1–4]. One representative
example is the measurement of pores in the metal additive manufac-
turing (AM). As shown in Figs. 1(a) and 1(b), the porous defect is in
the form of void or simply a lack of solid material, which is one
of the most critical quality issues in metal AM [7,8]. It is known
that the pores can lead to crack nucleation and propagation, resulting
in reduced material stiffness, bending strength, hardness, and fatigue
life [9,10]. Consequently, inspecting the porosity is of remarkable
significance for quality control and process optimization.
Another example in manufacturing is the measurement of the dis-

persion of reinforcing nanoparticles in nanocomposites manufactur-
ing [5,11–15]. Working as heterogeneous nucleation agents, the
well-dispersed nanoparticles could significantly reduce the grain
size and enhance the mechanical properties. However, nanoparticles
often agglomerate and form clusters in the fabrication process
due to high surface energy, large surface-to-volume ratio, and
poor wettability in liquid [1,13,16]. For example, Fig. 1(d ) shows
a microstructural image of Al2O3 reinforced metal-matrix nanocom-
posites (MMNCs) with two big clusters, which have undesirable
impact on mechanical properties. Thus, it is necessary to measure
the cluster size distribution and volume percentage accurately to
assess the material quality and further to improve the fabrication
process.
Although recent advancement of measurement technology, such

as X-ray computed tomography (CT), makes it possible to directly
measure the 3D size and volume percentage of voids in 3D printing,
it is prohibitive for its high cost and low resolution [17]. Meanwhile,

indirect measurements from two-dimensional (2D) microscopic
images are still widely used in practical applications, such as scan-
ning electron microscope (SEM) images [18–20]. These methods
provide 2D cross sections that can be used to extract certain parti-
cle/void distribution information, e.g., whether there are any clus-
tering effects [21] or boundary effects [22] in MMNCs. However,
these 2D morphological information directly drawn from micro-
scopic images are not always sufficient to evaluate the product
quality. The 3D particle (cluster in MMNCs or void in 3D printing)
size distribution and volume number density (VND) (number per
unit volume), on the other hand, directly capture the particle infor-
mation and thus are two critical quantities that need to be estimated
in quality assessment. Though 2D particle size and number density
are related to the 3D counterpart, the former cannot completely
replace the latter. For example, the 2D number density (number
per unit area) of clusters shown on SEM images depends on both
3D number density (number per unit volume) and cluster sizes.
Larger VND or 3D cluster size tends to result in more clusters
shown on SEM images. Therefore, 3D information is more informa-
tive, and inferring 3D size and number density based on the
observed 2D information can greatly facilitate the quality
assessment.
Inferring 3D information from 2D cross-sectional images has

been intensively studied in material science, bioscience, and petrog-
raphy [23]. To estimate the size distribution of spherical 3D parti-
cles, Liu et al. [24] first derived the probability density function
(PDF) of 2D particle sizes with the assumption of spherical shape
and complete spatial randomness (CSR), and then developed a
maximum likelihood estimation (MLE) approach to estimate the
distribution parameters. However, their approach ignored the sam-
pling bias, i.e., larger particles are more likely to be intersected by
SEM images. Consequently, the estimated pdf is for the intersected
particles, rather than all the particles in the specimen. Without con-
sidering such sampling bias, the size would be overestimated. Later,
Wu et al. [1] took into consideration the sampling bias and
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developed two statistical approaches to estimate the size distribu-
tions, namely, the MLE and the method of moment. Their
method is a correction of Liu’s approach and thus is more accurate.
To make the 3D geometric shape more general, Wu et al. [2]
assumed that the 3D objects are ellipsoidal and then developed a
series of statistical approaches to estimate the distribution parame-
ters and VND of porous defects in metal AM based on cross-
sectional images.
However, in almost all practical applications, only sufficiently

large 2D particles are selected to estimate the 3D size distributions
and number density, which inevitably leads to a data truncation
issue. As illustrated in Fig. 2, suppose the particles are spherical
and the 2D size (radius) threshold is l0. Only those 2D particles (cir-
cular profiles) with radius larger than l0 are selected (particle II) in
3D size distribution estimation. There are two causes that lead to
data truncation issue. The first one is the resolution of SEM
images, which is inherent in all applications. All 2D particles
with radius r less than the microscope resolution l0 will not be
observed. The second cause is artificial, in that a threshold is inten-
tionally predetermined in the selection of 2D circular particle pro-
files. For example, only the 3D nanoparticle clusters with radius
larger than a certain threshold, say rl, are believed to have a detri-
mental effect on mechanical properties of MMNCs [24]. Since
the observed circular profiles with 2D size less than rl may be
from small 3D clusters of no interest (< rl), or even from non-
clustered nanoparticles, a predefined threshold l0 satisfying l0≥ rl
has to be set in the selection of 2D samples. Therefore, the data trun-
cation issue has to be considered in order to get an accurate estima-
tion of both 3D size distribution and number density.
To achieve a more accurate estimation, this paper develops a new

statistical method to infer both the size distribution and number
density of 3D particles by taking into account the data truncation
issue, which is the main contribution of this paper. Specifically,
the relationship between the pdf of the size of 3D particles and

that of intersected ones is derived first conditioning on the existence
of data truncation, and then the pdf of observed 3D sizes is derived.
Subsequently, an MLE method based on the Monte Carlo
expectation-maximization (MCEM) [25] algorithm is developed
to estimate the distribution parameters. To infer the VND using
the truncated data, it is proved that the observed 2D particles
follow a non-homogeneous Poisson process, where the Poisson
rate is a function of the 3D VND, 3D particle size, and the data trun-
cation threshold.
The rest of this paper is organized as follows. Section 2 presents

the detailed assumption and problem formulation. The linkage of
size between 3D and 2D particles considering the data truncation,
and the parameter estimation by Monte Carlo expectation-
maximization (EM) algorithm are provided in Sec. 3. In Sec. 4, a
statistical approach is developed to estimate the VND and volume
fraction with truncated data. In Secs. 5 and 6, simulation studies
and real case studies on metal AM and MMNCs are presented to
evaluate the effectiveness of the proposed method. Section 7 is
the conclusion and discussion.

2 Problem Formulation
In this section and Secs. 3 and 4, we formulate the problem and

introduce the technical details in the context of MMNCs quality
inspection. Before the SEM imaging and analysis, specimens are
first cut and then the cutting surfaces are polished. Therefore, the
SEM images can be modeled as cross sections of cutting planes
with random locations and orientations intersecting the specimen.
Figure 3 illustrates the SEM cutting process with/without severe

Fig. 1 ((a) and (b)) SEM images of metal-based AM products showing pores or voids [5], and
A206–Al2O3 MMNCs (c) without and (d ) with clusters [6]

Fig. 2 Illustration of the data truncation issue in the selection of
2D particle samples. rl is the lower bound of 3D particle radius;
and l0 is the threshold of 2D particle radius.

Fig. 3 Illustration of SEM images cutting specimens with and
without severe clustering problem: (a) no clustering problem
and (b) clustered. The 2D clusters of size larger than l0 are
marked by circular profiles.
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clustering problem. Figure 3(a) shows an ideal case where all par-
ticles are uniformly distributed and thus no large 2D clusters are
observed on the SEM images. Figure 3(b) illustrates a specimen
with severe clustering issue. If a 3D cluster of size larger than rl
(size threshold to define a severe cluster) is intersected by the
image plane and the size of the corresponding 2D profile is larger
than l0, then the 2D cluster will be selected as an effective observa-
tion for 3D inference. It is worth noting that in practical applica-
tions, the small particles shown on the SEM image may come
either from particle clusters or from non-clustered particles. There-
fore, in this application, we have to set a threshold l0 for the 2D
observations and it should satisfy l0≥ rl; otherwise, the observed
2D clusters may come from 3D ones of size less than rl. In 3D print-
ing, the data truncation is due to image resolution. Suppose the
image resolution is r0, then l0≥ r0. The lower bound of the void
size is rl= 0, so l0≥ rl still holds. To maximize the number of effec-
tive samples, we can set l0=max(rl, r0) in real applications.
To facilitate the inference of 3D quantitative information based

on 2D cross-sectional images, we also adopt the two widely used
assumptions. The first assumption is that all the formed clusters
are spherical with radius following a certain distribution. The sphe-
rical shape is commonly used to characterize nanoparticles and clus-
ters in material science [2,24,26,27]. The reason is that in the nano
or microscale, the spherical particle/clusters have the smallest
surface-to-volume ratio and are thermodynamically more stable
[28]. The second assumption is that all the nanoparticle clusters
are uniformly distributed in the metal matrix with CSR
[16,21,27]. CSR has been widely used in the field of point pattern
analysis [2,16]. It can be achieved in a homogeneous specimen.
This assumption is the foundation for all 3D information inference
problems based on 2D cross sections. It indicates that once a cluster
is intersected by an image plane, the distance between the cutting
plane and the center of that cluster follows a uniform distribution.
Let R, Zc, and Rc be the radius of the 3D cluster, the distance

between the SEM image plane and the center of the cluster, and
the radius of the 2D circular profile, respectively, as illustrated in
Fig. 4. It is straightforward that R2 = R2

c + Z2
c . Suppose there are

n truncated observations rc= {rc1, …, rcn} with rci≥ l0 for i= 1,
…, n. Then the problem is to estimate the pdf fR(r) and VND λ0
based on the truncated observations. The technical details of esti-
mating the size distribution and VND will be provided in Secs. 3
and 4, respectively.

3 Size Distribution Inference and Parameter
Estimation
In this section, several commonly used parametric distributions

are assumed for the size distribution, and an MCEM algorithm is
developed to find the MLE of the distributional parameters.
Without loss of generality, three distributions are considered,
uniform distribution, truncated normal distribution with a lower
bound, and truncated log-normal distribution with a lower bound.
The lower bounds rl of the distributions are assumed known or
are predefined, and l0≥ rl. Note that if the lower bound is
unknown, it is easy to show that when l0≥ rl, the lower bound is
not estimable, due to the fact that truncated data with rc≥ l0 only
provides information for 3D clusters with size r≥ l0. In the follow-
ing subsections, the pdf and likelihood functions are derived, and

then an MCEM is developed for intractable likelihood functions.
To make the method more general, we release the constraint of
l0 ≥ rl in Secs. 3 and 4. Although in the case of MMNCs we have
to keep the constraint, in other application contexts, the constraint
may not be necessary when the 2D samples are all from the target
distribution.

3.1 Derivation of the Probability Density Function and
Likelihood Function. Suppose θ is the vector of distribution
parameters of 3D clusters and I is a binary variable describing the
SEM cutting status with Ii= 1 representing that the cluster i is inter-
sected by the image plane, and Ii= 0 otherwise. Based on Ref. [1],
the SEM cutting process is a biased sampling process with size dis-
tribution of intersected 3D clusters, given by

f (r|θ, I = 1) =
f (r|θ)P(I = 1|r)

P(I = 1)
=

f (r|θ)(r/ru)
∫
ru
rl
(r/ru)f (r|θ)dr

=
rf (r|θ)
E(r|θ) (1)

where r is the radius of 3D clusters, f (r|θ) is the assumed parametric
distribution, E(r|θ) is the mean or expectation of the 3D cluster size,
and ru and rl are the nonnegative upper and lower bounds of the
cluster size, respectively. Since all clusters are uniformly distribu-
ted, the distribution of zc can be intuitively obtained as

f (zc|r, I = 1) =
1
r
1[0,r](zc) (2)

where 1[0,r](zc) is an indicator function, i.e., 1[0,r](zc)= 1 if zc∈ [0, r]
and 0 otherwise. Since rc =

��������
r2 − z2c

√
, the conditional pdf f (rc|r,

I = 1) can be derived through variable transformation:

f (rc|r, I = 1) =

rc

r
��������
r2 − r2c

√ , 0 ≤ rc ≤ r

0 otherwise

⎧⎨
⎩ (3)

Therefore, conditioning on the truncated data rc≥ l0, the distribu-
tion can be derived as

f (rc|r, I = 1, rc ≥ l0)=
rc

r
��������
r2 − r2c

√ 1
P(rc ≥ l0|r, I = 1)

, l0 ≤ rc ≤ r

0 otherwise

⎧⎨
⎩

(4)

Based on Eq. (3), the probability P(rc≥ l0|r, I= 1) can be
derived as

P(rc ≥ l0|r, I = 1) = 1 −
∫l0
0

rc

r
��������
r2 − r2c

√ drc =

�������
r2 − l20

√
r

(5)

Therefore,

f (rc|r, I = 1, rc ≥ l0) =
rc��������

r2 − r2c
√ 1�������

r2 − l20
√ , l0 ≤ rc ≤ r

0 otherwise

⎧⎨
⎩ (6)

The conditional complete-data likelihood can be derived as

f (rc, r|I = 1, rc ≥ l0, θ) =
f (r|I = 1, θ)P(rc ≥ l0|I = 1, r)

P(rc ≥ l0|I = 1, θ)

f (rc|r, I = 1, rc ≥ l0) =
rcf (r|θ)

g(l0, θ)
��������
r2 − r2c

√ 1[l0,r](rc) (7)

where

g(l0, θ) =
∫ru
max (l0,rl)

�������
r2 − l20

√
f (r|θ)dr (8)

where ru is the upper bound of the 3D size distribution. Note that if
l0= 0, i.e., there is no data truncation, g(l0, θ)=E(r|θ), Eq. (7) is
exactly the one obtained in Ref. [1]. The marginal likelihood canFig. 4 The relationship among R, Zc, and Rc

Journal of Manufacturing Science and Engineering FEBRUARY 2022, Vol. 144 / 021002-3



be calculated by integrating out r from Eq. (7):

f (rc|I = 1, rc ≥ l0, θ) =
∫ru
max (rc,rl)

rcf (r|θ)��������
r2 − r2c

√
g(l0, θ)

1[l0,r](rc)dr (9)

Given the observations rc= {rc1, rc2, …, rcn}, the likelihood
function can be expressed by

L(θ|rc) =
∏n
i=1

f (rci|Ii = 1, rci ≥ l0, θ) (10)

The MLE estimation of distribution parameters can thus be
obtained through

θ∗= argmax
θ

{L(θ|rc)} or θ∗= argmax
θ

{log [L(θ|rc)]} (11)

For the simple case where R follows uniform distribution U[rl,
ru], Eq. (9) can be analytically obtained as

f (rc|I = 1, rc ≥ l0, θ)

=
rc1[l0,ru](rc)

(ru − rl)gu(l0, θ)
log

��������
r2u − r2c

√
+ ru�������������������

max (rc, rl)2 − r2c

√
+max (rc, rl)

(12)

where

gu(l0, θ)=
1

2(ru − rl)
l20 log

�����������������
max(l0, rl)2 − l20

√
+max(l0, rl)�������

r2u − l20
√

+ ru

⎡
⎣

+ ru

�������
r2u − l20

√
−max(l0, rl)

�����������������
max(l0, rl)2 − l20

√( )] (13)

From Eqs. (12) and (13), we can see that when l0≥ rl, the likeli-
hood function does not involve rl. In other words, the likelihood
function will not change when rl varies in the interval [0, l0]. It is
also true for other parametric distributions, which can be seen
from Eqs. (7) and (8). This is what we expected and mentioned
earlier, since the truncated data with rc≥ l0 only provide informa-
tion for 3D clusters of size r≥ l0.
Since the likelihood function is tractable for uniform distribution,

the distribution parameter, i.e., the upper bound, can be easily
obtained through Eq. (10) using various optimization techniques.
However, for other distributions, the likelihood function is not tract-
able analytically, due to the intractable integrals in Eqs. (8) and (9).
In the following subsection, a Monte Carlo-based EM algorithm
(MCEM) is developed for 3D size inference with truncated data.

3.2 Monte Carlo Expectation-Maximization Algorithm for
Size Distribution Estimation. The EM algorithm is commonly
used to find the maximum likelihood parameters of a statistical
model when the marginal likelihood function is intractable [25].
Typically, there are incomplete data or latent variables, e.g., the
3D cluster size r in this paper, and the conditional expectation of
the log-likelihood with both observed data and missing data is opti-
mized iteratively. Specifically, there are two steps in the EM algo-
rithm, the expectation step (E-step) and the maximization step
(M-step). The E-step is to calculate the expectation of the complete
log-likelihood with respect to the predictive density of the incom-
plete data given the observed data and the estimated distribution
parameters at the current step. At the M-step, the distribution
parameters are updated by maximizing the expectation of the
log-likelihood obtained at the E-step. Suppose the incomplete
data are r= {r1, …, rn}, which are the corresponding 3D cluster
sizes of the observed 2D clusters. The EM algorithm at the kth

iteration can be expressed as

E-step:Q(θ, θ̂
(k)
) = E

R|Rc,θ̂
(k) (log L(θ|r, rc, rci ≥ l0, i = 1, . . . , n))

(14)

M-step: θ̂(k+1) = argmax
θ

{Q(θ, θ̂
(k)
)} (15)

where Q(θ, θ̂
(k)
) is the conditional expectation of the log-likelihood

and is often called Q-function and θ̂(k) is the vector of the estimated
distribution parameters at iteration k. Based on Eq. (7), the complete
log-likelihood can be expressed by

log L(θ|r, rc, rci ≥ l0, i = 1, . . . , n) =
∑n
i=1

log
rcif (ri|θ)

g(l0, θ)
��������
r2i − r2ci

√
( )

(16)

The conditional predictive density function is simply

f (ri|rci, θ̂(k)) ∝ f (ri, rci|θ̂(k), Ii = 1) =
rcif (ri|θ̂(k))

E(ri|θ̂(k))
��������
r2i − r2ci

√ ′1[rci , ru](ri)

(17)

Therefore, the Q-function can be written as

Q(θ, θ̂
(k)
)=

∑n
i=1

∫r(k)u

max(rci ,rl)
f (ri|rci, θ̂(k))[log f (ri|θ)− logg(l0, θ)]dri+C

(18)

where C is a constant that is not related to θ.
Clearly, theQ-function is not tractable for most of parametric dis-

tributions due to intractable integrals in Eq. (18). A natural way to
overcome this challenge is the Monte Carlo sampling approach
[19], where the Q-function can be approximated through random
samples drawn from the conditional predictive density function

f (ri|rci, θ̂(k)), i = 1, . . . , n. However, the direct sampling from the
conditional predictive density function is very difficult, if not
impossible. Instead, the importance sampling can be used to draw
random samples. A simple importance function can be selected as

f (ri|θ̂(k)), and the weight function is simply 1[rci , r(k)u ](ri)/
��������
r2i − r2ci

√
.

However, using this importance may result in many samples with
zero weight, e.g., ri < rci, which will significantly reduce the sam-
pling efficiency. To overcome this problem, a truncated normal
density function f (x; μi, σ

2
i , [rci, ∞)) can be used instead as the

importance function. Suppose N samples are drawn for each
observed particle, denoted by rij, i= 1, …, n, j= 1, …, N. Then
the unnormalized weight wij and normalized weight Wij of each
sample can be calculated by

wij =
1[rci, r(k)u ](rij)

f (rij; μ, σ2, [rci, ∞))
��������
r2ij − r2ci

√
Wij =

wij∑N
j=1 wij

(19)

With these weighted samples, the Q-function can be approxi-
mated by

Q(θ, θ̂
(k)
) ≈

∑n
i=1

∑N
j=1

Wij log f (rij|θ)
[ ]

− n log g(l0, θ) + C (20)

If the 3D cluster size follows a truncated normal distribution with
mean μ, variance σ2, and a known lower bound rl, then the
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approximated Q-function can be computed as

Q(θ, θ̂
(k)
) ≈ −

∑n
i=1

∑N
j=1 Wijr2ij − 2μ

∑n
i=1

∑N
j=1 Wijrij

2σ2

− n log Δσ +
μ2

2σ2
+ log g(l0, θ)

[ ]
+ C (21)

where

Δ = 1 −Φ
rl − μ

σ

( )
(22)

where Φ(·) is the cumulative distribution function of the standard
normal distribution. If r follows a truncated log-normal distribution,
i.e., r ∼ lnN(μ, σ2|r ≥ rl), then the approximated Q-function can
be computed by

Q(θ, θ̂
(k)
) ≈ −

∑n
i=1

∑N
j=1 Wij(log ri,j)

2 − 2μ
∑n

i=1

∑N
j=1 Wij log ri,j

2σ2

− n log P +
1
2
log σ2 +

μ2

2σ2
+ log g(l0, θ)

( )
+ C

(23)

where

P = 1 −Φ
log rl − μ

σ

( )
(24)

At the M-step, the Q-function needs to be maximized to find the
optimal value θ̂(k+1). However, for both Eqs. (21) and (23), the ana-

lytical form of the partial derivatives ∂Q(θ, θ̂
(k)
)/∂θ does not exist,

due to the intractable integration term log g(l0, θ). Therefore, the
Q-functions cannot be optimized by simply solving the nonlinear

equations ∂Q(θ, θ̂
(k)
)/∂θ = 0. To address this issue, we discretize

the feasible region with equal space and then evaluate the
Q-function at each grid point to find the optimal value. This
approach is very effective as the dimension of θ is very low. In
this method, the fixed parts of the Q-functions, i.e., the second
term of Eqs. (21) and (23), do not change along iterations. There-
fore, they only need to be calculated once, which can be done
before the EM algorithm starts. Since log g(l0, θ) cannot be com-
puted analytically, the Monte Carlo simulation is used instead to
get approximated values.
The MCEM algorithm will be terminated once the estimated dis-

tribution parameters converge. The following commonly used stop-
ping criterion is chosen:

max
i

θ̂(k)i − θ̂(k−1)i

θ̂(k−1)i

∣∣∣∣∣
∣∣∣∣∣ < ϵ (25)

where ϵ is a small positive constant. Since the MCEM algorithm
involves randomness caused by Monte Carlo simulation, we use a
more conservative stopping criterion, i.e., the inequality (25) is
satisfied for three consecutive iterations.

4 Volume Number Density and Volume Fraction
Estimation
VND is an important quality parameter, which can be further uti-

lized to estimate the volume fraction. The problem of VND estima-
tion based on 2D observations without any data truncation issue has
been well studied [2,16]. However, how to estimate the VND based
on truncated data has not been studied. When there is no data trun-
cation, it has been shown that the number of 2D observations on a
cutting image can be modeled as a non-homogeneous Poisson
process. When there exists data truncation, similar result can be
derived, which is given in Proposition 1.

PROPOSITION 1. Under the spherical and CSR assumptions stated
in Sec. 2, the number of clusters n shown on a cutting image of area
A and satisfying rc≥ l0 can be modeled as a non-homogeneous
Poisson process with density λ(t)

λ(t) = 2Aλ3D

∫ru
max

����
t2+l20

√
,rl

{ } f (r|θ)dr (26)

where t ≤
�������
r2u − l20

√
is the distance from the center of the spherical

particle to the image plane, and λ3D is the VND parameter. The
total number of 2D observations follows a Poisson distribution
with Poisson rate:

λ2D = 2Aλ3D

∫ru
max {rl ,l0}

�������
r2 − l20

√
f (r|θ)dr (27)

The proof of Proposition 1 is given in Appendix A. We can see
that if l0= 0, or equivalently if there is no data truncation, Eq. (27) is
simply λ2D= 2Aλ3DE(r|θ), which is exactly the same result as in
Ref. [16]. Note that Eq. (27) can actually be expressed as

λ2D = 2Aλ3DE
�����������
(r2 − l20)

+
√

|θ
( )

(28)

where

(r2 − l20)
+= r2 − l20, r ≥ l0

0, r < l0

{

Since n is an unbiased estimator of λ2D, i.e., E(n|λ2D)= λ2D, the
VND λ3D can be unbiasedly estimated given the distribution param-
eter θ:

λ̂3D =
n

2AE
�����������
(r2 − l20)

+
√

|θ
( ) (29)

In practice, the true distribution parameters are unknown, therefore
the estimated value θ̂ using the proposed approach in Sec. 3 can be
used. The estimation variance of the normalized parameter λ̂3D/λ3D
equals to its mean squared error here, and thus can be used to char-
acterize the estimation accuracy. It can be obtained as

Var
λ̂3D
λ3D

( )
=

λ2D

2AE
�����������
(r2 − l20)

+
√

|θ
( )[ ]2 1

λ23D
=

1
λ2D

(30)

As we can see, λ2D plays an important role on the estimation accu-
racy. The larger the λ2D is, the higher the estimation accuracy will be.
Increasing the image size A or reducing the truncation threshold l0
can improve the estimation.
Another important quality parameter is the volume fraction,

which captures the percentage of nanoparticles clustered or porosity
in 3D printing. Let ρ denote the volume fraction. Without data trun-
cation, it has been shown that the mean ρ can be unbiasedly esti-
mated by the area fraction of circular intersections, i.e., E(ρ)=
E(Ac/A), where Ac is the total area of intersections [2]. However,
when the data truncation issue exists, the area fraction is not mea-
surable. Instead, we can use an alternative approach, which is
described in Proposition 2.
PROPOSITION 2. Under the spherical and CSR assumptions stated

in Sec. 2, the mean and variance of the volume fraction can be cal-
culated as

E(ρ) =
4πλ3D
3

E(r3|θ) ≈ 4πλ̂3D
3

E(r3|θ̂)

Var(ρ) =
16π2λ3D

9V
E(r6|θ) ≈ 16π2λ̂3D

9V
E(r6|θ̂)

(31)

where V is the volume of the specimen.
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The proof of Proposition 2 is provided in Appendix B. As we can
see from Eq. (31), when V→∞, Var(ρ)→ 0. In practical applica-
tions, V≫ λ3DE(r

6|θ), therefore, the volume fraction can be
treated as a deterministic parameter.

5 Numerical Studies
In this section, Monte Carlo-based simulation is conducted to

verify the effectiveness of the proposed approach. We investigate
the size parameter estimation of the uniform, truncated normal,
and log-normal distribution in Sec. 5.1 and the joint estimation of
the size distribution, particle number density, and volume fraction
in Sec. 5.2.

5.1 Estimation of Size Distribution Parameters. The trun-
cated 2D observations are simulated using the following procedure:
(1) generate 1 × 105 3D particles from the parametric distribution,
which is sufficient enough for this simulation; (2) the weight of
each 3D sample is assigned with its size; (3) the samples being
cut are resampled according to their weights to obtain n intersected
3D samples (importance sampling for Eq. (1)); (4) the sizes of the
2D cross sections of the corresponding 3D samples are randomly
generated based on the uniform distribution given in Eq. (2) and
the geometric relationship R2 = R2

c + Z2
c ; and (5) the intersected par-

ticles with 2D size smaller than the threshold l0 are ignored and the
remaining 2D samples are used for 3D inference.
Three types of size distributions are considered here, including

uniform, truncated normal, and log-normal distribution (a special
truncated log-normal with rl= 0). The parameters for each distribu-
tion are given in Table 1. For the MCEM algorithm, the Monte
Carlo sample size in the E-step is set as N= 1000 and the conver-
gence stopping threshold is set as δ= 0.005. To speed up the con-
vergence of iteration, the initial values are obtained by directly
fitting the distribution using the 2D samples. The truncation thresh-
old is set to l0= 3.
To illustrate the spatial distribution, in Fig. 5 we provide three

representative images with 200 circles simulated from the three
size distributions. Note that in the simulation of cross-sectional
images, we may get some overlapped circles. As both the number
density and size are small, overlapping is not common. We just
ignore this phenomenon and directly use the sizes and total
number of circles obtained from simulation instead of extraction
from images for 3D inference.

We compare the proposed method with Wu’s method [1], which
ignored the data truncation issue. Figure 6 shows the estimated pdfs,
histograms of the generated 3D samples, the intersected 3D
samples, and the truncated 2D samples on the images. It can be
obviously seen that the proposed method outperforms Wu’s
method remarkably on the estimation accuracy for truncated
normal distribution and log-normal distribution. As expected,
Wu’s method overestimates the size distributions. The reason is
that the truncated data tend to be large than the un-truncated one
and Wu’s method fails to consider such truncation. While for the
uniform distribution, the upper bound estimated by both methods
has little difference. In fact, the estimated upper bound for both
methods is very close to max{rc1, …, rcn}. Wu et al. [1] provided
a thorough discussion about using max{rc1, …, rcn} to estimate
ru. Note that if rl is unknown and l0≤ rl (to make sure the lower
bound is estimable), the proposed method will produce a much
better estimation for the lower bound.
To evaluate the proposed MLE approach under different trunca-

tion thresholds and sample sizes, we conduct numerical experi-
ments with l0= 3 and 5, the number of 2D observations before
truncation nb= 100, 200, …, 1000 for the three distributions.
Each simulation is repeated S= 50 times to reduce the randomness.
Figure 7 shows the estimation accuracy for three distributions,
which is measured by the relative standard error (RSE) of a param-

eter c given by RSE =

���������������������
1/S

∑S
i=1

((ĉi − c)/c)2
√

.

As expected, the estimation accuracy for l0= 3 is higher than that
of l0= 5, especially for the mean parameters. The reason is that
larger truncation threshold leads to more information loss, e.g.,
less observations. This phenomenon is more obvious for the log-
normal distribution. The reason is that a much larger proportion
of particles are neglected as the threshold increases from 3 to 5
for the log-normal distribution. In general, the estimation accuracy
decreases as the threshold l0 increases.

5.2 Joint Estimation of Size Distribution, Volume Number
Density, and Volume Fraction. In this section, the joint estima-
tion of the size distribution, VND, and volume fraction of particles
are presented, where the log-normal distribution is chosen to model
the size distribution. We assume that the number of particles follow
a Poisson distribution with density parameter λ0= 14.99, and the
Poisson parameter of the intersected particles is λ= 0.4A, where A
is the image size. In order to evaluate how image size A and trun-
cated threshold l0 affect the accuracy of estimation, we considered
A= 600,900 mm2 and l0= 4.2 × 10−3, 7.0 × 10−3 mm, respectively,
in our numerical study and compare the proposed method with
Wu’s method without considering the data truncation [1]. For
each group of simulation, we run the simulation for 20 times to
reduce the randomness. The Monte Carlo EM algorithm parameters
are the same as in Sec. 5.1.
Table 2 shows the mean values of the estimated parameters, the

relative errors (in parentheses), and the true values (in the bottom

Table 1 Model parameters for three types of distributions

Type of distribution rl ru μ σ

Uniform 2 10 – –
Truncated normal 0 ∞ 6 2
Log-normal 0 ∞ 2 0.5

Fig. 5 The simulated 2D observations for three types of size distributions after truncation:
(a) uniform, (b) truncated normal, and (c) log-normal distribution. The image size is 1000×
1000.
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Fig. 7 The RSE of parameters estimation for three distributions: (a) RSE of the upper bound ru estimation error; (b) and
(c) RSE of the mean and variance parameter σ for the truncated normal; and (d ) and (e) RSE of the mean and variance
parameter σ for the log-normal distribution

Fig. 6 Comparison of the proposed method with Wu et al. [1] for (left column: (a)–(d )) uniform distribution, (middle
column: (e)–(h)) truncated normal distribution, and (right column: (i)–(l )) log-normal distribution. The first row ((a),
(e), and (i)) shows the true and estimated pdfs; the second row ((b), (f ), and ( j)) shows the normalized histograms of
the generated 3D samples from the true distribution; the third row ((c), (g), and (k)) shows the normalized histograms
of the 3D samples cut by the microscopic images; the bottom row shows the normalized histograms of the 2D cross
sections with threshold l0=3. The sample size for the bottom two rows is 200.
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row). Obviously, the estimation accuracy of all the parameters
increases with the image size rising for both the proposed method
and Wu’s model which does not consider the data truncation. It is
expected since larger images contain more particles. Second,
increasing the threshold l0 will cause more particles truncated,
which leads to lower estimation accuracy. Comparing these two
methods, we can see that in Wu’s method, the mean parameter μ
is overestimated and the VND λ is slightly underestimated, which
leads to overestimation of the volume fraction ρ. In contrast, by con-
sidering the data truncation issue, the proposed approach has effec-
tively mitigated the data truncation effects and achieved a much
higher estimation accuracy.

6 Real Case Studies
6.1 Porosity Assessment in Additive Manufacturing. In this

section, we apply the proposed method to estimate the size distribu-
tion, VND, and porosity in the metal AM. Metal AM, such as selec-
tive laser melting (SLM) and electron beam melting, utilizes high
energy laser beam or electron beam as heating sources in the fabri-
cation process. Porosity is one of the most severe quality issues, and

it is essential to evaluate the severity of the porosity for quality
inspection and process optimization. The pore formation mecha-
nisms have been intensively studied, and all these studies showed
that the global energy density is the most important factor affecting
the porosity [29–31]. Excessive energy density, i.e., E>Eopt where
Eopt is the optimal energy density, causes vaporization of the mate-
rial, which leads to spherical or near-spherical pores due to gas
bubble formation. At the region E <Eopt, the porosity is incurred
by incomplete melting of the raw powders due to the lack of
fusion of powder particles, resulting in complex and elongated
pores. In this case, we only consider pores with spherical shapes
under the condition of E>Eopt.

6.1.1 Experiments Setup. The SLM samples are fabricated
using Ti–6Al–4V powder with laser power 120 W and scan speed
of 360, 480, and 600 mm/s, respectively [7]. For each specimen,
cross-sectional images are obtained at different locations with the
size 3.6 mm× 2.7 mm (1920 pixel × 2560 pixel, the area A=
9.72 mm2). Figure 8 shows one representative microscopic image
for each specimen. It is clear that the porosity decreases when the
scan speed increases, or consequently the global energy density E

Table 2 Comparison of the proposed method with Wu’s method in the size distribution, VND, and volume fraction estimation

A l0

The proposed method Wu’s method [1]

μ̂ σ̂ λ̂ ρ̂ μ̂ σ̂ λ̂ ρ̂

600 4.2 × 10−3 2.039 (1.95%) 0.4920 (1.6%) 12.28 (18.1%) 0.0235 (7.80%) 2.175 (8.75%) 0.420 (16%) 11.63 (22.5%) 0.0258 (18.3%)
7.0 × 10−3 1.900 (5%) 0.5320 (6.4%) 11.67 (22.2%) 0.0185 (15.1%) 2.357 (17.9%) 0.364 (27.2%) 9.784 (34.8%) 0.0376 (72.5%)

900 4.2 × 10−3 2.028 (1.4%) 0.4750 (5%) 12.84 (14.4%) 0.0218 (0%) 2.168 (8.4%) 0.431 (13.8%) 12.11 (19.3%) 0.0282 (29.4%)
7.0 × 10−3 1.9610 (1.95%) 0.5230 (4.6%) 11.17 (25.5%) 0.0211 (3.2%) 2.346 (17.3%) 0.361 (27.8%) 9.784 (34.8%) 0.0352 (61.5%)

True value 2 0.5 15 0.0218 2 0.5 15 0.0218

Fig. 8 The cross-sectional images of SLM-produced Ti–6Al–4V specimens with laser power 120 W and scan speed:
(a) 360 mm/s, (b) 480 mm/s, and (c) 600 mm/s

Fig. 9 (a) Raw image for 120 W and 360 mm/s, (b) extract boundaries and fitted circles, and (c) zoomed voids
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decreases, which is consistent with the porosity formation
mechanism.

6.1.2 Image Preprocessing and Two-Dimensional Void
Extraction. In order to obtain the 2D sizes, we first convert raw
images into binary images, then the boundaries or contours of
defects are extracted, after which the pores are fitted to circles

using a nonlinear least-square method by minimizing the sum of
squared distances from the extracted data points to the circle bound-
ary. The whole process is shown in Figs. 9(a)–9(c). At last, the
numbers and radii of the voids on cross-sectional images are
obtained to inference the size distribution, VND, and porosity in
3D space. The number of fitted circles is 379, 203, 43, respectively,
for the three specimens. Figure 10 illustrates the radius distributions
of fitted circles and the vertical dashed lines denote the mean values,
respectively, for the three specimens.

6.1.3 Size Distribution Selection. In order to select an appro-
priate model for size distribution of pores, we propose to use
MLE to fit the three candidate models, i.e., uniform, truncated
normal, and log-normal distribution, and then simulate 2D observa-
tions using the fitted models. It is expected that if a candidate model
is the true model, the simulated observations would follow the
same distribution as the actual observations. Therefore, we use
Kolmogorov–Smirnov (KS) test to evaluate the difference of simu-
lated distribution and actual distribution and then perform a hypoth-
esis testing on the proximity of these two distributions. The KS
statistic is

Dn1 ,n2 = sup
x

|F1,n1 (x) − F2,n2 (x)|

where F1,n1 (x) and F2,n2 (x) are two distribution functions. Clearly,
Dn1 ,n2 is the maximum of the vertical difference between these
two distribution functions.

Fig. 10 The histograms of radius for three specimens: (a) 360 mm/s, (b) 480 mm/s, and (c) 600 mm/s

Fig. 11 Pdfs of the simulated 2D sizes from three
MLE-estimated models in comparison with the normalized histo-
gram of real observations

Fig. 12 The empirical distribution function of the observations in comparison with these of
the simulated ones from (a) the uniform, (b) truncated normal, and (c) log-normal distributions

Table 3 Comparison of the proposedmethod with Wu’s method
in the size distribution, VND, and volume fraction estimation

No.

The proposed method Wu’s method [1]

μ̂ σ̂ λ̂ ρ̂ (%) μ̂ σ̂ λ̂ ρ̂ (%)

1 2.56 0.46 722.5 5.87 2.62 0.42 720.3 6.08
2 2.34 0.40 662.5 2.11 2.47 0.33 656.5 2.16
3 2.32 0.39 201.7 0.44 2.45 0.31 201.8 0.47

Table 4 Comparison of the porosity estimation using different
methods

Specimen

The
proposed
approach

(%)

Wu’s
method
(%)

Area
fraction
(%)

X-ray
CT (%)

Archimedes
(%)

1 5.87 6.08 6.01 6.63 5.85
2 2.11 2.16 1.34 1.03 1.99
3 0.44 0.47 0.47 0.22 0.46
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Based on the results of KS test, log-normal distribution is finally
selected to model the size distribution of pores for all three speci-
mens. To illustrate the model selection process, we take specimen
3 as an example. The truncation threshold is selected to be the
minimum radius of all the observed samples, which is l0= 2.8 ×
10−3. Figure 11 presents the normalized histogram of the 2D obser-
vations shown in Fig. 8(c) and simulated pdfs based on three size
distributions. Obviously, the log-normal and truncated normal dis-
tributions are much closer to the true observations than the uniform
distribution. The KS test results are shown in Fig. 12. The test sta-
tistics are 0.2758, 0.1094, and 0.0798, respectively, and the corre-
sponding p-values are 0.0022, 0.6575, and 0.9381, respectively,
which quantitatively demonstrate that the log-normal distribution
is the best one. As a result, we utilize log-normal distribution to
model the size distribution of pores.

6.1.4 Results. Table 3 shows the estimated parameters utilizing
the proposed approach andWu’s method [1], which fails to consider
the data truncation issue. We can easily see that with the scanning
speed increasing, the size, VND, and porosity are all reduced,
which is consistent with the pore formation mechanism. On the
other hand, compared with the proposed approach, Wu’s method
overestimated the size distribution while underestimated the
volume number densities slightly due to not considering the data
truncation, which consequently leads to larger porosity estimation.
To evaluate the accuracy of the porosity estimation, we compare

the estimation results with several existing porosity inspection
method [7,32], including (1) area fraction, (2) X-ray CT, and (3)
Archimedes.
Table 4 shows the porosity estimation results. Among them, the

Archimedes method is to directly determine the density of the speci-
mens by measuring the mass in air and water, which can be consid-
ered as a benchmark to evaluate the accuracy of other methods.
Therefore, the true porosity of each specimen can be regarded as
5.85%, 1.99%, and 0.46%, respectively. Clearly, the proposed
method has the highest accuracy among all the other inspection
methods in most cases (specimen 1 and specimen 2), which indi-
cates the necessity of considering the truncation effects. The error
is due to insufficient pores for implementing the proposed
method. The X-ray CT method estimates the porosity by calculating
the area fraction of voids on X-ray slices. The X-ray CT method
estimates the porosity by calculating the area fraction of voids on
X-ray slices. It significantly underestimates the porosity for the
second and third specimens and shows the lowest accuracy. The
reason may be that due to the resolution issue, this method is

incapable of detecting small voids. The area fraction method also
has a good performance, especially on the first and third specimens.

6.2 Cluster Estimation in Metal-Matrix Nanocomposites

6.2.1 Experiments and Observations. In this section, we apply
the proposed model to estimate the distribution of nanoparticle clus-
ters of A206–Al2O3 MMNCs, which was fabricated using

Fig. 13 Nanoparticle clusters shown in SEM images of MMNCs fabricated using the ultrasonic cavitation-assisted casting
process

Table 5 Observed radii of cross sections of nanoparticle
clusters from SEM images

Obs. no. Rc (nm) Obs. no. Rc (nm) Obs. no. Rc (nm)

1 11,667 11 7222 21 4444
2 5556 12 5556 22 16,667
3 16,667 13 5556 23 10,556
4 10,556 14 5556 24 6111
5 15,833 15 11,667 25 9444
6 6944 16 2778 26 4167
7 9444 17 1667 27 4722
8 10,000 18 2778 28 7778
9 11,111 19 11,944 29 8333
10 7778 20 8333 30 5278

Fig. 14 Pdfs of the simulated 2D sizes from three
MLE-estimated models in comparison with the normalized histo-
gram of real observations
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ultrasonic cavitation-based casting technology [33]. A206 is a type
of aluminum–copper alloy with a chemical composition of Al
(93.5–95.3%), Cu (4.2–5.0%), Mn (0.2–0.5%), Mg (0.15–0.35%),
and Fe (≤ 0.1%). The nanoparticle clusters Al2O3 incorporated in
this alloy help to improve the hot tearing resistance of A206 [34].
Figure 13 shows eight SEM images, and 30 nanoparticle clusters
are observed in total. The area for each image is 1.617 × 104 µm2.
The cluster sizes are listed in Table 5. Similar to Ref. [24], we set
the lower bound rl= 6000 nm, above which the cluster is consid-
ered to be detrimental to the material properties. As stated in
Sec. 2, the threshold l0 is also set to be 6000 nm to maximize the
sample size. Clusters smaller than 6000 nm will not be considered,
and thus, 19 clusters are left to estimate the parameters of size and
VND.

6.2.2 Size Distribution Selection and Estimation Results.
Similar to the case of metal addictive manufacturing, we first
select the appropriate model through KS test for size distribution.
Ultimately, log-normal distribution has been chosen according to
the comparison results. Figure 14 presents the normalized histo-
gram of the 30 clusters and simulated pdfs of the three candidate
models. Figure 15 illustrates the empirical accumulative distribution
function of the 30 observations in comparison with that of the can-
didate distributions. The KS test statistics are 0.2329, 0.1809, and
0.1066 for the uniform, truncated normal, and log-normal distribu-
tions, and the corresponding p-values are 0.2212, 0.5206, and
0.9753, respectively. Therefore, we estimate the parameters of log-
normal distribution based on the observations on the SEM images.
The estimated log-normal distributions are log-normal (μ= 9.13,
σ = 0.36) by the proposed method and log-normal (μ= 9.2,
σ = 0.31) by Wu’s method [1]. The KS test statistic of Wu’s
model is 0.1130, slightly larger than that of the proposed method,
implying that the proposed model outperforms Wu’s method. The

number density is estimated as λ̂ = 8.5 × 10−6/μm3 and the
volume fraction is estimated as ρ̂ = 0.050.

7 Conclusion and Discussion
In this paper, we developed new statistical approaches to infer-

ring particles in 3D space based on 2D cross-sectional images
with data truncation problem. In the proposed model, we first estab-
lish the relationship between the pdf of 3D clusters and those of
observed circular cross sections on size with existence of data trun-
cation. Then, the likelihood function of 2D observations is derived
and an efficient Monte Carlo EM algorithm is developed to estimate
the parameters of size distribution. In addition, the linkage between
3D and 2D particle number density is also established with data
truncation considered for density estimation. For the VND estima-
tion, we prove that the number of particles shown on cross-sectional
images can be modeled by a non-homogeneous Poisson process.
Ultimately, the volume fraction of 3D particles can be estimated
based on the size and density estimations. Both the simulation
and real case studies in metal addictive manufacturing and
MMNCs show that the proposed method is capable of effectively
inferring 3D particles based on 2D cross-sectional images when
there exists data truncation.
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Appendix A: Proof of Proposition 1
The particles are uniformly distributed on both sides of the image

plane. Now we only consider the right side of the image plane, as
shown in Fig. 16. Divide the specimen into equally sized cells
with a sufficiently small thickness δ. Suppose the upper bound of
the particle radius is ru, then we only need to consider the cells
with distance t ≤

�������
r2u − l20

√
; otherwise, the particle will not intersect

Fig. 15 The empirical distribution function of the 30 observations in comparison with these of simulated ones from the
(a) uniform, (b) truncated normal, and (c) log-normal distributions

Fig. 16 Modeling the intersected particles with rc≥ l0 as a non-
homogeneous Poisson process
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the image plane or will not result in a cross section with size rc≥ l0 if
intersected.
Let N(ti) denote the number of particles that are within distance

t ≤ ti to the image plane and are intersected by the image plane
with rc≥ l0. Then the number of particles with rc≥ l0 and coming
from the ith cell can be calculated as Ni=N(ti)−N(ti−1), i≥ 1.
Define N0= 0 and t0= 0, then we have

(1) N(0)= 0 by definition;
(2) N1, N2, … are independent (independent increments

property);
(3) Based on the CSR assumption, Ni, i≥ 1, follow Poisson dis-

tributions with Poisson rate λi = Aδλ3D Pr
��������
r2 − t2i

√
≥ l0

( )
.

Therefore,

lim
δ�0

Pr (Ni = 1)
δ

= Aλ3DPr
��������
r2 − t2i

√
≥ l0

( )
, lim

δ�0

Pr (Ni > 1)
δ

= 0

Based on the above properties, the particles intersecting the
image plane from the right side and satisfying rc≥ l0 can be
modeled as a non-homogeneous Poisson process with density func-
tion

λ(t) = Aλ3DPr
��������
r2 − t2

√
≥ l0

( )

= Aλ3D

∫ru
max

����
t2+l20

√
,rl

{ } f (r|θ)dr, t ≤
�������
r2u − l20

√

Therefore, the Poisson rate of 2D observations can be calculated
by

λ2D = 2
∫ �����

r2u−l20
√

0
λ(t)dt = 2Aλ3D

∫ �����
r2u−l20

√

0

∫ru
max

����
t2+l20

√
,rl

{ } f (r|θ)drdt

= 2Aλ3D

∫ru
max {rl ,l0}

f (r|θ)
�������
r2 − l20

√
dr = 2Aλ3DE

�����������
(r2 − l20)

+
√

|θ
( )

Appendix B: Proof of Proposition 2
Suppose there are N particles with volume Vi, i= 1, …, N, in the

specimen of volume V. Then N ∼ Poisson(λ3DV) and
ρ =

∑N
i=1 Vi/V . Clearly,

∑N
i=1 Vi follows a compound Poisson dis-

tribution. The mean and variance of ρ can be calculated as

E(ρ) =
E(N)E(Vi)

V
= λ3DE(Vi) =

4πλ3D
3

E(r3|θ)

Var(ρ) =
E(N)E(V2

i )
V2

=
16π2λ3D

9V
E(r6|θ)
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