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Abstract

High-dimensional process monitoring becomes increasingly important in many applications,

where the joint distribution of process variables is usually unknown and not normal, and requires

nonparametric methods for analysis and monitoring. However, when the process dimension is

much larger than the reference sample size, most traditional nonparametric multivariate control

charts fail due to the curse of dimensionality. Furthermore, when the process goes out of control,

only a few (sparse) dimensions will be influenced, which increases the difficulty for both detection

and diagnosis. To address these problems, this paper proposes a new nonparametric monitoring

scheme for high-dimensional processes. This scheme first projects the high-dimensional process

into several sub-processes using ensemble random projections for dimension reduction. Then for

each sub-process a local nonparametric control chart is constructed based on the spatial rank

test. Finally all the local charts are fused together for decision-making. Furthermore, after an

out-of-control alarm is triggered, a diagnostic framework is proposed based on the square-root
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LASSO algorithm. Numerical studies together with real-data examples demonstrate the efficacy

and applicability of the proposed methodology.

Keywords: Change detection, Diagnosis, High-dimensional monitoring, Random projection, Spa-

tial rank test, Square-root LASSO, Statistical process control

1 Introduction

Multivariate statistical process control (SPC) plays an important role for online monitoring of sequential

data in many applications, such as fraudulent record detection (Tsung et al. 2007), multiple sensor

network detection (Guerriero et al. 2009), health care monitoring (Spiegelhalter et al. 2012), image

monitoring (Megahed et al. 2011), social network monitoring (McCulloh et al. 2012), etc.

One trend is, as the sensing technology advances and an increasing number of data streams are

generated, the number of process variables to be monitored is growing tremendously to magnitude of

hundreds or thousands. For example, in semiconductor industry, the manufacturing involves hundreds

of stages, and at each stage, hundreds of sensors are allocated in the chamber with in total thousands

of process variables (Lee et al. 2011) to be measured and analyzed. In service industry, thousands

of customer variables from demographical, financial and geographic respects are collected by financial

companies to detect frauds in credit cards or insurance claims (Jiang et al. 2012). In video monitoring,

every video includes hundreds of frames, and each frame contains thousands of pixels to be monitored

(Liu et al. 2015). These high dimensional data streams usually lead to many process parameters to be

estimated, and consequently require a larger number of reference samples in Phase I analysis, which

is often infeasible in practice. This poses tremendous challenges for conventional multivariate SPC

methods, and triggers high demands for new SPC methods.
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Suppose we aim at monitoring a p-dimensional process with m0 independent and identically dis-

tributed (i.i.d) historical (reference) samples X−m0+1, . . . ,X0 ∈ Rp on hand. The tth future sample Xt

is collected over time following the conventional change-point model, i.e.,

Xt
i.i.d.∼


F0(X− µ0) for t = 1 . . . , τ,

F1(X− µ1), for t = τ + 1, . . . ,

(1)

where τ is the unknown change point. F0(X−µ0) and F1(X−µ1) are the in-control (IC) and out-of-

control (OC) distributions, respectively, and are assumed to be continuous. In practice, they can be

the same or different types of distributions, but their location parameters µ0 and µ1 are assumed to be

unequal. This paper focuses on the “high-dimensional” case with p ≥ m0. In this case, the performance

of the traditional T 2-type charts will degenerate (Bai and Saranadasa 1996) in the sense that the

uncertainty in the estimated covariance matrix of Xt, i.e., Σ̂, grows rapidly with p. Consequently, this

uncertainty will distort the IC run-length distribution, making these methods unreliable (Champ et al.

2005). To address this drawback, a bunch of works have been done, and they can be majorly divided

into two categories.

The first category is to modify Σ̂ to make it stable. Some pioneer works include replacing Σ̂

with either an identity matrix or a diagonal matrix (Chen et al. 2010; Mei 2010). These methods are

equivalent to monitoring each dimension separately, with the assumption that the process variables are

uncorrelated. Though in this way a good estimation of the marginal distribution of Xt can be achieved

and a satisfactory IC performance can be guaranteed, these methods sacrifice the OC detection power

due to their ignorance of the correlation structure. Chen et al. (2011) proposed to modify Σ̂ by adding

a regularization term to ensure a well-posed estimation. However, this method can only alleviate the

requirement of m0 to some degree. It is still hard to be applied when p is large.

The second category avoids direct estimation of Σ̂ by reducing the dimension into a smaller set

that is sufficient for process monitoring. The most seminal method in this category is to use principal

component analysis (PCA) to extract features from the original process, and then use the PCA scores

for monitoring (Ranger and Alt 1996). Later, Ding et al. (2006) proposed to use independent component

analysis (ICA) instead for a better detection performance. Since ICA projects the original data into a

subspace that maximizes the separation of any clustering structure existing in the data, this method

can potentially better separate the OC samples from the IC ones than PCA. Both PCA and ICA can

be regarded as unsupervised learning algorithms. When features of OC patterns are known, supervised

learning algorithms can be used to further increase the detection power. Sukchotrat et al. (2011)
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proposed to use linear discriminant analysis (LDA) to project the data into the subspace that best

separated the IC and OC distributions. Ngai and Zhang (2001) proposed to use projection pursuit

to find the most possible mean-shift direction. However, these methods share one common limitation

that they aim at pursuing projections according to certain “interesting” criteria. While for a given

data set with p ≥ m0, correct pursuance may be quite difficult. For example, for PCA, when p is much

bigger than m0, the first few estimated principal component directions based on Σ̂ are not consistent

or converged to the appropriate subspaces, unless the first few eigenvalues of the population covariance

matrix Σ are large enough compared with others (Jung et al. 2009). This criterion is not yet always

satisfied in practice. Furthermore, one assumption of these methods is that the OC directions must

lie in the low dimensions formulated by the extracted features. Otherwise, these methods will almost

have no detection power. For example, monitoring of only the first several principal components will

miss process shifts in other principal components.

Most of the methods mentioned above are based on a fundamental assumption that the process data

follow multivariate normal distributions. However, in high-dimensional data streams, the underlying

process distribution is usually not normal. When applied to non-normal data, these methods may have

significantly diminished performance or even fail completely. This motivates the use of nonparametric

charts. For cases with p < m0, nonparametric methods have been widely used to achieve robust

performance in non-normal distributions. These methods can be generally classified into two categories.

The first one is to apply traditional nonparametric tests to SPC, such as the spatial sign test (Zou

and Tsung 2011), the spatial rank test (Zou et al. 2012), and the directional rank test (Holland and

Hawkins 2014). However, these methods are still built upon the T 2-type statistics and require sufficient

reference samples to estimate the covariance matrix of the spatial signs or ranks. If the requirement

is unsatisfied, they still suffer the same problem as the traditional T 2 charts. Qiu and Hawkins (2003)

constructed a nonparametric CUSUM chart based on the anti-rank test. This chart can be applied in

the case of p ≥ m0, since it does not consider correlations of anti-ranks of different variables. However,

its performance is not very efficient, which will be shown in Section 3. Recently, Chen et al. (2016)

constructed a monitoring scheme based on the Wilcoxon test to monitor each data stream separately.

In this method, a data-driven method is proposed to set the control limit dynamically, which guarantees

that the chart is able to achieve a constant prescribed false alarm rate at each time step. Later Zhang

et al. (2016) extended Chen et al. (2016)’s work with a “divide-and-conquer” method. Its essence is to

divide the original high-dimensional process into several low-dimensional processes (i.e., 2-dimensional

processes in their paper). Then it constructs a nonparametric chart for every low-dimensional sub-

process based on the goodness-of-fit test, and finally combines all these local charts together. This
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strategy has a trade-off between the feasibility of direct monitoring of a high-dimensional process and

the poor power of totally ignoring the correlation structure. However, this method still faces with the

problem that, usually for a high-dimensional process, the correlation structure is too complicated to be

described by a pairwise approximation. Furthermore, how to select the pairs significantly influences the

detection power and is still an open problem to be solved. In addition, the computational complexity

to calculate the data-driven control limit sequence is quite heavy and grows exponentially with p,

hindering its direct application to high-dimensional cases. The second type is based on machine learning

or pattern recognition methods. The basic idea is to classify an online testing sample according to its

distance from the IC distribution or a pre-specified OC distribution. So far several distance metrics

have been adopted in SPC schemes, such as the Euclidean distance with the random forest algorithm

(Deng et al. 2012), the k-nearest neighbor algorithm (Sukchotrat et al. 2011), and the kernel mean

discrepancy (Huang et al. 2014). However, all the distance metrics considered in these methods do not

use the data correlation structure at all, and consequently lead to their poor detection power when

data are strongly correlated.

In summary, so far there is no satisfactory monitoring scheme for high-dimensional, correlated, and

non-normal data streams with p ≥ m0. This paper targets at this research gap by developing a new

nonparametric control chart. The core of our method is to decompose the high-dimensional process

space into several subspaces using ensemble projections, and then construct nonparametric control

charts for each subspace separately. Finally all the local results are combined for decision-making.

However, as mentioned previously, due to the curse of dimensionality, traditional projection pursuit

methods, such as PCA, LDA, or ICA cannot extract correct features using very limited reference

samples. To solve this problem, enlightened by compressed sensing (Baraniuk 2007), we propose to use

random projection. It can on the one hand guarantee that the geometric structure of original data is

preserved after projection with high probability, and on the other hand does not require large reference

sample size for implementation. However, unlike only using one projection in compressed sensing, here

we propose to use ensemble random projections, and consequently can detect OC changes in different

projected subspaces. Then for each subspace we construct a local monitoring scheme based on the

spatial rank test. This test not only takes correlations of different variables into account, but also has

robust detection power for general continuous multivariate distributions. Last but not the least, we

propose a diagnostic framework to identify the potential OC directions using the square-root LASSO.

The diagnostic framework also has satisfactory performance for various distributions.

The remainder of this paper is organized as follows. Section 2 introduces the spatial rank-based

high-dimensional monitoring scheme with ensemble random projections, and the diagnostic procedure
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for root cause identification. Section 3 shows the thorough numerical studies of the proposed methodol-

ogy. Section 4 applies the proposal to real-data examples. Section 5 concludes the paper with remarks.

Some technical details are provided in the Appendices.

2 Spatial Rank-based High-Dimensional Monitoring Scheme

2.1 A review of spatial rank-based EWMA control chart

Spatial rank-based method is often used to construct robust tests for location testing problems (Oja

2010). It has robust detection power for general continuous multivariate distributions and is especially

efficient for the elliptical distribution family. Define the spatial sign function for a multivariate variable

X as U(X) = X/||X||I(X 6= 0). The empirical spatial rank for the tth online sample Xt can be defined

as the average of the spatial signs of pairwise differences, i.e.,

R(Xt) =
1

m0 + t− 1

t−1∑
i=−m0+1

U(Xt −Xi). (2)

Given the IC distribution X ∼ F0(X−µ0), we want to test the null hypothesis, H0 : µ = µ0 against the

alternative hypothesis H1 : µ 6= µ0. Under H0, we have E(R(Xt)) = 0. Otherwise under H1, E(R(Xt))

is generally not zero (see Chapter 4 in Oja (2010) for more discussions). Thus, the T 2-type test statistic

R′(Xt){Cov [R(Xt)]}−1R(Xt) is a reasonable candidate test statistic for the hypothesis. When Xt is

still in control, the test statistic should be small, while a large value of the test statistic should reject

the null hypothesis. Since the spatial rank releases the heavy tails’ influence on the T 2-type test, the

spatial rank test has efficient detection power for elliptical distributions. However, this test statistic is

not affine invariant. It means that if the sample Xt is transformed to DXt by any full-rank matrix D,

the statistic value will be changed. Consequently the control limit should be adjusted when different

coordinate systems are used, which is rather unappealing. To rectify this issue, we make an affine-

invariant modification by invariantly transforming Xt to MXt, in which Σ = (M′M)−1 and Σ is the

covariance matrix of Xt. Then we construct the spatial rank test as

Qt = R′(MXt){Cov [R(MXt)]}−1R(MXt).
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According to Zou et al. (2012), for Xt of elliptical distributions, when the process is IC, we have

Cov(R(MXt)) = E [||R(MXt)||2] Ip/p. Furthermore, to increase the detection power of Qt for small

changes, we can incorporate the EMWA technique and construct the charting statistic for Xt as

Qt =
(2− λ)p

λξ
||vt||2, (3)

vt = (1− λ)vt−1 + λR(MXt),

with ξ = E[||R(MXt)||2]. This spatial rank test also performs robustly for general continuous distri-

butions, as demonstrated by numerical studies in Section 3.

2.2 Random projection for dimension reduction

Usually Σ is unknown and needs to be estimated from the m0 reference samples. However, when

p > m0, the estimated matrix Σ̂ is singular, and the chart cannot be started. Even when p ≤ m0, the

test statistic will still perform poorly for small t if p is nearly as large as m0. One possible solution is

dimension reduction, i.e., to reduce p into a much smaller k < m0. Then these m0 samples are enough

to learn the k-dimensional distribution well. Consider projecting the original p-dimensional samples

{X−m0+1, . . . ,Xt} to a k-dimensional (k � p) subspace as samples {Y−m0+1, . . . ,Yt} using a matrix

P ∈ Rp×k, i.e., Yi = P′Xi(i = −m0 +1, . . . , t). Then the statistical distance between H0 and H1 in the

projected space equals dk = (µ1−µ0)
′P(P′ΣP)−1P′(µ1−µ0) for elliptical distributions. As we know,

generally a larger k leads to a larger dk and separates H0 and H1 ”further”, indicating less information

loss. However, on the other hand, when Σ is unknown and substituted by Σ̂, a larger k will lead to a

larger accumulated uncertainty in (P′Σ̂P)−1, which masks the true distance to some degree and makes

it difficult to discriminate between the hypotheses. Given a certain k, traditional dimension reduction

methods, such as LDA, aim at finding a projection matrix P based on Σ̂ to maximize (preserve) dk

as much as possible. However, unless k is very small (k � m0), the uncertainty in Σ̂ will influence

the estimation of P and make the optimal dk unattainable. In these cases, one possible solution is to

construct a projection which does not depend on Σ. With in mind that dk is also highly dependent on

the Euclidean distance between µ1 and µ0, we can alternatively seek for a projection P that preserves

the Euclidean distance of µ1−µ0 mostly. In other words, we hope to preserve the geometric structure

of Xt after projection. This brings us the idea of random projection.

In random projection, P does not depend on the data, but is randomly generated by drawing its

each element from the normal distribution with mean 0 and variance 1/k. This strategy, on the one
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hand, guarantees that P can be constructed rapidly with much smaller computation time than PCA or

ICA. On the other hand, it can also preserve the geometry structure of the data with high probability.

Specifically, according to the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss 1984), as long

as k > Cε−2 log(ρ−1), where ε ∈ (0, 1) is the disturbing level and C > 0 is a large constant, the random

projection P guarantees that ∀i, j ∈ [−m0 + 1, t] and i 6= j,

Pr{(1− ε)||Xi −Xj||2 ≤ ||Yi −Yj||2 ≤ (1 + ε)||Xi −Xj||2} ≥ 1− ρ.

It means that the distance between any two points, Xi and Xj, is approximately preserved in the

subspace points Yi and Yj. Strictly speaking, P is not necessary to be a projection since each column

of P is not restricted to be orthogonal with each other. However, orthogonalizing P is computationally

expensive and hence undesirable. Fortunately, according to Hecht-Nielsen (1994), in a high-dimensional

space, there exists a much larger number of near orthogonal directions than orthogonal ones. This

indicates that these random directions can be sufficiently close to orthogonal, and consequently P′P

would approximate to an identity matrix. Another point to be noted is that the elements of P are

not necessarily to be drawn from the normal distribution. Any zero-mean Sub-Gaussian distribution

is applicable. Some popular variances can be referred to Matoušek (2008).

Of course, the Johnson-Lindenstrauss lemma can only guarantee that with a probability higher

than 1− ρ, the projected distance is preserved with ε-level disturbance. There is still probability that

the projected distance is not preserved, with disturbance bigger than ε. In this case, the dimension

reduction will loss certain information and consequently affect the following data analysis. Actually,

information loss is common in various dimension reduction methods. For example, PCA can only

preserve data information in the selected principal components, while loses the information in unselected

ones. Of course, we can alleviate the information loss by decreasing ρ, which can be achieved by

increasing k. For example, for m0 samples Xi, i = 1, . . . ,m0, if we want all pairwise distances to have

ε-level disturbance, ρ should be around 1/m2
0 (or 1/m0(m0 − 1) more accurately). Consequently we

need to set k = O(ε−2 logm0).

2.3 Spatial rank-based EWMA chart with ensemble random projections

Now we can first project {X−m0+1, . . . ,Xt} into k-dimensional {Y−m0 , . . . ,Yt} using a random pro-

jection P with k � m0, and then construct the spatial rank-based EWMA chart on {Y−m0+1, . . . ,Yt}
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as

Qt =
(2− λ)k

λξ
||vt||2,

vt =(1− λ)vt−1 + λR(M̂Yt),

with v0 = 0 and ξ = E
[
||R(M̂Yt)||2

]
. M̂ can be derived from the sample covariance matrix Σ̂

of {Y−m0+1, . . . ,Y0} according to Σ̂ = (M̂TM̂)−1. Though in this way we make the monitoring

scheme applicable, as mentioned previously, the dimension reduction is accompanied with informa-

tion loss. Specifically, for a certain projection, it only preserves the data structure in this subspace,

but loses data information in other subspaces which are orthogonal to the current one. One mitiga-

tion strategy is to use ensemble projections, i.e., projecting Xt into different subspaces using differ-

ent P and combining their monitoring results together. By setting different P orthogonal with each

other, different projections reveal the data structure from different perspectives (subspaces) and con-

sequently complement each other. To be more specific, consider S orthogonal random projections,

Ps = [ps1, . . . ,p
s
k] (s = 1, . . . , S), where psl is its lth column vector for l = 1, . . . , k. In particular,

psl ⊥ pjm,∀s, j = 1, . . . , S, s 6= j; l,m = 1, . . . , k. However, psl and psm do not need to be orthogonal

with each other. The detailed generation procedure of Ps(s = 1, . . . , S) and its property are shown in

the Appendix A. Then we construct the test statistic for each projection as Q1
t , . . . , Q

s
t , and aggregate

these statistics together, i.e.,

Q0
t =

S∑
s=1

Qs
t , (4)

as the final monitoring statistic. Correspondingly, we chose a control limit L > 0 for (4) and define

if Q0
t > L, the monitoring scheme triggers an OC alarm at sample t. Henceforth we denote this

monitoring scheme as the RPSR chart for abbreviation.

2.4 Additional remarks

1. The choices of k and S are crucial for the detection power of RPSR. For k, on the one hand,

according to the Johnson-Lindenstrauss lemma, k determines the disturbing level ε and the

accuracy level ρ. A higher k leads to a lower disturbing level and a higher accuracy level.

However, on the other hand, with limited m0 reference samples, increasing k too much leads
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to a more noisy estimation of the covariance matrix of Ys
t = Ps′Xt, and thus deteriorates the

monitoring results. Therefore, the optimal choice of k should balance these two sides. As analyzed

earlier, for m0 samples, if we want all pairwise distances have ε-level disturbance, we recommend

k = O(ε−2 logm0) with ε ∈ (0, 0.5). For S, we recommend to set S = bp/ke to ensure that the

data structure in the original space can be discovered using these S complementary subspaces.

Of course, it is also possible to set S ≥ bp/ke (in this case, these S projections may no longer

be orthogonal with other). Then we can get better detection results for RPSR, since we can

observe the original high dimensional space with more information. However, the performance

improvement is not very cost-efficient compared with the additionally brought computational cost

(this will be demonstrated in Section 3).

2. When the chosen k ≥ m0/2, the estimated Σ̂
s

for each subspace may not be accurate enough

(Zou et al. 2012). As such, we may use the self-starting technique to update Σ̂
s

together with M̂s

when more online samples are gathered. In particular, when a new online sample Xt is available,

we recalculate (or update) the sample covariance matrix Σ̂
s

t−1 using {Ys
−m0+1, . . . ,Y

s
t−1} for every

subspace, and get Σ̂
s

t−1 = (M̂sT
t−1M̂

s
t−1)

−1. Then we have the monitoring statistic as

Qs
t =

(2− λ)k

λξt
||vt||2,

vt =(1− λ)vt−1 + λR(M̂s
t−1Y

s
t ),

with v0 = 0 and ξt = E
[
||R(M̂s

t−1Y
s
t )||2

]
. The corresponding formula can be further derived as

E
[
||R(M̂s

t−1Y
s
t )||2

]
=

1

m0 + t− 1

[
0∑

i=−m0+1

||R(M̂0Y
s
i )||2 +

t−1∑
i=1

||R(M̂s
i−1Y

s
i )||2

]
,

with R(M̂s
0Y

s
i ) = 1

m0

∑0
k=−m0+1 U(M̂s

0(Y
s
i −Ys

k)) for k = −m0 + 1, . . . , 0.

However, it should be noted that the self-starting technique may bring in another problem: the

probability that each pairwise distance of the m0 + t points is not disturbed than ε, which equals

αt = 1−
(
m0+t

2

)
ρ, is decreasing as t increases. In other words, if we want αt ≥ 0.5, we need to set

ρ = 1/(m0+t)2, with k ∈ O(ε−2 log(m0+t)), which is unpleasant. Fortunately, the increase speed

of the required k is very small as t increases. Then we may set k ∈ O(ε−2 log(m0 + T0)), where

T0 is the interested time horizon. In this way we can keep αt ≥ αT0 ≥ 0.5 for all t = 1, . . . , T0.

10



Furthermore, when t becomes large enough, we no longer need to update Σ̂
s

t or M̂s
t , since they are

already sufficiently close to the true values. Without updating, the sample space to be projected

is always m0 + t1 where t1 is the time point stopping updating. Since the sample space no longer

increases with t, αt will always keep consistent after t1.

3. To ensure fast implementation of the monitoring scheme with the self-starting technique, we

need to consider its computational complexity. To construct Qs
t , for every subspace, we need to

calculate M̂s
t−1 from Σ̂

s

t−1. Although any matrix that satisfies Σ̂
s

t−1 = (M̂s′
t−1M̂

s
t−1)

−1 will suffice

for transforming Ys
t to achieve the affine-invariant property, similar to Zou et al. (2012), we

choose a particularly attractive one, the triangular Cholesterol inverse root of Σ̂
s

t−1, which takes

M̂s
t−1 as an upper triangular matrix. Then we estimate M̂s

t−1 using the ranking-one downdating

Cholesky factorization with a computational effort of O(k2). Ranking Ys
t further takes O(m0 + t)

computational effort. Therefore, the total computational effort for Qs
t at t is O(Sk2 + Sk(m0 +

t)), which is not very computationally expensive in front of modern computing resources. For

example, for a experiment setting with p = 100,m0 = 100, k = 20 and S = 5, the calculation

of Qs
100 takes 0.006 seconds on a personal single-core desktop. For calculating Q0

t without self-

starting, the computational effort is Q(Sk(m0 + t)).

4. Now we talk about how to set the control limit L for RPSR. When m0 is large enough, Σ̂
s

and

M̂s can be well estimated. We do not need to estimate or update M̂s
t at every t. In this case,

Q0
t is a Markov chain, then the run length as well as L can be approximately calibrated through

the Markov chain approach (Runger and Prabhu 1996). However, When m0 is small and the

self-starting technique is adopted for small t, the conditional distribution of Q0
t is considerably

different from the steady-state one. In such case, L depends not only on λ and the prescribed

IC ARL, i.e., ARL0, but also on m0. Therefore we suggest calculating L based on simulation.

Given a process setting (with a certain p, k and S, the reference sample size m0, the control chart

setting λ, and ARL0), the IC run length distribution of the monitoring statistic is very robust

under various process distributions, even including very skew distributions (Zou et al. 2012).

This means that for a certain application process in practice with limited samples, we may use

a multivariate normal distribution instead to generate “fake” samples and use them to calculate

the control limit for this application (Zou et al. 2012). In this way, we can guarantee that the

control chart can still start under limited samples in practice. The detailed simulation procedure

is shown in Algorithm 1. Specifically, given a certain m0, we simulate the monitoring scheme for

in total N replications (say N = 50, 000 used in this paper) by drawing X from the standard
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multivariate normal distribution. Then we use the bisection algorithm (Qiu et al. 2010) to search

the control limit L so that the IC ARL of these N replications equals the prescribed one.

Algorithm 1 Procedure to find the control limit

Input: the prescribed ARL0, the number of simulation replications N , the maximum run length T0
where T0 � ARL0, and the control chart parameters including p, k, S, m0, λ.
Output: The calculated control limit L which ensures the chart has IC ARL equal to ARL0.
for b = 1 to N do

Generate samples X−m0+1, . . . ,X0,X1, . . . ,XT0 from the standard multivariate normal distribution
for this replication b.
Run the control chart with L = ∞, and get the charting statistic {Qbt, t = 1, . . . , T0} for this
replication b.

end for
Set the Lu = minb=1,...,N maxt=1,...,T0 Qbt and Ll = 0.
Calculate the ARL given L = Lu using the N simulation replications {Qbt, t = 1, . . . , T0}, b =
1, . . . , N .
if ARL < ARL0 then

Increase T0, and go back to regenerate N sequences.
end if
while |ARL− ARL0| ≥ ε do

if ARL > ARL0 then
L = (L+ Ll)/2

else
L = (L+ Lu)/2

end if
Calculate the ARL given the new L using the N simulation replications {Qbt, t = 1, . . . , T0}, b =
1, . . . , N .

end while

2.5 Post-signal diagnostic procedure

Now we consider how to identify the process mean change δ = µ1 −µ0 after an OC signal is triggered

at time t. A natural diagnostic scheme can be designed as

δ̂ =
t∑
i=1

wiXi −
1

m0

0∑
i=−m0+1

Xi, (5)

with the tuning parameter wi = κ(1 − κ)t−i/
∑t

j=1 κ(1 − κ)t−j where 0 < κ ≤ 1. It means that we

estimate µ1 by weighted averaging the online samples before t in an exponentially decaying way using
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the tuning parameter κ, so that more emphases are put on the recent data with fewer emphases on the

old ones. However, (5) may include IC noise. Actually, in a high-dimensional process, the probability

that all parameters shift simultaneously is rather low. Therefore, it is more reasonable to assume that

most components of Xt are still in control, and a fault is more likely to be caused by unknown changes

that only reflect one or a small set of variables. This is so-called sparsity characteristic. Jiang et al.

(2012) and Zou and Qiu (2009) addressed this problem by forcing L1 penalty on µ1, and estimating µ1

by either forward variable selection or adaptive LASSO algorithm. Though their diagnostic methods

have quite satisfactory performance for MSPC with the normal distribution assumption, LASSO is very

sensitive to outliers and hence cannot achieve robust estimation results for non-normal distributions

with heavy tails. One revised shrinkage algorithm which dispenses with this problem is the square-root

LASSO (Belloni et al. 2011). It can achieve near-oracle performance without assuming the process is

normal. With these in mind, we propose a diagnostic framework based on the square-root LASSO. In

particular, we estimate δ by

δ̂ ∈ arg min
δ∈Rp
{Q(δ)}1/2 +

γ

k
||δ||1, (6)

where Q(δ) =
∑t

i=1

∑S
s=1wi

[
M̂sPs′(Xi − µ0 − δ)

]′ [
M̂sPs′(Xi − µ0 − δ)

]
; γ is the penalty level and

||δ||1 is the l1 norm of δ. In (6), the part Q(δ)1/2 provides an accurate estimation of δ, the part ||δ||1
restricts the number of changed components. The key of the square-root LASSO is the score, i.e., the

magnitude of the gradient of Q1/2(δ) evaluated at the true parameter value δ0. The square-root LASSO

ensures that, with a probability larger than 1−α, the score is smaller than the penalty of δ, i.e., γ/S. In

this case, when δ0 = 0, the probability of miss-identifying a nonzero δ would be smaller than α. With

this in mind, for multivariate normal distributions, we need to set γ ≥
√
kSΦ−1(1−α/2p)/σmin where

σmin = minj=1,...,p std(Xtj) and Φ−1 is the inverse CDF of the standard normal distribution. As such,

we set γ = c
√
kSΦ−1(1−α/2p)/σmin where c = 1.1 is a control constant and α = 0.05. For non-normal

distributions, Belloni et al. (2011) demonstrates that the above γ with Gaussian CDF Φ is still a valid

asymptotic choice. Therefore, the square-root LASSO has more robust performance than LASSO-based

diagnostic methods for non-Gaussian processes. (6) can be formulated as a convex conic programming

problem and solved using efficient algorithmic methods. More discussions about its properties and

solving procedures can be referred in Belloni et al. (2011). When t→∞, Q(δ) can be approximated in

a recursive way as Q(δ) =
∑S

s=1

[
M̂s(zst − δ)

]′ [
M̂s(zst − δ)

]
where zst = (1− κ)zst−1 + κPs′(Xi − µ̂0),

with zst = 0(s = 1, . . . , S). In this way solving (6) will save a lot of computer memory when p and

t are huge. In the next section, we use some numerical studies to demonstrate the efficiency of this

13



diagnostic framework.

3 Numerical Results

In this section, we evaluate the performance of RPSR through some numerical studies. In particular,

in 3.1, we study the performance of RPSR for different OC scenarios. In 3.2 we study the performance

of the post-signal diagnostic framework based on the square-root LASSO.

We consider the following process distributions in our numerical studies: (i) p-dimensional normal

distribution, denoted as Np; (ii) p-dimensional t distribution with 5 degrees of freedom, denoted as

tp,5; (iii) p-dimensional gamma distribution with shape parameter 3 and scale parameter 1, denoted as

Gamp,3. Here Np and tp,5 belong to the elliptical distribution family, while tp,5 has heavier tails than

Np. In contrast, Gamp,3 is not elliptical. These distributions are commonly used in the literature to

study the robustness of nonparametric charting performance (Zou et al. 2012; Chen et al. 2016; Zhang

et al. 2016). In the simulation, we consider p = 100 and 500, representing high-dimensional and ultra

high-dimensional cases respectively. We set m0 = 100. Clearly, such few reference samples are not

sufficient to provide any meaningful estimation of the distributional parameters for such a large p.

3.1 Out-of-control performances

Without loss of generality, for each distribution, the mean vector µ0 is set to be 0. The covariance

matrix Σ is chosen to be a block matrix as Σ = diag(σ1Φ, σ2Φ, . . . , σ5Φ) where Φ = (φ)p/5×p/5 is set

to be φij = 0.5|i−j|,∀i, j = 1, . . . , p/5, and σr = 1.5r−1 for r = 1, . . . , 5. In this way the components

in the same block have strong correlations with each other, while components between different blocks

have no correlation at all. Since it is impossible to enumerate all the change patterns to allow a full-

scale study of the charting performance, following similar studies in Zou and Tsung (2011); Zou et al.

(2012), here we consider shifts in the first 0.06p components of the process mean vector with size δ,

i.e., µ1 = µ0 + δe with e = (1, . . . , 1︸ ︷︷ ︸
1,...,0.06p

, 0, . . . , 0)T . For RPSR, we set k = 20, and S = 5 for p = 100 and

S = 25 for p = 500 respectively.

We first demonstrate the robustness of RPSR by comparing it with its counterparts. In particular,

we consider the random projection based chart without the spatial rank test. Specifically, for each

subspace with Ys
t (s = 1, . . . , S), we construct its T 2 chart, i.e., T st = Ys′

t Σ̂
s

t−1Y
s
t , and sum all the

T st (s = 1, . . . , S) together for monitoring, denoted as RPT2. We also consider the chart that directly

applies the spatial rank test (Zou et al. 2012), denoted as SR. Furthermore, we consider the chart that
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first applies PCA for data and then uses the first k PCA scores in the spatial rank test for monitoring,

denoted as PCASR. To make a fair comparison, we incorporate the EMWA technique for all the charts.

We fix m0 = 100, τ = 50 and set λ = 0.1 in all the cases. Note that for the RPSR and RPT2 charts,

we do not incorporate the self-starting technique, i.e., not update Σ̂
s

t on line but only use Σ̂
s

0 all the

time, since m0 = 100 is large enough to estimate a distribution with k = 20. However, for the other

PCASR and SR charts, since m0 = 100 is not enough to estimate a distribution or a correlation matrix

with p = 100, we incorporate the self-starting technique and update Σ̂
s

t . We find the control limits for

these charts to ensure their IC ARL= 200. In particular, for RPT2 and RPSR, their control limits are

calculated using the Markov Chain approach (Runger and Prabhu 1996). For PCASR and SR, their

control limits are calculated using Algorithm 1 with samples generated from their process distributions

(Note that this is impossible in practice, since we do not know the real distributions in advance). Table

1 illustrates the OC performance of RPSR, RPT2, SR, PCASR with k = 10, and PCASR with k = 99

for these three process distributions with p = 100 in detecting mean shifts of size δ = 0.25, 0.5, 1, 2, 4.

We use the steady state OC ARL for performance evaluation. This means that any series where an OC

alarm is triggered before the true change point τ is discarded. All the ARLs shown in this paper are

based on 10,000 replications, and the standard deviations of the run length (SDRL) are also shown in

parentheses. We can see that RPT2 performs better than RPSR for normal distributions, this makes

sense since the T 2 chart is designed particularly for multivariate normal processes. However, when the

process becomes non-normal, RPT2 loses its efficiency. Yet RPSR still has satisfactory detection power,

demonstrating its robust efficiency for general process distributions. This result is consistent with Zou

et al. (2012). Furthermore, it is clear that RPSR has the best performance among these methods.

For the other three charts, even with the self-starting technique, the accumulated m0 + τ = 150 IC

samples are still not enough for estimating Σ at all. For the two PCASR charts, the PCASR with

k = 10 performs better than the PCASR with k = 99. At the first glance this seems surprising since

more principal components mean more potential change directions to be detected. However, this is

reasonable, since these principal components are so poorly estimated that they do not increase the

detection power, but add more noise to the chart and consequently deteriorate the detection power.

For the SR chart, it performs better than PCASR with k = 10 for small shifts, but worse for large

shifts. This indicates that PCA is actually not a good choice to improve the performance of SR when

p ≥ m0.

To evaluate the influence of S, here we further consider two other RPSRs with S = 10 (denoted as

RPSR(10)) and S = 2 (denoted as RPSR(2)). These two are only for illustration but not recommended.

For RPSR(10), we construct the random projections by running Algorithm 2 twice. We set P1:10 using
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the projections of the first run and set P11:20 using the projections of the second run. As shown in

Table 1, as S increases, the detection power of RPSR increases. However, the increase magnitude is

not very cost-efficient from S = 5 to S = 10, at the price of double computational effort. Therefore we

still recommend S = bp/ke.

Table 1: OC ARL comparison in detecting mean shifts with p = 100 and λ = 0.1 (numbers in
parentheses are SDRL values).

δ RPSR RPSR(10) RPSR(2) RPT2 PCASR(10) PCASR(99) SR

0 200(215) 200(212) 200(224) 200(195) 200(172) 200(351) 200(374)
0.25 167(193) 162(186) 174(200) 139(118) 196(169) 195(341) 183(347)

N100 0.5 84.2(122) 79.6(117) 123(168) 61.4(47.4) 168(157) 185(353) 128(295)
1 17.8(8.64) 16.2(7.99) 29.8(64.2) 18.1(6.12) 59.2(56.8) 168(332) 86.7(240)
2 7.66(1.21) 7.26(0.61) 9.04(2.23) 8.56(1.45) 13.4(4.19) 145(309) 49.6(173)
4 4.44(0.49) 4.21(0.42) 4.85(0.65) 4.91(0.45) 6.12(1.15) 87.5(238) 27.7(108)

0 200(226) 200(219) 200(218) 200(196) 200(186) 200(355) 200(345)
0.25 176(200) 169(199) 184(213) 184(156) 193(185) 193(351) 185(348)

t100,5 0.5 125(132.7) 115(148) 143(175) 157(117) 176(168) 178(340) 133(301)
1 28.7(40.1) 27.3(34.5) 42.8(67.0) 60.5(49.4) 112(131) 175(337) 90.9(247)
2 9.00(1.77) 8.67(1.67) 10.9(3.94) 12.7(6.42) 19.7(9.67) 169(333) 43.3(156)
4 4.97(0.54) 4.92(0.52) 5.51(0.89) 5.23(1.32) 7.63(1.79) 114(273) 38.6(144)

0 200(214) 200(213) 200(224) 200(197) 200(164) 200(383) 200(372)
0.25 191(205) 190(201) 195(209) 194(189) 195(163) 196(371) 187(364)

Gam100,3 0.5 170(196) 167(194) 187(201) 174(182) 192(160) 193(360) 178(342)
1 112(159) 109(142) 121(157) 111(121) 190(154) 190(353) 148(315)
2 20.4(29.9) 19.4(28.4) 37.8(78.5) 63.2(86.7) 165(142) 189(353) 63.7(200)
4 6.71(1.29) 6.54(1.05) 9.66(2.87) 34.9(25.1) 23.1(8.92) 152(315) 28.8(114)

Furthermore, to better illustrate the performance of RPSR, we also compare it with three other

state-of-the-arts methods, the CUSUM chart by Mei (2010) (shorted as MCUSUM), the anti-rank chart

by Qiu and Hawkins (2003) (shorted as AnRank), and the Kernel Hibert chart by Huang et al. (2014)

(shorted as RKHS). For MCUSUM, we assume the shift direction is known and consequently use the

one-side chart for comparison. We set its parameter k, i.e., the target shift size, as 0.25, because it is the

smallest shift size we are interested in. For the other two EWMA-type charts, here two values of λ, 0.1

and 0.025, are considered separately. As Table 2 shows, for either λ = 0.1 or λ = 0.025, RPSR performs

consistently better than MCUSUM, RKHS, and AnRank, because they do not consider correlations

between different variables at all. This illustrates the efficiency and superiority of the proposed method.

It should be noted that for Gamp,3, all the charts lose their detection power to some degree. This

16



performance deterioration is caused by the severe skewness of the gamma distribution.

We further consider the influence of m0 on the monitoring performance. In particular, for the

multivariate normal process with p = 100, we consider m0 = 60, 80, 100, 120, 140, 210. First, for

different m0, we consider fixing k = 20 and S = 5. The performance of the RPSR chart is shown in

Table 3. As m0 increases, the RPSR chart has better detection power generally, since it can estimate

the IC parameters more accurately. However, as m0 exceeds 100, the performance increase becomes

slower, especially for larger shifts with δ > 0.5. This is because when m0 = 100, the IC parameters can

be estimated well enough, hence the contribution of a larger m0 will become negligible. Furthermore,

we also consider changing k and the corresponding S for different m0, as shown in Table 4. Similar

to Table 3, as m0 increases, the RPSR chart becomes more efficient. This is reasonable since we have

more samples for the IC process. However, it should be noted that for the same m0, the RPSR in Table

4 performs better than that in Table 3. This indicates that adjusting k and S according to different m0

in practice is necessary. For smaller m0, a smaller k is preferable, since it can guarantee the parameters

to be well estimated in Phase I. On the contrary, for larger m0, a larger k is more beneficial, because

it can guarantee less loss caused by the projection, while a smaller k is a bit wasteful.

3.2 Efficiency of the diagnostic procedure

The above study demonstrates the detection efficiency of RPSR. We now investigate the capability of

the diagnostic algorithm in identifying the OC variables after an OC alarm is triggered. Suppose s0 is

the subset of the truly changed variables, and ŝ is a subset of {1, ..., p} determined by the diagnostic

algorithm. We use the true positive percentage (TPP) (Jiang et al. 2012), i.e.,

Pc = E(
|s0 ∩ ŝ|
|s0|

),

where ”|·|” denotes the number of components in the set, to evaluate the overall quality of the diagnostic

algorithm.

We also compare the proposed square-root LASSO based diagnostic framework (denoted as SRLS)

with the commonly used LASSO based diagnostic framework (denoted as LASSO) (Wang and Jiang

2009; Zou and Tsung 2011). However, the LASSO algorithm is sensitive to outliers, and consequently

has degenerated performance for non-normal distributions with heavy tails. Tables 5 and 6 report the

diagnostic results of SRLS and LASSO for the RPSR chart with p = 100, k = 20, S = 5, and λ = 0.1.

Here two values of κ, 0.1 and 0.025, are considered. As shown in Tables 5 and 6, SRLS performs
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Table 2: OC ARL comparison in detecting mean shifts when m0 = 100 (numbers in parentheses are
SDRL values).

λ = 0.1 λ = 0.025 Other methods
p δ RPSR RKHS RPSR RKHS MCUSUM AnRank

Np 100 0 200(215) 200(220) 197(177) 200(221) 201(275) 200(338)
0.25 167(193) 194(214) 151(152) 180(211) 127(106) 179(313)
0.5 84.2(122) 147(159) 67.0(50.9) 121(137) 85.1(41.6) 152(276)
1 17.8(8.64) 66.7(75.4) 26.6(5.60) 41.5(28.1) 51.5(17.3) 129(243)
2 7.66(1.20) 3.13(2.95) 13.7(1.43) 17.2(6.97) 31.3(7.04) 119(225)
4 4.40(0.49) 1.00(0.67) 7.99(0.49) 8.27(2.49) 18.2(3.17) 110(220)

500 0 201(225) 200(226) 200(218) 201(239) 200(260) 200(324)
0.25 176(214) 200(221) 147(146) 174(203) 122(88.9) 197(310)
0.5 107(171) 172(187) 56.9(30.0) 115(143) 84.3(40.5) 178(291)
1 15.3(4.65) 83.3(83.8) 24.9(3.40) 42.7(28.1) 51.7(15.8) 161(261)
2 7.07(0.78) 18.8(8.69) 13.2(0.93) 16.9(6.34) 31.8(7.06) 156(257)
4 4.11(0.31) 6.60(1.61) 7.82(0.39) 8.25(2.44) 18.3(3.00) 153(251)

tp,5 100 0 200(226) 198(219) 200(163) 201(230) 199(226) 200(346)
0.25 176(200) 189(207) 155(153) 177(202) 148(143) 186(320)
0.5 125(162) 164(185) 80.8(77.9) 126(154) 103(67.4) 158(282)
1 28.7(40.1) 98.4(101) 30.9(7.86) 51.8(39.5) 65.6(26.9) 135(250)
2 9.00(1.77) 24.7(14.7) 15.3(1.93) 19.7(8.98) 38.7(11.3) 115(218)
4 4.97(0.54) 7.86(2.18) 8.74(0.75) 9.37(3.04) 22.7(5.03) 110(212)

500 0 199(226) 201(209) 200(187) 200(225) 200(211) 200(310)
0.25 177(206) 193(196) 149(149) 215(235) 142(142) 198(302)
0.5 123(164) 174(183) 67.9(42.1) 147(178) 99.5(57.1) 188(298)
1 23.4(25.9) 104(112) 27.7(4.34) 55.4(40.8) 63.5(25.1) 161(268)
2 8.26(1.17) 25.8(15.8) 14.6(1.26) 20.4(8.30) 38.1(11.1) 158(256)
4 4.80(0.45) 7.98(2.08) 8.44(0.56) 9.46(2.86) 22.5(4.84) 155(254)

Gamp,3 100 0 200(214) 202(223) 200(200) 201(224) 200(221) 200(7.51)
0.25 191(205) 201(229) 181(163) 187(214) 155(109) 197(7.12)
0.5 170(196) 195(211) 146(139) 152(185) 118(65.1) 195(7.12)
1 112(159) 162(172) 73.9(62.8) 105(110) 78.6(27.8) 193(7.11)
2 21.9(29.9) 84.1(85.4) 28.1(5.38) 37.3(21.8) 47.6(12.3) 190(7.02)
4 8.12(1.29) 17.5(7.09) 14.3(1.36) 15.5(5.68) 28.4(5.45) 186(6.91)

500 0 200(224) 200(177) 200(184) 200(221) 200(176) 200(5.42)
0.25 193(221) 196(191) 182(177) 196(186) 150(94.2) 198(5.43)
0.5 178(203) 185(186) 143(147) 188(212) 114(54.2) 199(4.45)
1 122(170) 136(136) 59.0(30.4) 110(121) 78.5(26.4) 195(4.12)
2 17.3(6.33) 72.7(74.2) 26.5(3.32) 37.1(19.9) 48.3(11.9) 193(4.21)
4 7.62(0.79) 15.6(6.00) 14.0(1.45) 15.2(5.04) 28.5(5.00) 190(4.23)
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Table 3: Detection power for different m0 with fixed k = 20 and S = 5 for N100.

δ m0 = 60 m0 = 80 m0 = 100 m0 = 120 m0 = 140 m0 = 210

0 200(258) 200(234) 200(215) 200(206) 202(210) 200(200)
0.25 180(238) 169(199) 167(193) 163(179) 161(191) 156(165)
0.5 129(198) 119(134) 84.2(122) 81.1(125) 79.3(121 76.9(97.2)
1 22.5(41.8) 19.7(10.4) 17.8(8.64) 17.7(8.12) 17.3(6.61) 17.1(6.86)
2 7.82(1.37) 7.69(1.24) 7.66(1.22) 7.64(1.18) 7.62(1.18) 7.57(1.11)
4 4.45(0.51) 4.39(0.51) 4.41(0.49) 4.39(0.49) 4.36(0.48) 4.36(0.48)

Table 4: Detection power for different m0 with various k and S for N100.

m0 = 60 m0 = 80 m0 = 100 m0 = 140 m0 = 210
δ k = 17, S = 6 k = 20, S = 5 k = 25, S = 4 k = 33, S = 3 k = 50, S = 2

0 200(209) 200(202) 200(229) 205(244) 200(221)
0.25 162(209) 169(195) 156(204) 143(208) 135(178)
0.5 125(197) 119(176) 83.5(151) 67.6(113) 45.9(59.9)
1 26.6(49.9) 19.7(46.7) 16.5(13.4) 15.1(5.51) 14.3(4.84)
2 7.93(1.53) 7.62(1.78) 7.34(1.14) 7.15(1.05) 6.83(0.95)
4 4.52(0.51) 4.39(0.48) 4.28(0.45) 4.19(0.37) 4.11(0.31)

better than LASSO, especially for t5 and Gam3 distributions. Furthermore, we can see a clear pattern

that when the shift size increases, Pc increases accordingly. Although this result might be intuitive, it

is not trivial. Though larger shifts are easier for identification, they yet have smaller OC ARLs and

consequently fewer OC samples available for diagnosis. Therefore, it is reasonable but not obvious to

see that the identification probability actually improves (Zou and Qiu 2009). Second, for different shift

sizes, the optimal κ∗ is different. κ∗ is generally small for small shifts and large for large shifts. This

is because that for small shifts, a smaller κ indicates a slower weight decay and consequently is more

helpful in accumulating the OC information. In contrast, for large shifts, since their corresponding OC

run lengths are usually short, a larger value of κ can put more weight on the most recent OC samples,

and make the diagnostic procedure more sensitive and accurate to capture the OC shifts in a short

period.

4 Case Studies

In this section, we use real-world data sets to illustrate the application of RPSR. The first set is from

the handwritten numerical identification as shown in Section 4.1, and the second data set is from the
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Table 5: TPP of the diagnostic frameworks with κ = 0.025.

N100 t100,5 Gam100,3

κ SRLS LASSO SRLS LASSO SRLS LASSO

δ 0.250 0.250 0.144 0.189 0.105 0.187 0.084
0.5 0.446 0.431 0.383 0.361 0.193 0.142
1 0.569 0.528 0.517 0.485 0.287 0.188
2 0.660 0.589 0.568 0.555 0.385 0.295
4 0.893 0.657 0.705 0.623 0.565 0.300

Table 6: TPP of the diagnostic frameworks with κ = 0.1.

N100 t100,5 Gam100,3

κ SRLS LASSO SRLS LASSO SRLS LASSO

δ 0.25 0.146 0.127 0.105 0.109 0.070 0.035
0.5 0.326 0.291 0.210 0.199 0.105 0.102
1 0.602 0.502 0.493 0.445 0.210 0.183
2 0.741 0.652 0.690 0.605 0.410 0.412
4 0.932 0.757 0.891 0.751 0.650 0.464

semiconductor manufacturing process as shown in Section 4.2.

4.1 Handwritten numeral identification

The data set consists of hundreds of features for handwritten numerals, “0” -“9”, extracted from a col-

lection of Dutch utility maps (https://archive.ics.uci.edu/ml/datasets/Multiple+Features).

Here we select 187 features for monitoring, including 76 features of Fourier coefficients of the character

shapes, 47 features of Zemike moments, and 64 features of Karhunen-Love coefficients. Among these

ten numerals, we find that “6” and “9” have high similarity in terms of Fourier coefficients and Zemike

moments, but have certain difference in terms of Karhunen-Love coefficients. To better illustrate this

point, for each feature, we calculate its standardized average distance between “6” and “9” based on

200 samples. As Figure 1a shows, only the third block of the features, which correspond to Karhunen-

Love coefficients, have significant nonzero standardized average distances. With this information, we

treat “6” as the IC state and “9” as the OC state, and design an online monitoring scenario using

these 187 features (process variables) to detect the numeral change from “6” to “9”, i.e., to detect the

change of the 64 Karhunen-Love coefficients in the process. We first analyze the statistical properties

of these features. Figure 1b shows the correlation structure of features of “6”. It is clear that there
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Figure 1: (a). The difference between numeral “6” and “9” in terms of the 187 features; (b) The
correlation structure of the total 187 features of “6”.

exist block-wise correlations between different features. Furthermore, the normal Q-Q plots in Figure 2

show that these variables do not have marginal normal distributions, indicating nonparametric charts

might perform more robustly for this data set.
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Figure 2: The normal Q-Q plots for V30, V60 and V124.

To demonstrate the application of RPSR, we design the sequential monitoring in this way: in each

simulation replication, m0 = 100 IC samples are randomly drawn with replacement as reference samples

from the 200 IC samples of “6”. Then the subsequent samples are randomly drawn with replacement

from either these IC samples (for t ≤ τ) or the OC samples of “9” (for t > τ) sequentially as online

testing samples. We set RPSR parameters k = 20 and S = b187/20e = 9, and consider two values
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of λ, 0.1 and 0.025, respectively. We adopt the self-starting technique for RPSR. For each λ, we use

Algorithm 1 with samples generated from the multivariate normal distribution to set its control limit

and ensure its IC ARL= 200. Figure 3 shows the resulting RPSR monitoring statistics with λ = 0.1

in one simulation replication for either the IC or OC scenario, where the dash red line represents the

control limit and the blue curve connecting with stars represents the monitoring statistics. When the

process is IC as Figure 3a shows, the monitoring statistics are always below the control limit, confirming

the stability of the chart. When the process is OC with τ = 50 as Figure 3b shows, RPSR has a quick

response to the shift with a timely increase in the monitoring statistics, and finally exceeds the control

limit at t = 55, signaling an OC alarm with run length 5. To better test the performance of RPSR,

similar to Section 3, we compare its performance with the other four charts in terms of OC ARL.

In particular, for MCUSUM, since the OC directions are various for these 187 variables as Figure 1a

shows, we adopt the two-side CUSUM chart with the minimum interesting shift size k = ±0.5 for

monitoring. The control limits of all the charts are tuned to ensure that their IC ARLs equal 200, and

their OC performances are shown in Table 7. We can see that for these four charts, RPSR performs

best. As to MCUSUM, RKHS and AnRank, since they fail to consider the correlation structure at all,

their performances are much worse than the former two, which is consistent with the performance in

Section 3.
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Figure 3: One replication of RPSR for monitoring the handwritten numerals with k = 20, S = 9, and
λ = 0.1. (a) is for the IC process; and (b) is for the OC process with change occurring at τ = 50.
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Table 7: The ARLs of different charts for monitoring the handwritten numerals with p = 187, m0 = 200
and τ = 50 (numbers in parentheses are SDRL values).

λ = 0.1 λ = 0.025 Other methods
RPSR RKHS RPSR RKHS MCUSUM AnRank

IC 196(206) 197(214) 198(204) 200(211) 197(204) 199(51.4)
OC 5.55(1.41) 95.0(95.2) 7.09(2.14) 44.5(63.1) 18.2(2.76) 69.5(12.3)

4.2 Semiconductor manufacturing

The data set contains 1,567 samples in total from a semiconductor manufacturing process (http:

//archive.ics.uci.edu/ml/datasets/SECOM). Each sample is a vector of 591 dimensions, consisting

of 591 continuous measurements during the fabrication in producing each sample. Among them, 1,463

samples are classified as conforming ones (IC samples), while the remaining 104 samples are classified

as nonconforming ones (OC samples). The goal of this section is to use this data set to illustrate the

online process quality control using RPSR.

As a preprocessing step, we remove 215 variables with constant values or too many missing data

from the 591 variables, in all the 1,567 samples, and remain the left 376 variables for analysis. Figure

4a shows the correlation matrix of the 376 variables, which has a block-wise structure. Some variables

have quite strong correlations with each other, such as variable 300 to variable 330, while some others

have no correlations. Figure 4b draws the normal Q-Q plot of one selected variable, i.e., variable 3.

It is clear to see that the variable does not have marginal normal distributions. Q-Q plots of other

variables also have similar features.
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Figure 4: (a). The correlation structure of the 376 variables, and (b) the Q-Q plot of one selected
variable in the semiconductor manufacturing process.

To demonstrate the application of RPSR, we monitor the samples sequentially in the same way
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as Section 4.1. In particular, in each simulation replication, m0 samples are randomly drawn with

replacement as reference samples from the 1463 IC samples, then the subsequent samples are randomly

drawn with replacement from either the IC samples (for t ≤ τ) or the OC samples (for t > τ)

sequentially as online testing samples. Here we set m0 = 250 and τ = 50. We set RPSR parameters

k = 47 and S = b376/47e = 8. Similar to Section 4.1, we consider two values of λ, 0.1 and 0.025,

respectively. We adopt the self-starting technique for RPSR. For each λ, we use Algorithm 1 with

samples generated by bootstrapping the available IC data to set its control limit and ensure its IC

ARL= 200. We also compare our method with RKHS, MCUSUM and AnRank, whose settings are

the same as Section 4.1. The monitoring results are shown in Table 8. It is clear to see that RPSR

performs the best.

Table 8: The ARLs of different charts for monitoring the semiconductor manufacturing samples with
p = 376, m0 = 250 and τ = 50 (numbers in parentheses are SDRL values).

λ = 0.1 λ = 0.025 Other methods
RPSR RKHS RPSR RKHS MCUSUM AnRank

IC 200(214) 200(170) 202(181) 200(210) 200(180) 200(30.5)
OC 19.4(7.54) 36.3(7.41) 24.5(4.84) 31.1(15.7) 30.5(18.1) 90.4 (18.9)

5 Conclusions

High-dimensional data streams with dimension larger than the number of IC reference samples are

very common in many applications. Usually these data streams do not follow normal distributions,

and show strong between-stream correlations. These bring a lot of challenges for traditional MSPC

schemes when they are applied in such high-dimensional cases. To address these challenges, this paper

presents a new monitoring scheme. First, we propose to decompose the high-dimensional space into

several subspaces using ensemble random projections. Since these subspaces have dimensions much

smaller than the reference sample size, they can be well estimated by the reference samples. Then

for every subspace, we construct a local monitoring scheme based on the spatial rank test to detect

the local changes, and finally we combine the monitoring results of all the subspaces together for final

decision-making. This monitoring scheme has efficient detection power for sparse process changes and

robust performance for non-normal distributions. Furthermore, we propose a diagnostic framework to

identify the sparse OC variables after an OC alarm is triggered. Numerical studies as well as real-data

examples demonstrate the efficacy and applicability of the proposed methodology.
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Appendices

Ensemble random projection generation

Here we introduce the generation procedure of the ensemble random projections Ps(s = 1, . . . , S) in
Algorithm 2.

Algorithm 2 Ensemble random projection matrix generation

1: For s = 1, generate each element of P1 = [p1
1, . . . ,p

1
k] from the normal distribution with mean 0

and variance 1/k.
2: for s = 2 to S do
3: Find the null space of {P1, . . . ,Ps−1} as R ∈ Rp×V whose every column rv is one direction (unit

vector) orthogonal to any column in {P1, . . . ,Ps−1}, with totally V directions found.
4: For the next projection matrix Ps = [ps1, . . . ,p

s
k], construct its each column as psl =

∑V
v=1 alvrv

for l = 1, . . . , k, where alv is generated from the normal distribution with mean 0 and variance
1/k.

5: end for

In particular, here Ps(s = 1, . . . , S) are generated a bit differently from the traditional algorithms.
We generate S matrices sequentially by assuming Ps is orthogonal from the previous Ps−1, . . . ,P1,
while traditional generation methods do not have this constraint. However, we can still show that our
generated S “not so random” random matrices can still preserve the distances after projection with
high probability in the following proposition.

Proposition 1. For the constructed ensemble projection matrices Ps(s = 1, . . . , S) generated by Al-
gorithm 2, they satisfy the Johnson and Lindenstrauss lemma. In particular, for ε ∈ (0, 1), let k ≥
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Cε−2 log(ρ−1) where C is a large absolute constant. Then for any Xi and Xj(i, j = −m0 + 1, . . . , t, i 6=
j), we have

Pr {(1− ε)||Xi −Xj||2 ≤ ||Ps′(Xi −Xj)||2 ≤ (1 + ε)||Xi −Xj||2} ≥ 1− ρ. (7)

Proof. Consider projecting a vector of the original space X ∈ Rp×1 to the subspace based on Ps. Then
we have Y = Ps′X. With pslj =

∑V
v=1 a

s
lvrvj(j = 1, . . . , p), we have

Yl =

p∑
j=1

psljXj =

p∑
j

V∑
v=1

aslvrvjXj,

for l = 1, . . . , k. Since aslv ∼ N (0, 1/k), we have

Var[Yl] = E[(

p∑
j=1

V∑
v=1

aslvrvjXj)
2]

=

p∑
j=1

V∑
v=1

E[(aslvrvjXj)
2] +

p∑
j=1

V∑
v=1

V∑
u=1,u6=v

E[(aslvrvjXj)(a
s
lurujXj)].

Because alv are independent with each other, we have E[alvalu] = 0 for v 6= u, and E[a2lv] = 1/k.
Consequently, the second term in the above equation equals 0, and we have

Var[Yl] =

p∑
j=1

V∑
v=1

E[(aslvrvjXj)
2] =

p∑
j=1

V∑
v=1

r2vjX
2
j

k
.

As such, Yi ∼ N (0,
∑p

j=1

∑V
v=1 r

s2
vjX

2
j /k). Now we complete the proof using a standard Chernoff-

bounding approach. In particular,

Pr {||Y||2 > (1 + ε)||X||2} = Pr {exp(tk
||Y||2

||X||2
) > exp(tk(1 + ε))}

Markov ineq. ≤ E

[
exp(tk

||Y||2

||X||2
)

]
/ exp(tk(1 + ε))

Yi indep. =
k∏
l=1

E

[
exp(tk

Y 2
l∑p

j=1X
2
j

)

]
/ exp(tk(1 + ε)),
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where √
kYl√∑p
j=1X

2
j

∼ N (0,

∑p
j=1

∑V
v=1 r

2
vjX

2
j∑p

j=1X
2
j

).

Since rv(v = 1, . . . , V ) are orthogonal projection directions with r′vrv = 1 and r′vrq = 0,∀v 6= q, we

have
∑V

v=1 r
2
vj ≤ 1 and ∑p

j=1

∑V
v=1 r

2
vjX

2
j∑p

j=1X
2
j

≤ 1.

Therefore according to the property of the MGF of the χ2 distribution, we have

E

[
exp(tk

Y 2
l∑p

j=1X
2
j

)

]
≤ 1√

1− 2t
, for t ≤ 1

4
.

Therefore we have

Pr {||Y||2 > (1 + ε)||X||2} ≤
[
exp(t)

√
(1− 2t)

]−k
exp (−ktε),∀t < 1

4
.

Since

[
exp(t)

√
(1− 2t)

]−1
= exp(−t− 1

2
log(1− 2t))

Maclaurin S. = exp(−t− 1

2
(−2t− (2t)2

2
− . . .))

= exp(
(2t)2

4
+

(2t)3

6
+ . . .)

≤ exp(t2(1 + 2t+ (2t)2 + . . .))

= exp(t2/(1− 2t)),

we have

Pr {||Y||2 > (1 + ε)||X||2} ≤ exp(kt2/(1− 2t)− ktε)

≤ e−ε
2k/8

with t = ε ≤ 1/4. Similarly, we can prove Pr {||Y||2 < (1− ε)||X||2} = Pr {−||Y||2 > (ε− 1)||X||2}
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and give the same bound. Consequently

Pr {(1− ε)||X||2 ≤ ||Y||2 ≤ (1 + ε)||X||2} ≥ 1− ρ, (8)

with ρ = 2e−ε
2k/8. We can obtain k = 8ε−2/(log(ρ−1) + log 2), i.e., k ∈ O(ε−2 log(ρ−1)).

For the m0 + t arbitrary points in Rp×1, if we set ρ = 1/(m0 + t)2, we have k ∈ O(ε−2 log(m0 + t)).
In this way, applying union bound to (8) for all

(
m0+t

2

)
possible interpoint distances, we ensure that

Ps embed the (m0 + t) points into k dimensions with probability that every pairwise distance is not
disturbed than ε at least 1−

(
m0+t

2

)
1

(m0+t)2
≥ 1

2
.
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