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Abstract— Rolling bearings are critical components in modern
mechanical systems and have been extensively equipped in
various rotating machinery. However, their operating conditions
are becoming increasingly complex due to diverse working
requirements, dramatically increasing their failure risks. Worse
still, the interference of strong background noises and the
modulation of varying speed conditions make intelligent fault
diagnosis very challenging for conventional methods with limited
feature extraction capability. To this end, this study proposes
a periodic convolutional neural network (PeriodNet), which is
an intelligent end-to-end framework for bearing fault diagnosis.
The proposed PeriodNet is constructed by inserting a periodic
convolutional module (PeriodConv) before a backbone network.
PeriodConv is developed based on the generalized short-time
noise resist correlation (GeSTNRC) method, which can effectively
capture features from noisy vibration signals collected under
varying speed conditions. In PeriodConv, GeSTNRC is extended
to the weighted version through deep learning (DL) techniques,
whose parameters can be optimized during training. Two open-
source datasets collected under constant and varying speed
conditions are adopted to assess the proposed method. Case
studies demonstrate that PeriodNet has excellent generalizability
and is effective under varying speed conditions. Experiments
adding noise interference further reveal that PeriodNet is highly
robust in noisy environments.

Index Terms— Bearing fault diagnosis, complex operating
conditions, deep learning (DL), noise resist correlation, periodic
convolutional module (PeriodConv).

I. INTRODUCTION

OTATING machines are the cornerstone of modern
society, playing an irreplaceable role in manufacturing,
transportation, etc. As productivity develops rapidly, they
often operate under complex working conditions, especially
at varying speeds [1]. Although highly reliable, bearings in
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mechanical equipment are prone to failure during long-time
operations [2], whose faults may cause up to 41% of all
rotating machine failures [3]. In this regard, bearing failures
may lead to fatal accidents and substantial economic losses,
especially in critical sectors such as manufacturing, energy,
and transportation [4]. Hence, bearing fault diagnoses are
crucial to ensure the safe and stable operation of rotating
machines, and have attracted increasing interest from academia
and industry [5].

Signal processing (SP) approaches are the most favorable
among many fault diagnosis methods [6]. As rollers strike the
damaged part of the faulty bearing, a series of characteristic
impulses will occur in vibration signals, which could be
captured easily by sensors thanks to the development of
data collection techniques [7]. Thus, the bearing fault could
be characterized by analyzing periodic patterns in vibration
signals. However, varying speed conditions may dramatically
change the characteristic frequency of signals and thus make
the bearing fault diagnosis very challenging [8].

Many SP methods have been successfully applied to extract
interpretable features for fault diagnoses, such as the order
tracking analysis [9], the statistics and probability analysis
[10], and the spectral analysis [11]. However, these methods
are usually developed based on strict physical assumptions,
and they commonly require labor-intensive participation by
experts to make decisions [12]. Furthermore, selecting suitable
parameters under varying speed conditions is considerably
challenging [13].

Machine learning (ML)-based approaches have been intro-
duced to automatically analyze the features extracted by SP
methods to overcome the aforementioned difficulties [14].
Many traditional classifiers, such as the fuzzy neural net-
work [15], Bayesian network [16], artificial neural net-
work [17], support vector machine [18], and extreme learning
machine [19], have been proposed for the bearing fault diag-
nosis. Although traditional ML algorithms have progressed
considerably in the past two decades, their limited nonlin-
ear mapping capacities hinder their application efficacy [20].
Hence, they cannot perform satisfactorily in solving complex
fault diagnosis problems [21].

Deep learning (DL) has recently achieved unprecedented
breakthroughs in various fields [22]. With advanced computing
hardware, DL-based approaches can overcome the limitations
of traditional ML-based methods. Thanks to their powerful
feature learning capability, DL models, especially the con-
volutional neural networks (CNNs), have been successfully
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used to perform bearing fault diagnosis tasks [23]. To fully
utilize the strength of CNNs in processing images, vibration
signals are first transformed into feature maps by SP methods
in most cases. However, SP and DL are two separate steps
in such diagnosis frameworks. Thus, the parameters of SP
methods must be meticulously and manually adjusted by
researchers with expertise according to bearing working con-
ditions [24]. Moreover, it is complicated to manually specify
optimal parameters to make feature maps match well with DL
networks, especially under varying speed conditions [20].

End-to-end fault diagnosis frameworks, which map raw
vibration signals onto bearing health states directly and auto-
matically through one model [25], are widely applied in the
literature to eliminate the reliance on the manual feature
extraction process and expert involvement in fault identifica-
tion [26]. These methods provide a better trade-off between
efficiency and effectiveness [27]. For example, Lei et al. [28]
adopted recurrent neural networks (RNNs) for the bearing fault
diagnosis, and Wu et al. [29] modified conventional CNNs par-
ticularly to accommodate the 1-D signal input. Although these
models perform satisfactorily in most conventional scenarios,
complex operating conditions often severely affect their perfor-
mance, where fault patterns are modulated by varying speeds
and masked by intense background noises. This robustness
issue is mainly because most existing networks are proposed
for images and natural languages, whose noise mechanism
differs from periodic vibration signals, which commonly are
contaminated with strong noises under complex operating
conditions. Processing such low signal-to-noise ratio (SNR)
vibration signals requires specially designed SP approaches.
Thus, the structure of existing networks may not be good at
capturing informative features of these vibration signals.

Many researchers are keen on designing dedicated network
structures for the bearing fault diagnosis to overcome these
issues [30]. For example, conventional SP strategies, which
guide the feature learning procedure of networks, are embed-
ded into the network structure to address the interpretable
problems and improve the fault diagnosis performance [31].
For example, Zhao et al. [32] proposed the adaptive intraclass
and interclass CNN (AIICNN) for the intelligent fault diag-
nosis of gearboxes. However, AIICNN relies on frequency
domain transformation to suppress noises, and its critical
parameters have to be optimized manually. Zhao et al. [33]
developed the deep residual shrinkage network (DRSN) to
improve fault diagnosis accuracy in noisy environments. They
adopted soft thresholding as a nonlinear mapping mecha-
nism to eliminate unimportant features. Nevertheless, DRSN
cannot permanently eliminate the masking effect of intense
noises, which challenges the effectiveness of thresholding-
based approaches.

This study focuses on the CNN-based methods because they
can achieve better performance on the bearing fault diagnosis
among DL methods [34]. In general, the first convolutional
layer of CNN is critical to the fault diagnosis performance of
the entire network [35]. For instance, Abid et al. [36] proposed
SincNet by replacing the convolutional filter with the cardinal-
sine (Sinc) function; Liu et al. [37] proposed TScatNet using
Morlet wavelet as the predefined convolutional kernel; Li et al.
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[38] proposed WaveletKernelNet based on the wavelet kernel
convolution. Although these networks have demonstrated con-
siderable performance, the wavelet-basis functions used in the
networks may be unable to sufficiently overcome the masking
effect of noises and the modulation of varying speeds.

Besides the wavelet-based kernels, the variational kernels
derived from the successive variational mode decomposition
were integrated into 1-D CNNs [12]. However, these networks
based on enhanced convolutional kernels all replace the first
layer of the backbone network with a designed layer, which
may break the structural integrity of the pretrained CNN
and reduce their fault diagnosis performance. In contrast,
Zhao et al. [13] proposed a denoising layer based on the
reproducing kernel Hilbert space (RKHS) algorithm. They
inserted it before the backbone network, which could obtain
better results theoretically. However, RKHS can only deal
with low SNR signals. Therefore, domain-oriented network
modules that simultaneously handle strong noises and varying
speeds still lack in-depth research.

Recently, the noise-resistant correlation (NRC) method
was developed [39], demonstrating excellent performance
in bearing fault diagnosis in noisy environments. Although
NRC was designed under constant speed scenarios, its vari-
ants [40], [41] were developed to process signals contaminated
with intense background noises and varying speeds. Due
to its excellent performance in bearing fault diagnosis, this
article proposes a generalized short-time NRC (GeSTNRC)
to process varying speed signals contaminated with strong
noises.

Specifically, a network module embedding the weighted
GeSTNRC, called periodic convolutional module (Period-
Conv), is first proposed in this study. PeriodConv is an organic
fusion of the SP theories and DL techniques because the
weighting process of GeSTNRC is realized via the self-
attention mechanism. Then, periodic convolutional neural
network (PeriodNet) is constructed by inserting PeriodConv
before a backbone network. Actually, PeriodNet is an umbrella
term for a series of networks whose structure depends on
the selected backbone network. The proposed PeriodNet has
excellent fault diagnosis performance under varying speed
conditions in noisy environments. The main contributions and
novelties of this study are summarized below.

1) GeSTNRC, an extension of NRC, is proposed. It can
achieve an excellent balance between dealing with
intense noises and varying speeds as other NRC variants.
Further, GeSTNRC is a 2-D extension because it adopts
the cross-autocorrelation, making it more suitable to
fully utilize the strength of CNNs.

2) Based on weighed GeSTNRC, PeriodConv adapts well
to the various working conditions because its parameters
are optimized automatically during training. Moreover,
PeriodConv is generalizable because it can be inserted
before any existing convolution-based backbone net-
work.

3) By inserting the proposed PeriodConv before a backbone
network, PeriodNet is constructed as an end-to-end fault
diagnosis method. The proposed PeriodNet can fully
retain the integrity of existing CNN models and entirely
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Fig. 1. Illustration of the end-to-end bearing fault diagnosis method based
on PeriodNet.

use their pretrained weights. Thus, it is very effective
under varying speed conditions and highly robust in
noisy environments.

The rest parts are organized as follows. Section II describes
the construction of PeriodNet in detail, Section III explains
the preparation work for experiments, and Section IV verifies
its effectiveness and robustness through three cases. Finally,
the conclusions are summarized in Section V.

II. PERIODNET FOR FAULT DIAGNOSIS

A schematic of the proposed diagnosis method is illustrated
in Fig. 1, where H represents the number of health types.
With excellent generalizability, PeriodConv can be combined
with arbitrary 2-D CNN, but this study recommends using
pretrained CNNs as backbone networks.

As a robust SP algorithm, NRC could suppress the random
effects of intense noises without prior knowledge. Thus, it can
accurately extract the hidden periodic components in the low
SNR vibration signals. Although one of the theoretical bases
of vibration analysis is to diagnose bearing faults according
to periodic components, it considers human thinking habits,
which may not be suitable for ML. Therefore, this study
removes the period detection paradigm and drastically expands
NRC to a generalized version to retain more information.
Furthermore, inspired by the window-based theory, especially
the short-time Fourier transform (STFT) method [42], the
proposed GeSTNRC method windows the input signal and
processes the obtained sub-signals sequentially.

The GeSTNRC method combines convolution operations,
residual connections, attention mechanisms, and other DL
techniques to obtain PeriodConv. PeriodConv inputs the raw
signals and outputs the feature maps, which could be opti-
mized during the network training process. Compared with the
backbone network, PeriodNet is more robust to the interfer-
ence of strong background noises. At the same time, PeriodNet
is more conducive to taking advantage of pretrained backbone
networks, which could significantly improve their performance
on bearing fault diagnosis.

A. Brief of NRC

The signals y = [y(0), ..., y(L—1)]7 are assumed to be the
sum of the unknown pure signals x = [x(0), ..., x(L — D]7
and the independently and identically normally distributed
noises € = [€(0),...,e(L — 1]7, where €(t) ~ N(0,c?)
for any ¢. That is,

y=Xx+e. (D

The NRC method suppresses the noises via two key steps
called segmenting and averaging [39]. In the segmenting step,
y is divided into m = [L/I] segments. Each segment has
a length of I € [1, ], where [y < L is the allowed
maximum length for each segment. In this study, |-| represents
the rounding down operation, and the last L —m/ signal points
are not considered in the segmenting step for simplification.
The obtained ith segment is denoted as

¥y = [y = DD, ...yl = D] @

fori =1,2,...,m. Inthe averaging step, for any / € [1, /ax],
the average of the m segments is used to construct a mean
vector of y, denoted as

ry = [y ©). ...

where its rth element is

1@ -] (3)

m—1
1
— > Ytk 0=<t<I
ug)(t) =1 4)

t
M;”(t — LZJI)’ I<t<L.

Note that the mean vector ;L§1) is periodic, and each period of
M;” is the average of the m segment signals {yl@}.

Inspired by the autocorrelation function, the correlation
vector between ﬂ;l) and y is proposed in NRC, which is
denoted as ¢y = [cy(1), ...,cy(lmax)]T. The Ith element of
¢y is calculated by

1
o =7y (5)

To cancel a drift term that increases with /, a robust autocorre-
lation vector qy = [gy(1), ..., gy (Imax)1” is proposed in NRC,

where
ay(D) = cy(l) — njy—fl)l 6)
in which
vy(l) = %(y — 1) (v — u?). (7)

It has been shown that if x is periodic with the period
P, gy(l) will display prominent peaks at integer multiples
of P [39]. Thus, the bearing fault can be detected by the
waveform of qy because the vibration signals of a faulty
bearing are commonly periodic. However, these conventional
fault detection methods typically require labor participation to
make decisions.

B. Generalized Short-Time NRC

1) Construction of STNRC: During the operation, the speed
variation of rotating machines is usually continuous. Thus,
when the time interval is short enough, the sub-signal in
each interval could be approximated to be stationary with-
out period fluctuations. Therefore, inspired by window-based
algorithms represented by STFT [42], this study intends to
propose the short-time NRC (STNRC) method. Firstly, the
window function resamples the original signals in the time
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domain, obtaining a series of approximate stationary sub-
signals. Then the original NRC method is applied to the sub-
signals sequentially, realizing the processing of varying speed
signals and getting time-time domain results.

For time-frequency domain analysis methods such as STFT,
the window function needs to be chosen carefully, and its
parameter setting is highly dependent on the experience of
experts. Fortunately, as a time-time domain analysis method,
STNRC does not need to transform the signals between
domains, so the spectral response of the window function is
not necessarily considered. In this way, STNRC could work
without prior knowledge, such as filter design theories.

Denote the jth window function as §; = [§;(0),...,§;
(L—1]7 for j €[1,n], which has £ nonzero elements, where
n = | L/€] denotes the number of resampled subsets from y.
Specifically, 6;(1) # 0 if (j — 1) <t < j{, and §;(t) =
0 otherwise. The sequence of £ nonzero elements forms the
window of §;. This study assumes that all window functions
share the same sequence of nonzero elements. This sequence
is denoted as g, which is a £ x 1 vector. The jth signal subset
is resampled from y by extracting the nonzero elements from
d; oy, where o denotes the element-wise product (Hadamard
product) Thus, the jth subset is goy(Z) where y(z) is obtained
similarly to y,() in (2). It can be seen that the window of §;
does not overlap that of §;; when j # j’. The nonoverlap
fashion of the windows aims to avoid mixing new periodic
components during the resampling process.

As the most straightforward window function, the rectangu-
lar window resamples the signals in length without changing
their amplitude, which is suitable for STNRC. At the same
time, the Extended NRC divides the signals into subsets
and applies the NRC method to each subset [40]. Therefore,
it could be regarded as a particular case of STNRC with a
rectangular window function, whose overlapping interval is
equal to the segment length of the subset signals. In this regard,
the rectangular window is adopted in this article, leading to
g= [1’ ’ 1]{><Z'

Based on the jth resampled subset g o y;a, a robust auto-
correlation vector of the STNRC method is proposed, denoted
as

q= [qgoy(“ Yy qgoy(m] (8)

By substituting y in (6) with go yy), the /th element of the

autocorrelation vector qgoy</m = [qgoy;e)(l), .. "‘]goy;“ 17 is
calculated by

Ugoy}w (l)

m—1 ®

qgoy;w (l) = Cgoyy) (l) —

where m = [{/ lJ is the number of signal segments after
segmenting g o y ) with length [. Moreover, Caoy® (/) and

Vgoy!? (I) are obtained by substituting y with g o y“) in (5)
and (7), respectively. In other words, Caoy® () and Vgoy® 0
are the short-time versions of ¢y (/) and vy(l)

2) Construction of GeSTNRC: For period detection and
signal reconstruction purposes, NRC adopts the conservative
strategy of information utilization. However, this strategy
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would undoubtedly hinder the fault diagnosis performance of
the NRC method. Recently, Wang et al. [1] observed a close
correlation between health states and operation conditions in
the vibration signals, then proposed the multitask attention
CNN to learn the complementary information contained in
multiple related tasks. Inspired by this observation, our study
is devoted to mining richer information from vibration signals
via cross-autocorrelation.
According to (1) and (5), cy(l) can also be written as

L) w

which will improve the computational efficiency of NRC.
Moreover, (10) shows that cy(/) only considers the autocorre-
lation w1th1n [L(l) and the cross-autocorrelation between [L(I)
and [Ly is ignored when [ # I'. Instead, this study considers
the cross-autocorrelation between [L(Z) and [L;Z,) to obtain a
generalized NRC method, where the integers [, 1’ € [1, r] are
the length of the signal segment.

ey(l) = (10)

Based on (10), the autocorrelatlon matrix C oy'? for the
resampled subset signal g o yj
Cgoy;ﬂ)(l, 1) Cgoy;()(l, r)
Comp=| 1 (an
Cgoy}“ (r, 1) Cgoyj“ (r,r)
in which the /th row and ['th column is
Lo ) o
o(l,1 ® ) (12)
ooy (1) = ¢ (Mgoy‘,-” oy

where ug yo denotes the mean vector of goy ) and is defined

similar to [LU) in (3). According to (7), the generalized short-
time version of vy (/) corresponding to the subset signal goyi.[)

could be calculated as
T
O (_“)) (g ° y(]/i) ; 3(1))
il 2 (13)

(g oy —n

Vgoyr (1 1) = 7

Denote the robust autocorrelation matrix of the GeSTNRC
method as Q = [ngym,... ngym] where Q yo is the

robust autocorrelation matrix of the jth subset g o y(e) and
is given as the following:

o(1,1)

qgoy C]goy(/)(l r)

Q0 = (14)

(é)(r 1) w(r,r)

qgoy qgoy

where its /th row and /’th column yoy® (1, ') is the generalized
short-time version of gy (/) correspondlng to g; oy and could
be expressed as

o0
qgoy(w (l l ) g y(é) (l l ) gIZT

Equation (15) shows that the diagonal of ngym equals Qgoy®>
ie., diag(Q ! ’

15)

3 0.
goy'” )= Qgoy!”
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C. Design of PeriodConv

1) Weighted GeSTNRC: Compared with the 1-D results
obtained by the NRC method, the 2-D results obtained by
the GeSTNRC method contain more valuable information.
Thus, they can better empower the learning capability of CNN,
leading to better fault diagnosis performance. However, the
information in Q does not contribute equally to the final fault
diagnosis results. Thus, the effective screening of the informa-
tion becomes particularly important [43]. As a powerful tool
for the neural network to achieve information screening, the
attention mechanism shines in many fields, whose performance
is also remarkable in bearing fault diagnosis [44]. Therefore,
this study introduces the attention mechanism to GeSTNRC,
and the obtained method is called the weighted GeSTNRC.

Unlike general images taken by cameras, the feature maps
obtained by the GeSTNRC approach have a clear pattern
during the construction, resulting in the applicability of the
row-wise attention mechanism. As mentioned above, the core
steps of the GeSTNRC method are segmenting and averaging,
as shown in (2)—(4). For the jth subset signal g o y;a, the

matrix consisting of all reconstructed u yo is denoted as

1
Fyoy0 = [u; >y 0 ”goyyl (16)
It can be seen from (10) and (12) that methods NRC and
GeSTNRC consider the autocorrelations within and between
columns of Fgoym, respectively. Following these ideas, this

study introduces the weight for the signal subset g o y(e) into
(16), which is denoted as w; = [w(l) (r)]T Further-
more, the weighted version of F goy? is characterlzed as F oy'0s
which could be calculated as

Fgoyﬁ_@.:[w“m 0 ﬁ”u } (17)

where w ) is the weight of [L

Due to the lack of pr1or knowledge w; is unknown.
Hence, this study implements the weighted GeSTNRC method
as a module in neural networks called PeriodConv. Thus,
w; would be optimized automatically with other network
parameters during the training process, aiming to improve the
feature extraction ability and alleviate the use threshold for
PeriodConv.

Tllustration of the weighting unit, where H, W, and C denote the dimension size (height, width, and channel) of feature maps.

2) Design of the Weighting Unit: As mentioned above, the
feature maps obtained by the GeSTNRC method are 3-D, and
these three dimensions can be divided into spatial and depth
dimensions. The depth dimension is also called the channel
dimension, which is generally used to store information that
is relatively independent of each other. For example, the three
channels of the RGB image store the grayscale information
colors. Because the processes of each Q oy'? in Q are separate,
their calculation process will not 1ntersect with each other.
Thus, this study intends to collapse the windowing results into
the channel dimension. In this way, all signal subsets can be
processed simultaneously via existing DL techniques, which
can significantly improve the computational efficiency of the
weighted GeSTNRC method.

Moreover, (4) indicates that the data of [L([) in the
interval t+ € [l,L — 1] just repeat those in the interval
t € [0,1 — 1], which does not provide extra information.
Thus, when the signal reconstruction is not considered, the
duplicate elements in the interval ¢ € [I, L — 1] of [,Lg,l ) can be
omitted to improve computational efficiency. In this way, the
element F goy of F used in PeriodConv is simplified to a lower
triangular matrlx As the lower triangular matrix provides the
same adequate information as the original matrix, no symbolic
distinction is made in this study.

Many attention-based CNNs have been designed for fault
diagnosis via the self-attention mechanism [33], which cal-
culates weights from the input. Traditionally, the weights
among channels are concerned because their feature maps
are obtained mainly by different kernels and lack physical
meaning. However, the Q consists of channels corresponding
to different signal subsets. As shown in (17), this study
considers the weights within the channel, which makes the
standard weighting process infeasible. Therefore, as shown
in Fig. 2, a novel weighting unit inspired by SENet [45] is
proposed in this study.

As all channels of F will follow the same weighting process,
this study only takes the jth channel as an example for
illustration. As shown in Fig. 2, the body of the weighting
unit comprises three steps as follows.

a) Acquisition of the initial weight: According to (17),
a weight vector w; with length r x 1 is required for
each F oy'? in F. In general, the initial weight w““““l is
acqu1red via average pooling [45]. However, the average
operation is already adopted during the construction of
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M(gl)ym» making the average pooling can only capture minimal
J

information.

Considering that the dimension of the matrix F goy'? is
r x r, a feature map of r x 1 will be obtained using the
strip convolution with kernel size 1 x r [23], which exactly
meets the dimension requirement of the wij"iﬁal. Therefore, this
study will use the channel-wise strip convolution to calculate
the W', Denote the horizontal strip kernel for channel j as
k]T, where k; = [k;l), e k;’)]T. When the stride for the strip
convolution equals the kernel size, the /th element of initial
weights can be acquired as
(wl]nitial)(l) _ k?ﬂ:jy(]{)- (18)

In addition, the strip convolution on matrix F goy® that
contains periodic signals is the core operation of the proposed
module, and thus it is called PeriodConv.

b) Optimization of the initial weight: To better cap-
ture the dependencies among columns of F 2oy the w”“““ll
needs to be further optimized, which is typ1cally 1rnplernented
by several fully connected (FC) layers. However, as global
operations, FC layers cannot meet the channel-wise needs of
PeriodConv. Although the channel-wise FC layer has been
proposed [46], it may face computational issues because
its code lacks optimization by developers. Fortunately, the
Mlpconv layer could do a similar job as the FC layer [47],
which is implemented by existing common layers. Therefore,
this study uses the channel-wise Mlpconv layer to obtain the
optimal weights wolollmal

When opt1m1z1ng w‘]"‘tlal with a sub-network composed of
FC layers, the activation layer is often adopted to improve its
nonlinear learning ability, which may help learn more valuable
features. However, unlike general feature maps obtained from
convolutional kernels, the relationships among columns of the
matrix F y© are interpretable, which significantly reduces the
dependence on the sub-network. At the same time, an overly
complex sub-network for w(’pmm11 may increase the overfitting
risk, resulting in poor generalization. Therefore, the sub-
network for the optimization process consists of two channel-
wise convolutional layers, where the first layer has two kernels
for each channel. Mathematically, due to the kernel size of
Mlpconv layers being 1 x 1, kernels of the first Mlpconv

layer for channel j are denoted as k;l) and k;z), respectively,
and the kernel of the second Mlpconv layer is denoted as k5-3).
Thus, w‘;p timal . 5uld be calculated as

(k(])_'_k(z))k(%) 1n1t1al

¢) Normalization of the optimal weight: After the opti-
mization step, w"™ will be normalized using the Sigmoid

optimal __

; (19)

function. Thus, the /th element of final weight w“"rmal could
be obtained
N0 1
(w;}orma ) - 7(w0ptima])(’) : (20)
I14+e \V

By repeating (18)—(20), w; in PeriodConv can be optimized,
which results in W‘J“’”‘“all Then, w']‘(’m‘a11 will be fused with the
input F ¥ accordlng to (17), and the obtained F v will be
used to calculate Q . Moreover, the opt1m1zat1on process
of w; is wholly based on the existing network structure, so it
has a unique advantage in computational efficiency.

Furthermore, in the processes of the weighted GeSTNRC,
the constructed matrix F = [Fgoym, ..., F (o] will be
replaced by its weighted version F = [F goy“)]
Besides, other steps will not be repeated because they remain
the same as GeSTNRC.

3) Implementation of PeriodConv: After too many middle
layers of back-propagation, the gradients of the loss function
will degrade more or less [48], which makes the parameters
training in the beginning layers a challenging job. As a
transgenerational network structure, the residual connection
could address this difficulty through the identity shortcut [48].
With the great privilege of residual connections, the residual
networks (ResNets) could be very deep and have been applied
for the fault diagnosis successfully [49].

Considering the improvement of residual connections to
fault diagnosis performance, this study designs a modified
residual structure in PeriodConv. As shown in Fig. 3, Peri-
odConv is roughly divided into three operations, and F is
processed by two parallel streams.

a) Execution of the weighted GeSTNRC: The weighted
GeSTNRC consists of the weighting unit and the first part of
the upper stream. As shown in Fig. 3, the spatial dimension
of Q is different from that of F. In practice, not all signal
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TABLE I
HYPER-PARAMETERS OF PERIODCONV
Layer Type Name Filters  Size / Stride Input Output

Input I1xLx1 I1xLx1

Designed Segmenting & Averaging 1xLx1 TXTrXn

Group Convolution Strip Convolution n 1xr rXTrXn rXx1lxmn

Weighting Unit Group Convolution Mlpconvl 2n 1x1 rx1lxmn rX2Xmn

Group Convolution Mlpconv2 n 1x1 rX2Xn rXx1lxmn

Sigmoid Activation rx1lxmn rx1lxmn

Multiplication Fusion rxlxnrxrxn rXrxn
Upper Stream Designed GeSTNRC rXTrXxn r/6 X T/6 X n
Resize Resize r/6 X T/6 X n r/a X T/2Xn
Lower Stream Resize Resize rXT XN rlaxr/2Xn
Addition Fusion rlaxT/2Xxn, T2XxT/2Xn  T/2XT/2Xn
Both Layer Normalization Normalization r/2 X T/2Xn r/2XxT/2Xn
Depth To Space Flatten r/axr/2Xn r/2 X TX71/2

points of qy obtained by NRC are used for fault diagnosis.
This is because the denoising effect will gradually degrade
as [ increases [39], where the noise term contained in the
correlation vector ¢y could be expressed as o2 /m. Thus, the
influence of noises increases as m decreases. As m = |L/1],
the end part of qy is more affected by noises than the beginning
part because the former has a larger index value [. For
example, (4) indicates that only one signal point is involved in
the averaging step when [/ € (L/2, L], only two signal points
are involved in the averaging step when / € (L /6, L /2], and so
on. Obviously, a smaller / means more signal points involved
in the averaging step, resulting in a better denoising effect.

Considering that PeriodConv is not designed for period
detection and CNNs usually have better pattern recognition
capabilities than human experts, this study intends to retain
more points of denoised signals than the NRC method by
setting Iax = L /6. Therefore, for the F whose dimension size
of the height, width, and channel is » x r x n, the output of
the GeSTNRC method in PeriodConv is cropped to r/6 x
r/6 x n, and it is still denoted as Q.

b) Construction of the modified residual connection:
The two streams of F compose the modified residual con-
nections, where the modification lies in resizing operations.
Traditionally, the feature map fusion in the residual structure
is performed via the additional layer. Thus, feature maps for
fusion must have consistent dimensions. However, the size of
Q is smaller than F as mentioned above, so the resize layers are
adopted, whose output dimension is r/2 x r/2 x n. Therefore,
the output size after the residual structure is half of the input
in height and width.

c¢) Postprocessing of the feature maps: To improve the
generalization capacity of PeriodConv, the fused feature map
will pass through a normalization layer, which normalizes a
mini-batch of data across all channels for each observation
independently.

The final step of PeriodConv is to flatten the normalized
feature map, which will restore the information of F that col-
lapsed to the channel dimension back to the spatial dimension.
The flattening operation is necessary because PeriodConv will
be inserted before the first layer of the backbone network,
which generally assumes the input feature map has interde-
pendent channels. This assumption holds for standard RGB
images but contradicts the GeSTNRC approach. Thus, the

normalized feature map is flattened to prevent the backbone
network from forcibly extracting dependencies from unrelated
channels. Consequently, the utility of features extracted by the
GeSTNRC method is maximized.

Figs. 2 and 3 together illustrate the design of PeriodConv.
To introduce the structure of PeriodConv more clearly, its
hyper-parameters are summarized in Table I.

D. Construction of PeriodNet

Based on PeriodConv, this study proposes a novel CNN
model for end-to-end bearing fault diagnosis called PeriodNet.
As PeriodConv is generalizable to be combined with any 2-D
CNN and acts as its first layer, PeriodNet is an umbrella term
for a series of models whose specific structure is determined
by the backbone network.

As wy, ..., w, in PeriodConv are trainable, the backbone
network can affect the feature extraction capability of Peri-
odConv through the back-propagation process. In this way,
the backbone network can affect the final fault diagnosis
performance directly and indirectly. However, as the number
of parameters in PeriodConv is usually much fewer than that
in the backbone network, the choice of the backbone network
will not play a decisive role in the feature extraction capability
of PeriodConv.

At the same time, the contribution of PeriodConv to the
final fault diagnosis task is mainly achieved indirectly by
enhancing the fault feature learning ability of the backbone
network. Since one of the primary purpose of this study is to
explore the automatic feature extraction ability of the proposed
PeriodConv from nonstationary vibration signals, this study
selects the ResNet-18 [48] as the backbone network, which is
one of the most popular pretrained networks.

The ResNet-18 was initially proposed for image recognition
problems [48], which introduced the residual block to address
the gradient degradation issue caused by the increased layer
number in the network. There are many other popular variants
of ResNets, such as the ResNet-50 and ResNet-101, whose
suffixes are the number of network layers and their structure
is almost the iterations of residual blocks. As this section aims
to verify the effectiveness of PeriodConv rather than obtain the
best fault diagnosis performance, the ResNet-18 is considered
to save computation resources.
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Fig. 4. Tllustration of PeriodResNet-18.

For convenience, this study denotes PeriodNet based on the
ResNet-18 as PeriodResNet-18, whose structure is shown in
Fig. 4. Because this study only modifies the input and output
layers of the original ResNet-18 to meet the dimension needs
of the diagnosis problem, its hyper-parameters will not be
described in detail. In addition, other PeriodNets are similar
in structure to PeriodResNet-18, so their structures will not be
described in the following.

The “Iteration” in Fig. 4 indicates that the group of repeated
layers and the number in front represents the repetitions. It is
worth noting that the layers that belong to the same “Iteration”
in Fig. 4 have similar structures but different hyper-parameters.
As the corresponding details have nothing to do with the
research content of this study, the model structure shown in
Fig. 4 is only for illustration.

E. Performance Assessment Indicator

The Macro-F'1 score is utilized to validate the performance
of the developed method of bearing fault diagnosis, whose
calculation is described in

.. TP, TP,
Precision, = ———, Recall, = ———
TP, + FP, TP, + FN,,
2 x Precision;, x Recall,
Fl, =

Precision;, + Recall,,

1 X
Macro-F1 = — F1, 21

"
where TP, denotes the true positive in recognizing the type h
of bearing health state, FP;, signifies the false recognition of
this state, and FNj;, represents the number of false negatives.
As shown in (21), the Precision;, and Recall;, of the health type
h are calculated first, which will be used to calculate its F'1,.
Then, the Macro-F'1 will average all Fls forh=1,...,H.

III. EXPERIMENTS PREPARATION

This section introduces the necessary components for com-
parative experiments to explore the overall performance of
PeriodNets on bearing fault diagnosis. This article utilizes
an open-source dataset from Ottawa University (OU), which
collects vibration signals under varying speed conditions.
To verify the generalizability of PeriodConv on backbone
networks, this article considers six more state-of-the-art pre-
trained CNNs simultaneously besides ResNet-18. Since this

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
DESCRIPTION OF SELECTED SUB-DATASETS IN THE CWRU DATASET

Health File Fault Width Location of Locations of
Types  Index (mm) Bearing Faults Bearings

1 3001 0.72 IR DE

2 118 0.18 BA DE

3 197 0.36 OR centered DE

4 290 0.36 BA FE

5 298 0.18 OR orthogonal FE

6 302 0.18 OR opposite FE

7 97 N.A. N.A. FE

article conducts experiments from three perspectives, including
speed conditions, noise levels, and noise types, their details are
presented in the following.

A. Data Description

1) OU Dataset: There are two versions of the dataset
provided by the OU. This study adopts the second version [50],
which considers a challenging scenario in which the gearbox
affects the bearing fault diagnosis task.

Five bearing health states and four varying speed conditions
result in twenty different setting cases. The health states
include: 1) normal; 2) inner race fault (IR); 3) outer race
fault (OR); 4) ball fault (BA); and 5) combined fault in
three locations. Besides, the speed conditions include: 1)
acceleration; 2) deceleration; 3) acceleration then deceleration;
and 4) deceleration then acceleration, whose frequency range
of the shaft rotation is 1040 Hz. Each signal is sampled
at 200 kHz and has a time duration of 10 s. Furthermore,
three trials are conducted for each setting case to ensure data
authenticity, which leads to 60 datasets.

However, the fixed pattern for the speed variation of bear-
ings does not exist in practice, which means the operating con-
ditions simulated by the four-speed conditions are essentially
the same. Therefore, this study does not distinguish between
various conditions in the case studies. As all five bearing health
states are considered, and there is only one bearing per health
state, the health type number is directly aligned with the health
state. Therefore, as all files provided by the OU are adopted,
information such as the file indices is omitted.

2) CWRU Dataset: Although PeriodNet is designed for
varying speed conditions, it should perform well under con-
stant speed conditions. Thus, the CWRU dataset [51], which
is applied widely in the research of bearing fault diagnosis,
is employed to validate the proposed algorithms.

There are more bearings in the CWRU dataset, which
are deployed separately at the drive end (DE) and fan end
(FE). Because there are many available data files in the
CWRU dataset, the most challenging files recommended by
a benchmark study [52] are utilized in this study. Specifi-
cally, the selected sub-dataset is sampled at 12 kHz via the
accelerometer deployed at DE. There are seven bearing health
states in total, whose details are presented in Table II.

B. Data Preprocessing

1) Sample Segmentation: The collected time-series data
needs to be truncated into individual samples before the
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training process, and the total number of samples in both
datasets is set to three hundred. Since the sampling frequency
of the OU dataset is 200 kHz, which is high enough to cause
storage and transmission issues in practice. Thus, its signals
are downsampled to 10 kHz, similar to the CWRU dataset.
At the same time, since the OU provides twelve equivalent
datasets in each health state, only twenty-five samples are
needed to be obtained per dataset. Considering all varying
speed conditions are analyzed together, 1/8 of points at the
beginning and end of the dataset are dropped in this study,
which may help reduce the startup impact and further enhance
the uniformity of the datasets under different varying speed
conditions. Therefore, when no overlap is allowed between
adjacent samples, each sample contains 3000 signal points
after truncation. Then, all data samples in the OU dataset are
further divided for training, validation, and test, respectively,
with a ratio of 6:2:2, where the validation dataset is used for
validation during training.

On the contrary, the challenging sub-datasets provided by
the CWRU contain fewer signal points in each file, leading
to 1000 signal points in each sample. Therefore, the collected
time-series data of the CWRU dataset is first truncated into
three parts for training, validation, and test, respectively,
with the same ratio as the OU dataset. Then, inspired by
Zhao et al. [53], the sliding window with a length of 1000 sig-
nal points is utilized to intercept the signal parts, which will
enlarge the total number of samples to three hundred.

2) Noise Addition: To verify the robustness of Peri-
odNets under noisy scenarios, especially errors caused
by sensors [14], white Gaussian noises with SNR of
[10, 3,0, —3, —7, —10] dB are added to the OU dataset. In this
way, six more noised samples could be synthesized from each
original sample, while the inherent noises are ignored in this
study. Therefore, seven noise levels are considered for the
same PeriodNet.

At the same time, four types of colored noises: pink,
brown, blue, and purple, are also considered to explore the
generalizability of PeriodNets. Considering noise that follows
a Gaussian distribution is one of the most common noises
in bearing fault diagnosis [14], [16], [33], colored Gaussian
noises with 0 SNR are employed in the OU dataset. Therefore,
five noise types are considered for the same PeriodNet.

C. Backbone Networks Description

To explore the generalizability of the proposed PeriodConv,
six more state-of-the-art pretrained CNNs are utilized as
backbone networks to establish PeriodNets, which are listed
in Table III. The DL Toolbox of MATLAB provides many
prevalent models, which are initialized with weights pretrained
on the ImageNet dataset [54]. Only models that balance the
depth, size, and volume of parameters could be chosen as
backbone networks. At the same time, only the shallowest one
in the same series of models is selected. Among the involved
networks, the suffixes consist of one letter and one number
(including “V3,” “V2.)” and “B0”) representing the version
of corresponding models. Furthermore, the suffix consists of
one number (including “19”) denotes the number of layers

TABLE III
SUMMARY OF BACKBONE NETWORKS IN COMPARATIVE EXPERIMENTS

Size Parameters

Backbone Network  Depth (MB) (Millions) Notation
Inception-V3 48 89 23.9 Ml
MobileNet-V2 53 13 35 M2
Xception 71 85 229 M3
ShuffleNet 50 54 14 M4
DarkNet-19 19 78 20.8 M5
EfficientNet-BO 82 20 5.3 M6

in the network. At the same time, ResNet-18, mentioned in
Section II-D, is marked as MO in the following.

The backbone networks listed in Table III get their corre-
sponding PeriodNets similar to MO (as shown in Fig. 4), which
are named by adding the prefix “Period” to the notations.
At the same time, the backbone networks M1-M6 and the
corresponding PeriodM1-PeriodM6 are tested the same way
as MO and PeriodMO.

D. Experiment Settings

The implementation of the proposed PeriodNet relies on
MATLAB 2021b, and the computing platform is an NVIDIA
GeForce RTX 3080 with 12G video memory.

The loss function is set as cross-entropy, which is the most
extensively used loss function in multiclassification problems.
To accelerate the convergence speed of PeriodNet and save
video memory, the mini-batch training mode is adopted, whose
size is 32 for all experiments unless the memory is insufficient.
Besides, the stochastic gradient descent with momentum is
adopted as the optimization algorithm, and the momentum
is set to 0.9. To prevent overfitting and loss oscillation, the
learning rate is decayed by half every five epochs, whose initial
value is 0.001. The training process will be terminated after
two hundred epochs.

Meanwhile, the early stopping mechanism will be triggered
if the performance of PeriodNet on the validation dataset is
not improved after five validations, where the performance is
validated per two epochs. In addition, a random seed is set to
0 in all experiments to ensure the same initialization condition,
and ten trails are adopted to further suppress the randomness
of experiments. At the same time, without loss of generality,
the hyper-parameter n in Table I is set to 10.

IV. CASE STUDIES

This section conducts three comparative experiments to
explore the overall performance of PeriodNets on bearing
fault diagnosis, where the results of backbone networks are
also included for comparison. It is worth noting that some
layers of the original backbone networks must be modified
to meet the dimensional constraints of the 1-D vibration
signals. Although such modifications will inevitably waste
some pretrained weights, it is the traditional way to use the
pretrained networks for end-to-end bearing fault diagnosis.
Besides this modification, the experiment settings and rest
hyper-parameters are kept the same for both models.

Although PeriodNets are constructed based on GeSTNRC,
which is an extension of NRC, the fault diagnosis performance
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TABLE IV
COMPARATIVE RESULTS UNDER DIFFERENT SPEED CONDITIONS
OU Dataset (Varying speed condition) CWRU Dataset (Constant speed condition)
Methods  Backbone Network PeriodNet Version Backbone Network PeriodNet Version
Mean Std Mean Std RMean RStd Mean Std Mean Std RMean RStd

MO 0.9191 0.0457 0.9950 0.0042 108.26% 9.19% 0.9936 0.0059 0.9990 0.0012 100.54%  20.34%
M1 0.9660 0.0242 0.9963  0.0048 103.14%  19.83% 0.7178 0.2218 09817 0.0140 136.77% 6.31%
M2 0.7836 0.1082 0.9957 0.0039 127.07% 3.60% 0.9132 0.0802 0.9931 0.0026 108.75% 3.24%
M3 0.4687 0.0828 0.9920 0.0042 211.65% 5.07% 0.3421 0.1023 0.9974  0.0024  291.55% 2.35%
M4 0.7495 0.0741 0.9903 0.0058 132.13% 7.83% 0.9692 0.0118 0.9826 0.0070 101.38%  59.32%
M5 0.9154 0.0515 0.9977  0.0022 108.99% 4.27% 0.7085 0.1939 0.9979  0.0024  140.85% 1.24%
M6 0.8216 0.0767 0.9987 0.0023 121.56% 3.00% 0.8367 0.0888 0.9902 0.0048 118.35% 5.41%
Average  0.8034 0.0662 0.9951  0.0039  130.40% 7.54% 0.7830 0.1007 0.9917 0.0049 142.60% 14.03%

of raw data rather than NRC features are adopted for com-
parison. This is because the combination of NRC results and
backbone networks is a feature-based diagnosis method rather
than an end-to-end method.

A. Studies on Speed Condition

The proposed PeriodNets are applied separately to test
samples in the OU and CWRU datasets, whose performance
on bearing fault diagnosis is summarized in Table IV. Table IV
measures the performance through the mean and standard
deviation (Std) of Macro-F1 scores, where the best values
in the results obtained in each column are marked in bold.
Moreover, Table IV calculates the relative mean (RMean) and
relative standard deviation (RStd) of PeriodNets compared
to backbone networks, aiming to present the performance of
PeriodNets visually. As shown in Table IV, PeriodNets achieve
higher means and lower Stds than backbone networks on
both datasets, which verifies the effectiveness of the proposed
PeriodConv under different speed conditions.

Table IV also shows that the performance gains brought by
PeriodConv to backbone networks vary wildly among models,
which roughly depends on the performance of backbone net-
works. For instance, the relative advantage of PeriodResNet-18
on the CWRU dataset is the worst of all experiments, whose
mean value is only slightly improved. This poor improve-
ment does not negate the generalizability of PeriodConv,
because ResNet-18 already performs excellently on the CWRU
dataset [23], leading to little room for improvement. Besides,
the Std of PeriodResNet-18 is significantly reduced, proving
the effectiveness of PeriodConv.

It is worth noting that although structures of models M1
(Inception-V3) and M3 (Xception) are inextricably linked,
Table IV indicates that their performance is totally different.
In particular, the relative performance of M1 and M3 on
bearing datasets is diametrically opposite to their pretraining
results on the ImageNet dataset. Therefore, this phenomenon
provides evidence to reveal the difference between the bearing
fault diagnosis and the image recognition, which also justifies
the necessity of specially designing CNNs for bearing fault
diagnosis.

The last row of Table IV calculates the average scores of dif-
ferent methods, where the scores are higher on the OU dataset
than on the CWRU dataset. This score inversion contradicts
the consensus that bearing fault diagnosis under varying speed
conditions is more challenging. However, such a comparative

conclusion heavily depends on the selected datasets, which is
far from a general conclusion. Specifically, the OU dataset is
very different from the CWRU dataset in many respects, and
it is unfair to compare the model performance without control
variables directly. Although the interference of the gearbox is
deliberately introduced in the OU dataset, the CWRU dataset
has a more complicated experimental environment. Worse
still, this study selects the most challenging sub-dataset for
diagnosis, making it normal for models to perform worse on
the CWRU dataset.

Although Macro-F1 scores of PeriodNets on the CWRU
dataset are not outstanding compared to the OU dataset, the
RMean improvement brought by PeriodConv is more apparent.
With the strong generalizability of PeriodConvy, it is reasonable
to believe that PeriodNet can achieve higher Macro-F'1 scores
when selecting more advanced pretrained CNN models as
backbone networks, which will meet the requirements of
intelligent diagnosis of bearing faults in practice adequately.

B. Studies on Noise Level

Table V summarizes the comparative results of all models
on the OU dataset at different white Gaussian noise levels.
Although mean values of Macro-F'1 scores decrease inevitably
as the noise level increases, PeriodNets exhibit more robust-
ness than their backbone networks. For instance, comparing
the results of M6 and PeriodM6 at noise level VI with those
on the original data, it can be found that the performance
degradation for both models on the OU dataset is 47.37% and
28.71%, respectively.

Table V shows that M1 and PeriodM5 perform slightly
better than other models. Specifically, when noises do not
exceed level III, the means of model M1 significantly over-
whelm other models, and its Stds are also in the first echelon.
Besides, the means of PeriodM5 achieved the highest score
five times in seven experiments. However, its Stds do not
outperform similar models, which only achieve the best value
three times. Even so, PeriodMS5 still has apparent advantages
over PeriodM1 and PeriodM3. According to Table III, with
the shallow depth and simple structure, DarkNet-19 performs
better than others with similar model size and parameter
volume when combined with PeriodConv, which provides
valuable advice for the domain-oriented neural network design
in bearing fault diagnosis.

At the same time, the Std of PeriodM6 at noise level V
is greater than that of M6, which means the insertion of
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TABLE V
COMPARATIVE RESULTS AT DIFFERENT NOISE LEVELS

Backbone Network

PeriodNet Version

E:;ZT Original I I I v \% VI Original I I I v \Y% VI
MO 0.9191 09112 0.8254 0.7775 0.7580 0.6060 0.5499 0.9950 0.9903 0.9747 0.9380 0.8810 0.7763 0.7055
Ml 0.9660 0.9598 0.9458 0.9152 0.8256 0.6568 0.6175 0.9963 0.9967 0.9833 0.9637 0.9020 0.7539 0.6710
M2 0.7836 0.7627 0.7611 0.6745 0.7676 0.6869 0.6037 0.9957 0.9937 0.9746 0.9498 0.8717 0.7567 0.7286
Mean M3 0.4687 04725 04663 0.4542 04160 0.3759 0.3837 0.9920 0.9900 0.9800 0.9415 0.8587 0.7003 0.6699
M4 0.7495 0.7063 0.6566 0.6738 0.7187 0.6273 0.6349 0.9903 0.9903 0.9709 0.9264 0.8801 0.7345 0.6858
M5 0.9154 0.9268 0.8897 0.8125 0.8523 0.6128 0.5366 0.9977 0.9980 0.9943 0.9810 0.9523 0.8185 0.6921
M6 0.8216 0.7435 0.6717 0.5310 04610 0.4270 0.4324 0.9987 0.9977 0.9896 0.9666 0.9262 0.7816 0.7120
MO 0.0457 0.0721 0.0901 0.0744 0.0805 0.0464 0.0705 0.0042 0.0048 0.0092 0.0280 0.0160 0.0153 0.0167
Ml 0.0242 0.0339 0.0315 0.0497 0.0842 0.0414 0.0483 0.0048 0.0031 0.0094 0.0136 0.0278 0.0384 0.0266
M2 0.1082 0.1246 0.0827 0.1078 0.0579 0.0503 0.0387 0.0039 0.0061 0.0061 0.0144 0.0313 0.0175 0.0196
Std M3 0.0828 0.0553 0.0775 0.0559 0.0729 0.0649 0.0361 0.0042 0.0042 0.0074 0.0235 0.0293 0.0343 0.0197
M4 0.0741 0.0973 0.0783 0.1012 0.0483 0.0570 0.0283 0.0058 0.0058 0.0116 0.0183 0.0106 0.0153 0.0149
M5 0.0515 0.0326 0.0893 0.0874 0.0641 0.1233 0.0556 0.0022 0.0036 0.0032 0.0065 0.0127 0.0207 0.0228
M6 0.0767 0.1058 0.0726 0.0691 0.0518 0.0269 0.0415 0.0023 0.0027 0.0060 0.0070 0.0198 0.0370 0.0233
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Fig. 5. Comparative results at different noise levels.

PeriodConv increases the instability of M6. However, the price
is worth it as the mean is almost doubled. Moreover, the
coefficient of variation of M6 is 0.0629, while the score of
PeriodM6 is only 0.0473. Thus, the equivalent instability of
PeriodM6 is only 3/4 of M6 after excluding the mean increase.

Moreover, since boxplots could display values of Macro-
F1 scores and their variance simultaneously, they are helpful
to compare the performance of all models more intuitively.
Fig. 5 composes upper and lower parts corresponding to
backbone networks and PeriodNets. Furthermore, each part
consists of seven regions arranged horizontally, corresponding
to the results at different noise levels. Thus, Fig. 5 has no
“horizontal axis” in the strict sense, and the seven regions
belonging to the same part share the same vertical axis and
legend. For comparison purposes, the graphs belonging to a
backbone network and its corresponding PeriodNet are drawn

in the same color, and the ordinate interval of the figure is
limited to [0.2, 1].

As shown in Fig. 5, the graph usually consists of four
parts: the box area, outliers, the horizontal line, and vertical
lines. The box area covers the upper (0.75) and lower (0.25)
quartiles, and the distance between its vertical edges is the
interquartile range (IQR). The outlier may not exist in the
graph, which values more or less than 1.5 times the IQR of
the vertical box edges. At the same time, the horizontal line
inside the box corresponds to the median, while the vertical
line connects the upper or lower quartile to the nonoutlier
maximum or minimum.

Comparing both parts of Fig. 5, it is evident that PeriodConv
has improved its performance significantly and made remark-
able achievements in reducing its instability. For example,
graphs of models M2 and M4 at all noise levels contain
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TABLE VI
COMPARATIVE RESULTS UNDER DIFFERENT NOISE TYPES

Backbone Network

PeriodNet Version

Noise Type pink white brown blue purple pink white brown blue purple
MO 0.9454  0.7775 09900 0.7046  0.7289 0.9492 09380 0.9543  0.9556  0.9409
M1 0.9727 09152 09814 0.8778 0.8947 0.9681 0.9637 09837 09817 0.9810
M2 09421 0.6745 0.8596 0.7730  0.8167 0.9626 09498 09769 0.9613  0.9680

Mean M3 0.4690 0.4542  0.4405 0.4308 0.4389 0.9643 09415 09793 0.9657 0.9789
M4 0.8370  0.6738  0.9006  0.6284  0.6207 0.9230 0.9264 09443 09157 09186
M5 0.8374 0.8125 09175 0.7804  0.9022 0.9814 09810 09821 0.9920 0.9917
M6 0.8523  0.5310 0.8540 0.6669  0.7039 0.9777 09666  0.9857 0.9790 0.9856
MO 0.0305 0.0744  0.0087 0.1152  0.1392 0.0124  0.0280 0.0115 0.0212  0.0190
M1 0.0317  0.0497 0.0094 0.0550 0.0829 0.0047 0.0136  0.0089 0.0106  0.0083
M2 0.0306 0.1078  0.1054  0.0951  0.0969 0.0111  0.0144 0.0096 0.0137  0.0097

Std M3 0.0706  0.0559  0.1539  0.0974  0.0540 0.0189  0.0235 0.0068 0.0097  0.0088
M4 0.0419 0.1012  0.0450 0.0989  0.0867 0.0101  0.0183 0.0156 0.0201 0.0112
M5 0.2169 0.0874 0.1374 0.1112  0.0758 0.0080  0.0065 0.0065 0.0042 0.0053
M6 0.0381 0.0691 0.0310 0.0424 0.0601 0.0068  0.0070  0.0054 0.0091  0.0065
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Fig. 6. Comparative results under different noise types.

long lines, indicating the wild results fluctuations. Worse still,
an undervalued outlier represented by the yellow circle appears
in the result of model M2 on the original data. On the contrary,
graphs of corresponding PeriodNets only have short lines
and even shrunk to points when the noise strength is lower
than level III. Moreover, the variances of backbone networks
fluctuate wildly with the change in noise level, and there is no
apparent correlation between them. However, Fig. 5 confirms
that variances of PeriodNets increase with noise levels, which
aligns with the common knowledge that stronger noises lead
to greater uncertainty.

Furthermore, the model performance decreases as the noise
level increases obviously, as shown in the lower part of Fig. 5.
Although this trend also exists theoretically in its upper part,

it is unobservable when the noise strength is below level V due
to the masking effect of sharp fluctuations. Moreover, graphs
of M3 contain many purple circles at different noise levels,
while the appearance of PeriodConv significantly alleviates
these poor performance and outlier issues. In other words,
PeriodConv makes the performance of PeriodM3 as good as
others.

C. Studies on Noise Type

Table VI summarizes the comparative results of all models
on the OU dataset under different noise types. As shown in
Table VI, even with the same noise level, noise types have
a decisive influence on the interference in the bearing fault
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diagnosis task. For instance, the model M6 performs 60%
better in pink noise than in white noise, demonstrating the
robustness of backbone networks to noise types.

However, although PeriodConv only analyses the white
noise during the design, it helps backbone networks deal well
with the interference of all noise types. Actually, PeriodNets
perform better than white noise in other noise types. One
possible reason for this phenomenon is the Gaussian property
shared by different types of noise, making the white noise
representative of all noises.

According to Table VI, models M1 and PeriodM5 have the
highest mean values, which is consistent with Table V. More-
over, the Std values of model PeriodM5 reveal its pronounced
advantage on the uncertainty. Even with fewer layers and a
more straightforward structure, M5 seems a better backbone
network to combine with PeriodConv, which could obtain
better performance under the interference of noises. Therefore,
blindly increasing neural network complexity may not improve
bearing fault diagnosis performance. In contrast, implementing
SP algorithms in the network design is an effective solution.

Fig. 6 follows the drawing pattern of Fig. 5, but it has five
horizontal regions corresponding to the results under different
noise types. The upper part of Fig. 6 illustrates the poor
performance of M3 under all noise types, and it is even inferior
to M4, which is a lightweight model with only 6% of its size
and parameter volume. However, with the help of PeriodConv,
PeriodM3 achieves excellent performance like other models.

As shown in Fig. 6, PeriodConv significantly improves the
mean and reduces the variance of backbone networks in most
cases, except for MO under the brown noise. However, this
is not enough to challenge the robustness of the proposed
method, because the results of MO under other noises show
that its result under brown noise is an outlier. Actually, Fig. 6
reveals some correlations in graphs of the same backbone
network under different noise types. For example, M4 has
a long line under white and blue noises, and M5 has a
large box area under pink and blue noises. Differently, MO
performs much better under brown noise than under others,
making its superiority isolated and unforeseen, which also
occurs on the CWRU dataset under the white noise, as shown
in Table IV. On the contrary, PeriodNets achieve excellent
performance under all noise types, highlighting the need for
domain-oriented design for bearing fault diagnosis.

V. CONCLUSION

A robust end-to-end method, called PeriodNet, is proposed
in this study for intelligent bearing fault diagnosis under
varying speed conditions in noisy environments. Experiments
on two-speed conditions, seven noise levels, and five noise
types verify the effectiveness of PeriodNets. By inserting Peri-
odConv before backbone networks, PeriodNets significantly
improve the performance of backbone networks in terms of
the mean and standard deviation of Macro-F'1 scores. At the
same time, the performance of PeriodNets is less affected
by noises than backbone networks under the interference
of various noise levels and noise types, which verifies the
robustness of PeriodNets. Moreover, case studies demonstrate

that PeriodConv can significantly reduce the uncertainty of the
backbone network selection, which indicates that PeriodNet
has excellent generalizability.

However, PeriodNet inevitably has some shortcomings. This
study mainly considers the interference of a single noise, while
several types of noises may contaminate the collected vibration
signals simultaneously in particular scenarios, such as noise
attacks. At the same time, PeriodConv resamples the signals
through the rectangular window and folds the feature maps to
the channel dimension, which may limit the potential of the
module design, especially the window length. For example, the
existing CNNs can only handle feature maps of the same size
among channels, leading to the constant window length for all
window functions. Therefore, the proposed method could be
further improved in the following two aspects.

1) Considering the coupling effect of multiple noises.
Because the numerous types of noises may mix, causing
different interfering or even modulating impacts on
the fault signal components, PeriodNet may need to
be updated according to the theoretical properties of
multiple noises.

2) Improving the potential of the module design. More
advanced window functions may be appropriately
applied in PeriodConv to further extract valuable infor-
mation from the signals. Recent advances in DL could
also be introduced to automatically adapt the window
lengths.
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