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a b s t r a c t 

Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The 
prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many 
practical applications, however, the degradation signals show multiple phases, where the conventional degrada- 
tion models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, 
we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit 
heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the 
offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach 
is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed 
for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL 
prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and 
real case study. 
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. Introduction 

The fast development of information and sensing technologies offer
reat opportunities for real-time health condition monitoring and pre-
iction in various modern systems. The condition monitoring signals,
lso called degradation signals, are commonly used for system reliability
ssessment due to their direct relation with underlying physical degra-
ation processes [1,2] . Typical degradation signals include vibrational
ignal of rotating machinery [3] , crack propagation signal of metallic
tructures [4] , the luminosity of light emitting diode (LED) lamps [5] ,
nd particles occurrence in oil of vehicles [6–8] . Degradation modeling
ffers an efficient approach to characterizing the evolution of degra-
ation signals for prognostics, e.g., predicting the remaining useful life
RUL) for an in-service unit based on the available degradation data
9,10] . 

In the past few decades, degradation modeling and RUL prediction
ave been intensively studied. The existing prognostic models can be
oughly classified into physics-based and data-driven models [11–13] .
he physics-based models requires a thorough understanding of the un-
erlying physical processes that lead to system failure, which is often
ifficult or infeasible due to large system complexity or unclear degra-
ation mechanisms [14] . In contrast, the data-driven models, which are
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eveloped purely on degradation data, are becoming more and more
ppealing due to unprecedented data availability. In the existing liter-
ture, two types of most popular data-driven models are general path
odels and stochastic process models [15,16] . The basic idea of the

eneral path models is to use parametric regression to capture how the
egradation signal evolves over time. Due to its simplicity and well-
stablished theories, many types of general path models have been built,
uch as linear or nonlinear regression models with constant or random
oefficients [3,17,18] . In these models, however, the inherent degrada-
ion path is deterministic once the regression parameters are known.
t is often oversimplified and is not capable of capturing the tempo-
al uncertainties that are inherent in the degradation process [19,20] .
herefore, the general path models are applicable only when the tempo-
al uncertainties caused by unobserved internal or external factors are
ufficiently small. The stochastic process models, on the other hand, are
articularly effective in dealing with such unexplained randomness. The
ost popular stochastic process models include Gamma process [21] ,

nverse Gaussian process [22] , and Wiener process [23] . Due to nice
athematical properties and physical interpretations, Wiener processes
ave attracted widespread attention. Comprehensive reviews of Wiener
rocess as degradation models can be found in Si et al. [18] and Ye et al.
19] . 
pril 2018 
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Most Wiener process based degradation models assume a linear mean
egradation path or can be linearized by time-scale transformations
24] . From a practical point of view, however, not all degradation sig-
als can be well modeled by a single mean degradation path function.
ome degradation processes show two or even more distinct phases of
ifferent drift rates or diffusion during the whole life period. Son et al.
25] showed that the internal resistance measurements of automotive
ead-acid batteries first degrade slowly and then evolve rapidly after
he system has degraded down to a certain level before failure occurs.
nother representative example is the bearing vibrational signal, where

wo distinct phases can be easily observed [26] . This phenomenon has
lso been found in many other products, such as Li-ion batteries [27] ,
lasma display panels [28] , high-performance capacitors [29] , and the
iquid coupling devices [30] . In all these cases, single-phase models are
ften not adequate to capture the degradation path evolution. 

Motivated by this practical issue, several change-point based gen-
ral path models have been proposed in recent years. Gebraeel et al.
3] chose to truncate observations in the early stage and then fitted an
xponential degradation model for the remaining data. Chen and Tsui
26] developed a two-phase regression model with a random change
oint for the bearing degradation signals. Bae et al. [28] proposed a
ierarchical Bayesian change-point regression model with one change
oint for the plasma display panels degradation signals. Different from
26] , Bae’s model assumes that the two phases are connected, i.e., the
egradation path is continuous at the change point. Later, Wen et al.
31] proposed a general multiple-phase regression modeling framework
or RUL estimation. In their research, a particle filtering algorithm with
tratified sampling and partial Gibbs resample-move strategy is devel-
ped for online model updating and residual life prediction. As men-
ioned earlier, the general path models are incapable of capturing the
emporal uncertainty of the degradation process. Therefore, incorporat-
ng change points to stochastic process for prognostic improvement is
esirable. 

Wiener process subject to change points has also been studied by
everal researchers. Ng [32] proposed a Wiener process model with one
hange point and developed an expectation–maximization (EM) algo-
ithm for model estimation. Kong et al. [33] developed a two-phase
iener processes model considering an abrupt jump at the change point.
n EM algorithm was also developed for model parameters. However,
oth Ng and Kong’s methods are focused on lifetime analysis for the
hole population, rather than predicting the RUL of a specific unit. Feng

29] proposed a two and three-phase Wiener process degradation model
o predict the storage lifetime of high-voltage-pulse capacitors for real
ime reliability analysis. In their work, the locations of change points
re assumed to be deterministic for all units. However, this is often not
rue in many applications. Indeed, the change-point locations often vary
rom unit to unit, showing significant heterogeneity. Besides, due to ex-
ernal or internal differences among unites, the degradation rate and
iffusion may also be heterogeneous, which is not considered in [29] .
ecently, Yan et al. [34] proposed a two-phase Wiener process degra-
ation model considering the unit heterogeneity for real-time reliability
valuation. However, in their work, how to sequentially estimate the lo-
ation of the change-point, which is critical for online RUL prediction,
s not given. 

To overcome these limitations, this paper aims to develop a mul-
iple change-point Wiener process for degradation modeling and RUL
rediction. Compared with the existing work, the major contribution of
his paper lies in the following aspects: (1) a fully Bayesian approach
s formulated to characterize the between-unit heterogeneity in terms
f all model parameters, including the change-point locations, drift rate
nd diffusion; (2) a simple yet effective two-stage empirical approach is
roposed for offline model estimation; (3) an efficient recursive model
pdating algorithm is developed to get the closed-form of the posterior
istributions for all model parameters; and (4) an effective Monte Carlo
pproach is proposed for RUL prediction. 
t  

114 
The remainder of this paper is organized as follows. In Section 2 , a
iener process degradation model with multiple change points is pre-

ented. The prior parameters specification and estimation are given in
ection 3 . Section 4 presents the technical details on how to sequentially
pdate the posterior distributions of the current phase, latest change
oint, and Wiener process parameters of the current phase, and how to
redict the RUL. Section 5 demonstrates the effectiveness and accuracy
f the proposed method through comprehensive simulation and real case
tudy. The conclusion and discussion are given in Section 6 . 

. Wiener process degradation modeling with multiple change 

oints 

The general Wiener process can be represented as [35] 

 ( 𝑡 ) = 𝛽Λ( 𝑡 ) + 𝜎𝐵 ( Λ( 𝑡 ) ) (1)

here 𝛽 is the drift parameter reflecting the rate of degradation,
> 0 is called the volatility parameter or diffusion coefficient, B ( · )

s the standard Brownian motion that captures the stochastic dy-
amics of the degradation process, and Λ( · ) is a monotone in-
reasing function representing a general time scale. When Λ( 𝑡 ) = 𝑡 ,
his formula is simplified to the conventional linear Wiener pro-
ess. Let Δ𝑋( 𝑡 ) = 𝑋( 𝑡 + Δ𝑡 ) − 𝑋( 𝑡 ) denote the degradation increments
rom time t to 𝑡 + Δ𝑡 . According to the property of Wiener process,
he increments are independent and normally distributed as Δ𝑋( 𝑡 ) ∼
( 𝛽[ Λ( 𝑡 + Δ𝑡 ) − Λ( 𝑡 ) ] , σ2 [ Λ( 𝑡 + Δ𝑡 ) − Λ( 𝑡 ) ] ) . 
In this paper, a multiple change-point Wiener process degradation

odel is proposed to characterize the degradation path of condition
onitoring signals with multiple phases. Specifically, the change points

egment the signal into several consecutive phases, where each phase
s modeled as a Wiener process. For simplicity, we use simple lin-
ar model in each phase for the mean degradation path, i.e., Λ( 𝑡 ) = 𝑡 .
uppose the system is inspected at times 𝑡 0 , 𝑡 1 , … , 𝑡 𝑛 with degrada-
ion observations 𝑋 0 = 𝑋( 𝑡 0 ) , 𝑋 1 = 𝑋( 𝑡 1 ) , … , 𝑋 𝑛 = 𝑋( 𝑡 𝑛 ) , and assume
here are K change points, with index locations c 1 , c 2 , ⋅⋅⋅, c K . For no-
ational convenience, we define 𝑐 0 = 0 and 𝑐 𝐾+1 = 𝑛 . Then 𝑐 0 = 0 < 𝑐 1 <
 2 < ⋯ < 𝑐 𝐾 < 𝑐 𝐾+1 = 𝑛 . Therefore, the observations are partitioned into
 + 1 consecutive phases. Mathematically, the multiple change-point
iener process can be expressed piecewisely as 

 

(
𝑡 𝑗 
)
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝛽( 1 ) 

(
𝑡 𝑗 − 𝑡 0 

)
+ 𝑋 

(
𝑡 0 
)
+ 𝜎( 1 )  

(
𝑡 𝑗 − 𝑡 0 

)
, if 𝑡 0 ≤ 𝑡 𝑗 ≤ 𝑡 𝑐 1 

𝛽( 2 ) 
(
𝑡 𝑗 − 𝑡 𝑐 1 

)
+ 𝑋 

(
𝑡 𝑐 1 

)
+ 𝜎( 2 )  

(
𝑡 𝑗 − 𝑡 𝑐 1 

)
, if 𝑡 𝑐 1 < 𝑡 𝑗 ≤ 𝑡 𝑐 2 

…
𝛽( 𝐾+1 ) (𝑡 𝑗 − 𝑡 𝑐 𝐾 

)
+ 𝑋 

(
𝑡 𝑐 𝐾 

)
+ 𝜎( 𝐾+1 )  

(
𝑡 𝑗 − 𝑡 𝑐 𝐾 

)
, if 𝑡 𝑐 𝐾 < 𝑡 𝑗 ≤ 𝑡 𝑛 

(2)

here 𝛽( k ) and 𝜎( 𝑘 ) , 𝑘 = 1 , … , 𝐾 + 1 are the drift parameter and diffusion
arameter respectively for the k th phase. It is worth noting that in the
bove model, the mean degradation path is continuous at all change
oints, which is conventional in the existing literature. It can be easily
xtended to a general case by adding an extra intercept term for each
hase if necessary. Besides, for the sake of simplicity, the starting time
f each Wiener process or each phase is assumed to be exactly on the
iscrete inspection epochs. 

To account for the inherent unit-to-unit heterogeneity, the model
arameters, including change-point locations, drift rate and diffusion
arameter of each phase, are assumed to be random. For the sake of
implicity, the number of change points K is assumed to be determin-
stic for all units, which is often sufficient for almost all multi-phase
egradation signals in the existing literature. If necessary, however, it
an be easily extended to a more general case with a random K , as is the
ase in Wen et al. [31] . 

Bayesian approach is a natural choice to integrate the current avail-
ble data with historical data for RUL prediction. Under Bayesian frame-
ork, the prognostics involves two stages, namely, the offline stage for
rior specification and estimation using historical data, and the online
tage for sequential model updating and RUL prediction when new ob-
ervations are available. There are several remaining challenging issues
o address under the multiple change-point framework. First of all, the
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Specify the number of 
CPs for historical 

dataset

Model estimation for 
each unit through 

MLE

Hyper-parameter 
estimation

Collect new observations from an 
in-service unit

Select optimal number 
of CPs through cross 

validation

Model updating: :

Predict the RUL

(a) Offline Model Fitting (b) Online Model Updating 
and RUL Prediction

Fig. 1. Illustration of the proposed prognostic framework. 
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umber of change points K needs to be selected appropriately, which
lays a decisive role on the modeling and prediction accuracy. Sec-
ndly, the prior distributions for the random model parameters need
o be specified, and the corresponding hyperparameters need to be es-
imated through the historical data. Thirdly, at the online monitoring
tage, the posterior distributions of the phase index, the location of the
atest change point occurred, and the Wiener process parameters (drift
ate and diffusion parameter) have to be sequentially updated once a
ew observation is available, which is often very challenging. Denote
he parameters that need to be updated at the current time index m as
 state vector 𝜽𝑚 = ( 𝛽𝑚 , 𝜎2 𝑚 , 𝜏𝑚 , 𝑠 𝑚 ) , where 𝛽m 

and 𝜎2 𝑚 are the drift and
iffusion parameters of the current phase, 𝜏m 

is the latest change point
hat has occurred ( 𝜏𝑚 ≤ 𝑚 − 1 ), and s m 

is the index of the current phase,
.g., 𝑠 𝑚 = 1 , 2 , … , 𝐾 + 1 . Mathematically, the online model updating
s to compute the posterior p ( 𝜽m 

| X 0: m 

), which is highly nonlinear and
hus generally intractable. Lastly, based on the updated posterior distri-
utions, we need to predict the residual life. Due to the potential occur-
ence of future change points, the RUL prediction is very complex. The
verall prognostic framework is illustrated in Fig. 1 . In the following
ections, the technical details regarding the aforementioned challenges
ill be provided. 

. Offline prior specification and model estimation 

Denote the multiple change-point model as  = ({ 𝑑 ( 𝑠 ) } 𝐾 
𝑠 =1 ,

 𝛽( 𝑠 ) } 𝐾+1 
𝑠 =1 , { 𝜎

2( 𝑠 ) } 𝐾+1 
𝑠 =1 ) where K is the number of change points, d ( s ) 

s the duration of the s th phase, i.e., 𝑑 ( 𝑠 ) = 𝑡 𝑐 𝑠 − 𝑡 𝑐 𝑠 −1 . In the Bayesian
cheme, appropriate priors for  need to be specified. Prior informa-
ion, which describes the population-based degradation characteristics,
lays a critical role in the posterior inference of a new unit, especially
hen there are not sufficient observations at the early stage. Instead
f directly specifying priors for the change-point locations, we focus
n the duration of each phase 𝑑 ( 𝑠 ) , 𝑠 = 1 , … , 𝐾. Note that although
here are 𝐾 + 1 phases, only the first K phase durations are needed
o identify the change-point locations. For simplicity, we assume that
he Wiener process parameters are independent of phase durations,
nd all phases are independent, except that all phases are piecewise
onnected. Therefore, the joint prior for phase durations and Wiener
rocess parameters can be formulated as 

(  ) = 

𝐾 ∏
𝑠 =1 

𝜋
(
𝑑 ( 𝑠 ) 

)𝐾+1 ∏
𝑠 =1 

𝜋
(
𝛽( 𝑠 ) , 𝜎2 ( 𝑠 ) 

)
, (3)
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here 𝜋(·) denotes the prior distribution. Specifically, we assume that
 

( s ) follows a normal distribution, i.e., 𝜋( 𝑑 ( 𝑠 ) ) ∼ 𝑁( 𝜇( 𝑠 ) 
𝑑 
, 𝜎

2( 𝑠 ) 
𝑑 

) . For 𝛽( s ) ,
2( s ) , a commonly used normal and inverse Gamma (IG) conjugate priors
re specified [36] , (
𝛽( 𝑠 ) , 𝜎2 ( 𝑠 ) 

)
= 𝜋

(
𝜎2 ( 𝑠 ) 

)
𝜋
(
𝛽( 𝑠 ) |𝜎2 ( 𝑠 ) ) = 𝐼 𝐺 

(
𝜈
( 𝑠 ) 
0 , 𝛾

( 𝑠 ) 
0 

)
𝑁 

(
𝜇
( 𝑠 ) 
0 , 𝜎

2 ( 𝑠 ) 𝜅2 ( 𝑠 ) 0 

)
(4)

Luckily, with the above conjugate priors, the joint posterior dis-
ribution of 𝜽m 

can be exactly calculated sequentially through a re-
ursive modeling updating method, which will be shown later. Let 𝝍 

e the vector of all unknown hyperparameters of all phases, i.e., 𝝍 =
 𝑣 
( 𝑠 ) 
0 , 𝛾

( 𝑠 ) 
0 , 𝜇

( 𝑠 ) 
0 , 𝜅

2 
0 
( 𝑠 ) 
, 𝜇

( 𝑠 ) 
𝑑 
, 𝜎

2( 𝑠 ) 
𝑑 

} . In the offline model fitting, all the hyper-
arameters have to be estimated. Suppose there are I units in the histor-
cal dataset. Naturally, the hyperparameters can be obtained from his-
orical dataset by maximizing the following marginal likelihood [26] 

̂  = arg max 
𝝍 

𝐼 ∏
𝑖 =1 

∫ 𝑝 (𝑿 𝑖 | 𝑖 

)
𝜋(  𝑖 |𝝍 ) 𝑑  𝑖 (5)

here 𝑿 𝑖 = { 𝑋 𝑖, 1 , … , 𝑋 𝑖, 𝑛 𝑖 
} is the degradation signal for unit i , and n i is

he total number of observations. Unfortunately, the formula is too com-
lex and very difficult to maximize directly. In this paper, we adopt a
ommonly used empirical two-stage estimation method [25,26] , where
he model parameter ̂ 𝑖 for each unit i is estimated at the first stage,
nd then the hyperparameters are estimated through the maximum like-
ihood estimation (MLE) by treating { ̂ 𝑖 , 𝑖 = 1 , … , 𝐼 } as observations at
he second stage. 

To take advantage of the independent increment property of X ( t ), de-
ne the increments of observations for unit i as 𝛿𝑖, 1 = 𝑋 𝑖, 1 − 𝑋 𝑖, 0 , 𝛿𝑖, 2 =
 𝑖, 2 − 𝑋 𝑖, 1 ,..., 𝛿𝑖, 𝑛 𝑖 = 𝑋 𝑖, 𝑛 𝑖 

− 𝑋 𝑖, 𝑛 𝑖 −1 , and time increments as 𝜆𝑖, 1 = 𝑡 𝑖, 1 −
 𝑖, 0 , 𝜆𝑖, 2 = 𝑡 𝑖, 2 − 𝑡 𝑖, 1 , … , 𝜆𝑖, 𝑛 𝑖 = 𝑡 𝑖, 𝑛 𝑖 − 𝑡 𝑖, 𝑛 𝑖 −1 . Then conditioning on  𝑖 , the
ncrements 𝜹𝑖 = ( 𝛿𝑖, 1 , 𝛿𝑖, 2 , … , 𝛿𝑖, 𝑛 𝑖 ) 

′ follow independent normal distribu-
ions given by 

 

(
𝜹𝒊 | 𝑖 

)
= 

𝐾+1 ∏
𝑠 =1 

𝑛 
( 𝑠 ) 
𝑖 ∏

𝑗=1 

(
2 𝜋𝜎2 ( 𝑠 ) 

𝑖 𝜆𝑖, 𝑐 𝑠 −1 + 𝑗 

)− 1 2 exp 
⎛ ⎜ ⎜ ⎜ ⎝ − 

(
𝛿𝑖, 𝑐 𝑠 −1 + 𝑗 − 𝛽

( 𝑠 ) 
𝑖 𝜆𝑖, 𝑐 𝑠 −1 + 𝑗 

)2 

2 𝜎2 ( 𝑠 ) 
𝑖 𝜆𝑖, 𝑐 𝑠 −1 + 𝑗 

⎞ ⎟ ⎟ ⎟ ⎠ 
(6) 

here 𝑛 ( 𝑠 ) 
𝑖 

is the number of observations in the s th phase for unit i . The
og-likelihood function can thus be expressed by 

 

( 𝑖 |𝜹𝑖 ) = 

∑𝐾+1 
𝑠 =1 

⎡ ⎢ ⎢ ⎢ ⎣ − 

𝑛 
( 𝑠 ) 
𝑖 

2 
log 

(
2 𝜋𝜎2 ( 𝑠 ) 

𝑖 

)
− 

1 
2 
∑𝑛 

( 𝑠 ) 
𝑖 

𝑗=1 
log 𝜆𝑖, 𝑐 𝑠 −1 + 𝑗 

− 

1 
2 𝜎2 ( 𝑠 ) 

𝑖 

∑𝑛 
( 𝑠 ) 
𝑖 

𝑗=1 

(
𝛿𝑖, 𝑐 𝑠 −1 + 𝑗 − 𝛽

( 𝑠 ) 
𝑖 
𝜆𝑖, 𝑐 𝑠 −1 + 𝑗 

)2 
𝜆𝑖, 𝑐 𝑠 −1 + 𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ (7) 

Given the change-point locations, the optimal drift and diffusion pa-
ameters that maximize Eq. (7) can be obtained as 

̂
( 𝒔 ) 
𝒊 

= 

∑𝒏 
( 𝒔 ) 
𝒊 

𝒋 =1 𝜹𝒊 , 𝒄 𝒔 −1 + 𝒋 ∑𝒏 
( 𝒔 ) 
𝒊 

𝒋 =1 𝝀𝒊 , 𝒄 𝒔 −1 + 𝒋 

, 𝝈2 
( 𝒔 ) 
𝒊 

= 

1 
𝒏 
( 𝒔 ) 
𝒊 

∑𝒏 
( 𝒔 ) 
𝒊 

𝒋 =1 

(
𝜹𝒊 , 𝒄 𝒔 −1 + 𝒋 − 𝜷

( 𝒔 ) 
𝒊 
𝝀𝒊 , 𝒄 𝒔 −1 + 𝒋 

)2 
𝝀𝒊 , 𝒄 𝒔 −1 + 𝒋 

(8) 

Plug in Eq. (8) into (7) we can get a likelihood function
ith { 𝑐 𝑖,𝑠 , 𝑠 = 1 , … , 𝐾 } being the only input variables. Denote 𝒄 𝑖 =
 𝑐 𝑖, 1 , 𝑐 𝑖, 2 … , 𝑐 𝑖,𝐾 } , 𝜷𝑖 = { 𝛽(1) 

𝑖 
, … , 𝛽

( 𝐾+1 ) 
𝑖 

} and 𝝈2 
𝑖 
= { 𝜎2(1) 

𝑖 
, … , 𝜎

2( 𝐾+1 ) 
𝑖 

} . The
ptimal change-point locations can be easily obtained by enumerating
ll possible values 

̂ 𝑖 = arg max 
𝒄 𝒊 

𝑙 
(
𝒄 𝒊 , ̂𝜷 𝑖 

(
𝒄 𝒊 
)
, ̂𝝈2 𝑖 

(
𝒄 𝒊 
)|𝜹𝑖 ) (9) 

At the second stage, the hyperparameters are estimated through MLE
y treating the estimated { ̂ 𝑖 , 𝑖 = 1 , … , 𝐼 } at the first stage as obser-
ations. The duration hyperparameters ( 𝜇( 𝑠 ) 

𝑑 
, 𝜎

2( 𝑠 ) 
𝑑 

, 𝑠 = 1 , … , 𝐾 ) and drift
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o  
ate hyperparameters ( 𝜇( 𝑠 ) 
0 , 𝜅

2 
0 
( 𝑠 ) 
, 𝑠 = 1 , … , 𝐾 + 1 ) can be obtained ana-

ytically as 

̂
( 𝑠 ) 
𝑑 

= 

∑𝐼 
𝑖 =1 𝑑 

( 𝑠 ) 
𝑖 

𝐼 
, 𝜎2 

𝑑 

( 𝑠 ) 
= 

∑𝐼 
𝑖 =1 

(
𝑑 
( 𝑠 ) 
𝑖 

− �̂�
( 𝑠 ) 
𝑑 

)2 
𝐼 

(10)

nd 

̂
( 𝑠 ) 
0 = 

∑𝐼 
𝑖 =1 

𝛽
( 𝑠 ) 
𝑖 

σ̂2 
( s ) 
i ∑𝐼 

𝑖 =1 
1 

σ̂2 
( s ) 
i 

, 𝜅2 0 

( 𝑠 ) 
= 

1 
𝐼 

𝐼 ∑
𝑖 =1 

(
𝛽
( 𝑠 ) 
𝑖 

− �̂�
( 𝑠 ) 
0 

)2 
σ̂2 

( s ) 
i 

(11)

For the hyperparameters v 0 , 𝛾0 in the inverse Gamma distribution,
he closed form is not tractable and instead can be estimated through
onlinear optimization techniques. 

In the above model specification and estimation, the critical param-
ter K needs to be selected first. AIC [37] or BIC [38] is typically used
or model selection in regression. However, the conventional AIC or BIC
s not very effective for multiple change-point models [39] . Besides, al-
hough increasing the number of change points may improve the model
tting accuracy, it may not necessarily result in better prognostic accu-
acy. In fact, increasing the number of change points will introduce extra
ncertainties in RUL prediction (uncertainty of future change-point lo-
ations). Even if there is no over-fitting issue, it may still significantly re-
uce the prediction accuracy. Therefore there is tradeoff between model
tting accuracy and RUL predictability. To address this issue, we pro-
ose to use the cross validation technique for change-point model se-
ection. Specifically, we apply leave-one-out cross-validation approach.
or each value K , the offline model estimation and online RUL predic-
ion are performed, and the average prediction error is calculated. Then
he optimal K is the one with minimal average prediction error. Note
hat for linear regression models without any change points, the cross
alidation approach is asymptotically equivalent to BIC based model se-
ection [22] . However, for change-point models or other general models,
ross-validation would be better since it is directly based on the model
redictability. 

. Online model updating and RUL prediction 

Once the prior information is calculated based on historical data at
he offline stage, as described in the previous section, it can be utilized
or the RUL prediction of a new in-service unit at the online stage. To do
his accurately requires a sequential updating the posterior distributions
f certain key parameters, such as the location of the latest change point,
he number of change-point occurred, and the drift and diffusion param-
ter of the current phase, which is the main challenge. In this section, we
ill first show the details of how to update the model recursively, and

hen present the RUL prediction method based on the updated model. 

.1. Exact Bayesian model updating 

Assume that we have observed the degradation signal up to
he current time step m for an in-service unit, denoted as 𝑋 0∶ 𝑚 =
 𝑋 0 , 𝑋 1 , … , 𝑋 𝑚 ) . The objective of Bayesian model updating is to in-
orporate the new observations to the estimated model by comput-
ng the posterior distribution of model parameters. The target distri-
ution that needs to be updated is p ( 𝜽m 

| X 0: m 

) where state vector 𝜽𝑚 =
 𝛽𝑚 , 𝜎

2 
𝑚 , 𝜏𝑚 , 𝑠 𝑚 ) . In general, the analytic expression for this joint posterior

istribution is intractable. A natural way is to use sequential Monte Carlo
ethod to get an approximation. Wen et al. [31] developed a stratified
article filtering algorithm for online model updating of a general path
odel. This method can effectively handle intractable posteriors. How-

ver, to guarantee the approximation accuracy, this method requires
 sufficient number of samples and has a relatively high computational
ost. Fortunately, due to the assignment of conjugate priors for 𝛽 and 𝜎2 ,
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he posterior could be exactly calculated through a novel recursive up-
ating approach. Given the observed data, the joint posterior distribu-
ion of all parameters can be derived as 

 

(
𝜽𝑚 |𝑋 0∶ 𝑚 

)
= 𝑝 

(
𝛽𝑚 , 𝜎

2 
𝑚 , 𝜏𝑚 , 𝑠 𝑚 |𝑋 0∶ 𝑚 

)
= 𝑃 ( 𝜏𝑚 , 𝑠 𝑚 |𝑋 0∶ 𝑚 ) 𝑝 ( 𝛽𝑚 , 𝜎2 𝑚 |𝜏𝑚 , 𝑠 𝑚 , 𝑋 0∶ 𝑚 ) (12) 

As we can see, the joint distribution can be factorized as the product
f a posterior of the discrete components ( 𝜏m 

and s m 

), and the continu-

us components ( 𝛽m 

and 𝜎2 𝑚 ). The discrete components are essential for
hase tracking and future change-point prediction, while the continu-
us components are required to predict the degradation level at the end
f the current phase. The details of how to calculate these two parts are
iven in the following paragraphs. 

The conditional posterior distribution of the continuous components
 ( 𝛽𝑚 , 𝜎2 𝑚 |𝜏𝑚 , 𝑠 𝑚 , 𝑋 0∶ 𝑚 ) can be calculated based on Theorem 1 as follows. 

heorem 1. Given the conjugate priors shown in Eq. (4) for 𝛽 and 𝜎2 ,
he conditional posterior pdf 𝑝 ( 𝛽𝑚 , 𝜎2 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 ) , can be calcu-
ated as 

 

(
𝛽𝑚 , 𝜎

2 
𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 

)
= 𝑝 ( 𝛽𝑚 |𝜎2 𝑚 , 𝜏𝑚 = 𝑗, 𝑠 𝑚 

= 𝑠, 𝑋 0∶ 𝑚 ) 𝑝 ( 𝜎2 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 ) (13) 

here 

(
𝜎2 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 

)
∼ 𝐼 𝐺 

⎛ ⎜ ⎜ ⎝ 𝜈( 𝑠 ) 0 + 

𝑚 − 𝑗 

2 
, 𝛾

( 𝑠 ) 
0 + 

𝐻 

( 𝑠 ) 
𝑗+1 ,𝑚 

2 

⎞ ⎟ ⎟ ⎠ 
𝛽𝑚 |𝜎2 𝑚 , 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 

)
∼ 𝑁 

(
𝜇
( 𝑠 ) 
𝑗+1 ,𝑚 , 𝜎

2 
𝑚 𝜅

2 ( 𝑠 ) 
𝑗+1 ,𝑚 

)
(14) 

nd 

 

( 𝑠 ) 
𝑗+1 ,𝑚 = 

⎡ ⎢ ⎢ ⎣ 
𝜇
2 ( 𝑠 ) 
0 

𝜅
2 ( 𝑠 ) 
0 

+ 

∑𝑚 

𝑖 = 𝑗+1 

𝛿2 
𝑖 

𝜆𝑖 
− 

( 

𝜇
( 𝑠 ) 
0 

𝜅
2 ( 𝑠 ) 
0 

+ 

∑𝑚 

𝑖 = 𝑗+1 
𝛿𝑖 

) 2 

×

( ∑𝑚 

𝑖 = 𝑗+1 
𝜆𝑖 + 

1 
𝜅
2 ( 𝑠 ) 
0 

) −1 ⎤ ⎥ ⎥ ⎦ 
𝜅
2 ( 𝑠 ) 
𝑗+1 ,𝑚 = 

( ∑𝑚 

𝑖 = 𝑗+1 
𝜆𝑖 + 

1 
𝜅
2 ( 𝑠 ) 
0 

) −1 

𝜇
( 𝑠 ) 
𝑗+1 ,𝑚 = 

( 

𝜇
( 𝑠 ) 
0 

𝜅
2 ( 𝑠 ) 
0 

+ 

∑𝑚 

𝑖 = 𝑗+1 
𝛿𝑖 

) 

𝜅
2 ( 𝑠 ) 
𝑗+1 ,𝑚 (15) 

The proof is given in Appendix A . For the discrete components, based
n the Bayes’ rule, the posterior can be derived as 

 

(
𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 

)
∝ 𝑃 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 −1 ) 𝑝 ( 𝑋 𝑚 |𝜏𝑚 = 𝑗, 

𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 −1 ) (16) 

In the above equation, 𝑃 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 −1 ) is the predictive
robability mass function (PMF), which can be recursively calculated
y conditioning on the states of the previous time step: 

 

(
𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 −1 

)
= 

∑
𝑗 ′ , 𝑠 ′

𝑃 ( 𝜏𝑚 −1 = 𝑗 ′, 

𝑠 𝑚 −1 = 𝑠 ′|𝑋 0∶ 𝑚 −1 ) 𝑃 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝜏𝑚 −1 = 𝑗 ′, 

𝑠 𝑚 −1 = 𝑠 ′, 𝑋 0∶ 𝑚 −1 ) (17) 

In Eq. (17) , 𝑃 ( 𝜏𝑚 −1 = 𝑗 ′, 𝑠 𝑚 −1 = 𝑠 ′|𝑋 0∶ 𝑚 −1 ) is the posterior distribu-
ion of the discrete component obtained at the previous time step.
 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝜏𝑚 −1 = 𝑗 ′, 𝑠 𝑚 −1 = 𝑠 ′, 𝑋 0∶ 𝑚 −1 ) is the prior state transition
robability, which can be derived based on the Markov properties of the
ccurrence of the change points, i.e., the probability of the occurrence
f a new change point or a new phase at the current time only depends
n the duration and phase index at the previous time step. Based on the
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rior knowledge of the phase duration and total number of phases, the
tate transition probability can be obtained as 

 

(
𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝜏𝑚 −1 = 𝑗 ′, 𝑠 𝑚 −1 = 𝑠 ′, 𝑋 0∶ 𝑚 −1 

)

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

1− 𝐺 ( 𝑠 ′) 
(
𝑡 𝑚 − 𝑡 𝑗 ′

)
1− 𝐺 ( 𝑠 ′) 

(
𝑡 𝑚 −1 − 𝑡 𝑗 ′

) , if 𝑗 = 𝑗 ′and 𝑠 = 𝑠 ′ < 𝐾 + 1 

1 , if 𝑗 = 𝑗 ′ and 𝑠 = 𝑠 ′ = 𝐾 + 1 
𝐺 ( 𝑠 ′) 

(
𝑡 𝑚 − 𝑡 𝑗 ′

)
− 𝐺 ( 𝑠 ′) 

(
𝑡 𝑚 −1 − 𝑡 𝑗 ′

)
1− 𝐺 ( 𝑠 ′) 

(
𝑡 𝑚 −1 − 𝑡 𝑗 ′

) , if 𝑗 = 𝑚 − 1 and 𝑠 = 𝑠 ′ + 1 ≤ 𝐾 + 1 

0 , otherwise 

(18) 

here 𝐺 

( 𝑠 ′) ( ⋅) is the cumulative distribution function of the s ′ th phase du-
ation. In Eq. (18) , there are three nonzero probabilities corresponding
o three scenarios. The first one refers to the probability of no occurrence
f a new change-point or new phase (i.e., 𝜏𝑚 = 𝜏𝑚 −1 , 𝑠 𝑚 = 𝑠 𝑚 −1 ) given
hat the degradation at the time step 𝑚 − 1 is not at the final phase (i.e.,
 

′ < 𝐾 + 1 ), and the duration of the s ′ -th phase is larger than 𝑡 𝑚 −1 − 𝑡 𝑗 ′

i.e., 𝜏𝑚 −1 = 𝑗 ′). Therefore, it is equivalent to 

 

(
𝑑 ( 𝑠 ′) ≥ 𝑡 𝑚 − 𝑡 𝑗 ′ |𝑑 ( 𝑠 ′) ≥ 𝑡 𝑚 −1 − 𝑡 𝑗 ′

)
= 

1 − 𝐺 

( 𝑠 ′) (𝑡 𝑚 − 𝑡 𝑗 ′
)

1 − 𝐺 

( 𝑠 ′) 
(
𝑡 𝑚 −1 − 𝑡 𝑗 ′

)
Similarly, we can easily get the other two probabilities. 
The predictive density 𝑝 ( 𝑋 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 −1 ) in Eq. (16) can be

alculated based on Theorem 2 as follows. 

heorem 2. Suppose the conjugate priors shown in Eq. (4) are assumed
or 𝛽 and 𝜎2 .if 𝑗 < 𝑚 − 1 , ( 𝑋 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 −1 ) follows a univariate
 distribution given as 

𝑋 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 −1 
)

∼ 𝑡 1 

⎛ ⎜ ⎜ ⎝ 2 𝑣 ( 𝑠 ) 0 + 𝑚 − 𝑗 − 1 , 𝜇( 𝑠 ) 
𝑚 |𝑗+1∶ 𝑚 −1 , 2 𝛾

( 𝑠 ) 
𝑗+1 , 𝑚 −1 𝜂

( 𝑠 ) 
𝑚 |𝑗+1∶ 𝑚 −1 

2 𝑣 ( 𝑠 ) 0 + 𝑚 − 𝑗 − 1 

⎞ ⎟ ⎟ ⎠ (19) 

here 

( 𝑠 ) 
𝑚 |𝑗+1∶ 𝑚 −1 = 𝜇

( 𝑠 ) 
𝑗+1 ,𝑚 −1 𝜆𝑚 + 𝑋 𝑚 −1 , 

𝛾
( 𝑠 ) 
𝑗+1 , 𝑚 −1 = 𝛾

( 𝑠 ) 
0 + 

𝐻 

( 𝑠 ) 
𝑗+1 ,𝑚 −1 

2 
𝜂
( 𝑠 ) 
𝑚 |𝑗+1∶ 𝑚 −1 = 𝜆𝑚 + 𝜅

2 ( 𝑠 ) 
𝑗+1 ,𝑚 −1 𝜆

2 
𝑚 (20) 

f 𝑗 = 𝑚 − 1 , ( 𝑋 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 −1 ) follows a univariate t distribu-
ion given as 

𝑋 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 −1 
)
∼ 𝑡 1 

( 

2 𝑣 ( 𝑠 ) 0 , 𝜇
( 𝑠 ) 
𝑚 , 

𝛾
( 𝑠 ) 
0 𝜂

( 𝑠 ) 
𝑚 

𝑣 
( 𝑠 ) 
0 

) 

(21) 

here 

( 𝑠 ) 
𝑚 = 𝜇

( 𝑠 ) 
0 𝜆𝑚 + 𝑋 𝑚 −1 

𝜂( 𝑠 ) 𝑚 = 𝜆𝑚 + 𝜅
2 ( 𝑠 ) 
0 𝜆2 𝑚 (22) 

The proof is included in Appendix B . As we can see, based on
qs. (12) –(22) , the posterior distributions of all parameters of interest
an be exactly calculated through a recursive updating approach. 

.2. Controlling the computational cost 

Compared with sequential Monte Carlo methods, the exact inference
or sequential model updating runs much faster when m is not large.
owever, as m becomes very large, the algorithm may be very time-
onsuming. The reason is that it needs to calculate all the probabilities
f 𝑃 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 ) for 𝑗 = 0 , 1 , … , 𝑚 − 1 and 𝑠 = 1 , 2 , … , 𝐾 + 1 at
ach time step m , which increases almost linearly with m . Therefore, the
lgorithm needs to be improved in a computationally efficient manner
117 
or real-time estimation. It is observed that as the number of observa-
ions increases, the PMF of the latest change point becomes more and
ore concentrated around the true change point, whereas the probabil-

ties at other locations are close to zero. To reduce the computational
oad and balance the computational cost for all time steps, an approx-
mation strategy with a set of support point of fixed size can be ap-
lied [23] . The basic idea is to approximate the posterior distribution
f the discrete components by a small set of support points of a fixed
ize with significant probabilities. In other words, we set the posterior
MF to be zero at those with negligible values and keep others with
igh probabilities. However, this strategy may result in zero PMFs for
ertain phases, i.e., 𝑃 ( 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 ) = 0 or 𝑃 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 ) = 0 for
ll 𝑗 = 0 , 1 , … , 𝑚 − 1 , whose true values may be just temporally small
nd will become significant as more observations are obtained. To avoid
his situation, we propose to use a stratified sampling method, where for
ach s, N locations with highest PMF are selected for the latest change
oints. The algorithm is summarized in Algorithm 1 . With this strategy,
he maximum computational cost for each time step m can be controlled
ffectively. 

.3. RUL prediction 

Once the parameters in the model have been updated, the RUL of
he in-service unit can be predicted. A failure is typically defined as the
vent that the degradation signal first hits the failure threshold Γ. De-
ote the RUL at the current time t m 

as R m 

. Based on the concept of first
assage time, the RUL can be formulated as 𝑅 𝑚 = inf { 𝑙 ∶ 𝑋( 𝑡 𝑚 + 𝑙 ) ≥|𝑋 0∶ 𝑚 } . For the conventional Wiener process degradation model, the
rst passage time has been proven to follow an inverse Gaussian dis-
ribution. For an in-service unit with observations X 0: m 

, if 𝛽 and 𝜎2 are
xed, the pdf of the residual life can be derived as [40] 

 𝑅 𝑚 

(
𝑙|𝑋 𝑚 , 𝛽, 𝜎

2 ) = 

Γ − 𝑋 𝑚 √
2 𝜋𝜎2 𝑙 3 

exp 

( 

− 

(
Γ − 𝑋 𝑚 − 𝛽𝑙 

)2 
2 𝜎2 𝑙 

) 

(23) 

However, in our model, due to the unknown change points and ran-
omness of 𝛽, 𝜎2 at each phase, the RUL is very complicated and in-
ractable analytically. For model consistency, we assume that the degra-
ation amplitude will not exceed the failure threshold before the last
hange point. In RUL prediction, we need to first predict the location of
he final change point t fc and the degradation amplitude X ( t fc ), and then
onditioning on them to predict when the last phase will hit the failure
hreshold. Mathematically, the pdf of RUL can be represented as 
 𝑅 𝑚 

(
𝑙|𝑋 0∶ 𝑚 

)
= ∫ ∫ 𝑝 

(
𝑡 fc , 𝑋 

(
𝑡 fc 
)|𝑋 0∶ 𝑚 

)
𝑓 𝑅 𝑚 

(
𝑙|𝑡 fc , 𝑋 

(
𝑡 fc 
)
, 𝑋 0∶ 𝑚 

)
𝑑 𝑋 

(
𝑡 fc 
)
𝑑 𝑡 fc 

(24) 

here 

 

(
𝑡 fc , 𝑋 

(
𝑡 fc 
)|𝑋 0∶ 𝑚 

)
= 

∑
𝑠 𝑚 , 𝜏𝑚 

𝑃 
(
𝑠 𝑚 , 𝜏𝑚 |𝑋 0∶ 𝑚 

)
𝑝 
(
𝑡 fc , 𝑋 

(
𝑡 fc 
)|𝑠 𝑚 , 𝜏𝑚 , 𝑋 0∶ 𝑚 

)
= 

∑
𝑠 𝑚 , 𝜏𝑚 

𝑃 ( 𝑠 𝑚 , 𝜏𝑚 |𝑋 0∶ 𝑚 ) ∫ 𝑝 (𝑡 fc , 𝑋 

(
𝑡 fc 
)|𝜽𝑚 )

× 𝑝 
(
𝛽𝑚 , 𝜎

2 
𝑚 |𝑠 𝑚 , 𝜏𝑚 , 𝑋 0∶ 𝑚 

)
𝑑 𝛽𝑚 𝑑𝜎

2 
𝑚 (25) 

nd 

 𝑅 𝑚 

(
𝑙|𝑡 fc , 𝑋 

(
𝑡 fc 
)
, 𝑋 0∶ 𝑚 

)
= ∫ ∫ 𝑓 𝑅 𝑚 

(
𝑙|𝑡 fc , 𝑋 

(
𝑡 fc 
)
, 𝑋 0∶ 𝑚 , 𝛽

( 𝐾+1 ) , 𝜎2 ( 𝐾+1 ) )
× 𝑝 

(
𝛽( 𝐾+1 ) , 𝜎2 ( 𝐾+1 ) |𝑡 fc , 𝑋 

(
𝑡 fc 
)
, 𝑋 0∶ 𝑚 

)
𝑑 𝛽( 𝐾 +1 ) 𝑑 𝜎2 ( 𝐾 +1 ) (26) 

It is worth noting that here t fc may be less than t m 

, therefore
 𝑅 𝑚 

( 𝑙|𝑡 fc , 𝑋( 𝑡 fc ) , 𝑋 0∶ 𝑚 ) may depend on X 0: m 

or may be independent of
 0: m 

. Clearly, the RUL is intractable due to multiple complex inte-
rations. A natural way to address this issue is to use Monte Carlo
imulation approach. Specifically, we can first generate M samples for
he current state vector 𝜽m 

through the updated posterior distribu-
ion p ( 𝜽m 

| X 0: m 

), and then conditioning on each sample, simulate the
emaining change points, 𝛽 and 𝜎2 of each phase, and degradation
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Table 1 

Hyperparameters for simulation. 

Variables 𝐾 true = 1 𝐾 true = 2 

d ( s ) 𝜇
(1) 
𝑑 

= 300 , 𝜎2(1) 
𝑑 

= 10 2 𝜇
(1) 
𝑑 

= 200 , 𝜎2(1) 
𝑑 

= 10 2 

𝜇
(2) 
𝑑 

= 400 , 𝜎2(2) 
𝑑 

= 10 2 𝜇
(2) 
𝑑 

= 300 , 𝜎2(2) 
𝑑 

= 10 2 

𝜇
(3) 
𝑑 

= 500 , 𝜎2(3) 
𝑑 

= 10 2 

𝛽( s ) 𝜇
(1) 
0 = 0 . 01 , 𝜅2(1) 

0 = 0 . 008 𝜇
(1) 
0 = 1 × 10 −5 , 𝜅2(1) 

0 = 9 × 10 −4 

𝜇
(2) 
0 = 0 . 06 , 𝜅2(2) 

0 = 0 . 006 𝜇
(2) 
0 = 0 . 02 , 𝜅2(2) 

0 = 0 . 002 

𝜇
(3) 
0 = 0 . 09 , 𝜅2(3) 

0 = 0 . 002 

𝜎2( s ) 𝑣 
(1) 
0 = 2 , 𝛾 (1) 0 = 0 . 05 𝑣 

(1) 
0 = 2 , 𝛾 (1) 0 = 0 . 06 

𝑣 
(2) 
0 = 2 , 𝛾 (2) 0 = 0 . 1 𝑣 

(2) 
0 = 2 , 𝛾 (2) 0 = 0 . 08 

𝑣 
(3) 
0 = 2 , 𝛾 (3) 0 = 0 . 1 

l  

c  

E  

(  

t  

a  

𝑃  

p  

r  

s  

l  

n  

i  

b  

p  

t

5

 

b  

a

5

 

i  

s  

l  

T  

v  

g  

g  

t  

f  

C  

s
 

v  

t  

e  

t  

t  

o  

t  

s  

c  

s  

i  

(  

r  

(  

p  

R
 

f  

9  

a  

p  

f  

t  

a  

a  

a  

c  

b  

t  

p
 

u  

2

R  

w
a  

R  

i  

m  

t  

b  

c  

w  

a  

i  

W
 

p  

p  

c  

p  

s  

p  

t  

u  

s  

v  

f  

f

5

 

d  

t  

o  

d  

Δ  

T  

p  

a  

u
 

T  

a  
evels at remaining change points. The duration of the last phase
an be directly sampled from inverse Gaussian distribution based on
q. (23) . The details of the Monte Carlo approach for RUL sampling
 𝑇 𝑖 , 𝑖 = 1 , … , 𝑀) is illustrated in Algorithm 2 . It should be mentioned
hat for multiple change-point based model, the probability of being
t the last phase at early prediction stage is inevitably nonzero, i.e.,
 ( 𝑠 𝑚 = 𝐾 + 1 |𝑋 0∶ 𝑚 , 𝜏𝑚 = 𝑗 ) > 0 while the actual phase 𝑠 𝑚 < 𝐾 + 1 . This
robability may even be significant for certain signals due to inherent
andomness of Wiener process. If the actual degradation rate is very
mall at the current time, the sampled failure time may be significantly
arger than the actual value. Besides, for phases before the last phase,
egative drift parameters may be sampled, which may also significantly
ncrease the residual life. To make it more accurate, we apply lower
ounds l ( s ) for all the drift parameters as constraints in the sampling
rocess, which can be obtained by selecting the minimal drift parame-
er of each phase of all historical signals. 

. Case studies 

In this section, we first use simulation study to demonstrate the ro-
ustness and effectiveness of our model. Then, the proposed model is
pplied to real case study of rotational bearings. 

.1. Simulation study 

In this subsection, the prediction is illustrated and the performance
s evaluated through numerical simulations. For simplicity, we only con-
ider one-change-point and two-change-point categories in the simu-
ation model. The hyperparameters for each category are specified in
able 1 . The failure threshold is set to be Γ = 20 . The inspection inter-
al is set to be Δ𝑡 = 2 . For each category, 200 degradation signals are
enerated as training dataset. Another 200 signals in each category are
enerated as testing dataset. The support size for the PMF approxima-
ion at the updating stage is specified as 𝑁 = 20 . The number of samples
or RUL prediction is set as 𝑀 = 3000 . Due to the randomness of Monte
arlo method, the prediction procedure is repeated 10 times for each
ignal. 

Due to space limitation, the estimated hyperparameters are not pro-
ided here. Using the leave-one-out cross-validation approach, we find
hat the identified optimal change-point number for each dataset is
quivalent to the true value, which demonstrates the effectiveness of
he proposed approach for model selection (see Fig. 5 ). Fig. 2 shows
he online model updating process for two degradation signals, each
f which is randomly selected from each testing dataset. The first and
he second column shows the results by assuming 𝐾 = 1 and 𝐾 = 2 , re-
pectively, while the true value 𝐾 true = 1 . Similarly, the third and fourth
olumn assume 𝐾 = 1 and 𝐾 = 2 , respectively, while 𝐾 true = 2 . Here we
elect two K ’ for each signal to study the consequence if K is specified
nappropriately. Clearly, if an appropriate K is specified ( Fig. 2 (a) and
d)), the recursive updating algorithm can accurately detect the occur-
118 
ence of change points and track the phase index. However, if K is larger
or less) than the actual value, more phases will occur (or some change
oints may not be detected), which will thus affect the model fitting and
UL prediction. 

Fig. 3 shows the prediction intervals of 7 randomly selected signals
rom each dataset at three different prediction times, i.e., 50%, 70%,
0% of actual failure time. Fig. 4 illustrates the pdf of RUL of the third
nd the second unit of the seven signals in each category. To compare the
rediction performance of different models, we select 𝐾 = 1 and 𝐾 = 2
or both two types of signals. As expected, for both model specifications,
he prediction becomes more and more accurate for all signals as more
nd more observations are collected. This characteristic is highly desir-
ble since it becomes more important to get an accurate RUL prediction
s the unit approaches failure. Comparing the two model selections, we
an see that if the true K is selected, the prediction performance is much
etter than if K is selected inappropriately. Note that in the simulation,
he right model was effectively selected through the cross-validation ap-
roach. 

To further evaluate and analyze the overall prediction accuracy, we
se the root-mean-square deviation (RMSD) as a performance metric for
00 testing signals in each category, which is defined as 

MSD = 

√ √ √ √ 

1 
𝐼 

𝐼 ∑
𝑖 =1 

𝐸 

(
�̂� 𝑖 − 𝑅 𝑖, true 

)2 
(27)

here I is the total number of units in each category, �̂� 𝑖 and R i , true 
re the predicted and true RUL of unit i , respectively. Fig. 5 shows the
MSD at six prediction times for both two types of signals. For compar-

son purpose, three models 𝐾 = 0 , 1 , 2 are provided here. Clearly, the
odel with appropriate K outperforms all other models at all prediction

imes. From Fig. 5 (a) we can see that, the RMSD goes down gradually for
oth 𝐾 = 1 and 𝐾 = 2 models, indicating that with more observations
ollected, the prediction becomes more accurate. However, the model
ith 𝐾 = 1 is more accurate in prediction than 𝐾 = 2 . The reason is that
dding excessive change points will introduce unnecessary uncertainty
n RUL prediction, e.g., uncertainty regarding future change points, and

iener process parameters of the last phase. 
For 𝐾 = 0 , the RMSD first increases and then decreases. Similarly

henomenon can also be observed in Fig. 5 (b). If the number of change
oints is selected insufficiently, the RMSD first increases and then de-
reases as we increase the prediction times. The reason is that the early
hases often have smaller degradation rates than the later phases, as
hown in Fig. 2 . If insufficient change points are assumed, the early
hases may be mistakenly detected as the last phase. The more observa-
ions are collected, the less influence the prior will have on the posterior
pdating and thus the lower the updated degradation rate will be. Con-
equently it will make the predicted RUL much higher than the actual
alue. When the unit approaches to its failure, the prediction accuracy
or all of these models increases. Therefore, the parameter K is critical
or the prognostic model to produce an accurate prediction. 

.2. Application to bearing signals 

In this subsection, the proposed approach is applied to the degra-
ation signal of rotational bearings. These degradation signals are log-
ransformed vibrational signals obtained through an accelerated testing
n a set of identical thrust ball bearings [3,26] . In total, there are 25
egradation signals. The time interval for inspection is 2 minutes, i.e.,
𝑡 = 2 for all units. Fig. 6 shows three degradation paths for illustration.
he failure threshold is specified as Γ = ln ( 0 . 03 ) , which is based on the
ublished industrial standards [3] . There are obviously two phases for
ll signals. Moreover, the locations of change points vary from unit to
nit. 

For model selection, we mainly consider three cases, 𝐾 = 0 , 1 , and 2 .
able 2 summarizes the estimated hyperparameters for each case using
ll 25 signals. From Table 2 we can see that, if K = 1 is specified, the
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(
)

(
−

)
(a) (b) (c) (d)

Fig. 2. Illustration of the online model updating process. (a) 𝐾 true = 1 , 𝐾 = 1 ; (b) 𝐾 true = 1 , 𝐾 = 2 (c) 𝐾 true = 2 , 𝐾 = 1 and (d) 𝐾 true = 2 , 𝐾 = 2 ; top panel: observed and 
filtered signals; middle panel: the expected duration of the current phase; bottom panel: the posterior PMF of the index of current phase. The vertical dashed lines 
are true change-point locations. 

(a) (b) (c)

(d) (e) (f)

Fig. 3. Prediction intervals of RUL for 14 simulated signals predicting at 50%, 70%, 90% of failure time. (a–c): 𝐾 𝑡𝑟𝑢𝑒 = 1 ; (d–f): 𝐾 𝑡𝑟𝑢𝑒 = 2 . The “o ” denotes the 5%, 
50% and 95% quantile of RUL prediction;" _ " represent the actual failure time. 

Table 2 

Estimated hyperparameters for three models. 

Variables 𝐾 = 0 𝐾 = 1 𝐾 = 2 

d ( s ) 𝜇
(1) 
𝑑 

= 676 𝜇
(1) 
𝑑 

= 360 , 𝜎2(1) 
𝑑 

= 241 2 𝜇
(1) 
𝑑 

= 310 , 𝜎2(1) 
𝑑 

= 190 2 

𝜎
2(1) 
𝑑 

= 255 2 𝜇
(2) 
𝑑 

= 317 , 𝜎2(2) 
𝑑 

= 134 2 𝜇
(2) 
𝑑 

= 62 , 𝜎2(2) 
𝑑 

= 119 2 

𝜇
(3) 
𝑑 

= 306 , 𝜎2(3) 
𝑑 

= 142 2 

𝛽( s ) 𝜇
(1) 
0 = 0 . 0056 𝜇

(1) 
0 = 8 . 317 × 10 −4 𝜇

(1) 
0 = −3 . 12 × 10 −4 , 𝜅2(1) 

0 = 0 . 006 

𝜅
2(1) 
0 = 0 . 0038 𝜇

(2) 
0 = 0 . 0215 , 𝜅2(2) 

0 = 0 . 4425 

𝜅
2(1) 
0 = 8 . 23 × 10 −4 𝜇

(2) 
0 = 0 . 0083 𝜇

(3) 
0 = 0 . 0049 , 𝜅2(3) 

0 = 0 . 0024 

𝜅
2(2) 
0 = 0 . 0012 

𝜎2( s ) 𝑣 
(1) 
0 = 10 . 07 𝑣 

(1) 
0 = 1 . 39 , 𝛾 (1) 0 = 0 . 003 𝑣 

(1) 
0 = 2 . 1 , 𝛾 (1) 0 = 0 . 004 

𝛾
(1) 
0 = 0 . 067 𝑣 

(2) 
0 = 2 . 29 , 𝛾 (2) 0 = 0 . 017 𝑣 

(2) 
0 = 0 . 42 , 𝛾 (2) 0 = 0 . 004 

𝑣 
(3) 
0 = 5 . 1 , 𝛾 (3) 0 = 0 . 03 

119 
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(a) (b)

(d) (e) (f)

(c)

Fig. 4. Comparison of the RUL prediction between 𝐾 = 1 and 𝐾 = 2 . Top panel (a–c): 𝐾 𝑡𝑟𝑢𝑒 = 1 ; bottom panel (d–f): 𝐾 𝑡𝑟𝑢𝑒 = 2 . 
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Fig. 5. Comparison of the RMSD at six prediction times: (a) 𝐾 𝑡𝑟𝑢𝑒 = 1 ; (b) 𝐾 𝑡𝑟𝑢𝑒 = 2 . 

Algorithm 1 

The fixed support size strategy for model updating. 

For each time step m : 
If 𝑚 ≤ 𝑁 − 1 ∶ 

• Calculate 𝑃 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 ) for 𝑗 = 0 , 1 , 𝑚 − 1 , 𝑠 = 1 , … , 𝐾 + 1 . 
If m > N : 

• For each s , select 𝑁 − 1 support points with highest probabilities 𝑃 ( 𝜏𝑚 −1 = 𝑗, 𝑠 𝑚 −1 = 𝑠 |𝑋 0∶ 𝑚 −1 ) 
• Calculate 𝑃 ( 𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠 |𝑋 0∶ 𝑚 ) at all these selected ( 𝑁 − 1 ) support points and at the current time step m for 𝑠 = 1 , … , 𝐾 + 1 , set others to be zero. 
• Normalize the probabilities. 

Fig. 6. Degradation paths of three representative bearings. 
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econd phase has a larger drift rate than the first one, which indicates
 faster degradation. If 𝐾 = 2 is specified, the degradation rate of the
econd phase is much larger than the third phase. Not surprisingly, al-
ost all bearings have a sudden jump after the first phase. Although
120 
xtremely short in duration, the sudden jump is so significant that it
as identified as a single phase at the offline model fitting for all sig-
als. Even for online model updating, as shown in Fig. 7 (b), the sudden
ump period is detected as a single phase. 

At the prediction stage, due to the limited number of degradation
ignals, the leave-one-out cross-validation is also used, where 24 signals
re used as training dataset and the remaining one is used for predic-
ion. Fig. 8 shows the RMSD of the 25 bearing signals at three predic-
ion times. Fig. 9 shows the overall prediction accuracy at six predic-
ion times. For comparison purpose, we add the case of 𝐾 = 3 as well.
learly, at all the six prediction times, the model with only one change
oint performs best in terms of the overall RMSD. As observed in our
tudy, specifying two change points only improves the prediction within
he sudden-jump phase. It often reduces the prediction accuracy at the
arly stage and even at the late stage. Besides, assuming no change
oints is surprisingly better than using two and three change points.
he reason is that for some signals, there is a sharp increase right before
ailure, as can be seen from the red curve in Fig. 6 . For those signals,
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Algorithm 2 

Monte Carlo simulation for RUL prediction. 

(a) (b)

(
)

(
−

)

Fig. 7. Illustration of online model updating process. (a): 𝐾 = 1 ; (b): 𝐾 = 2 ; top panel: observed and filtered signals; middle panel: the expected duration of the 
current phase; bottom panel: the posterior PMF of the index of current segment. The vertical dashed lines are change-point locations identified at the offline stage. 
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Fig. 8. Comparison of RMSD for three models. 
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Fig. 9. Prediction accuracy at different times for 𝐾 = 0 , 1 , 2 and 3. 
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dding more change points may improve individual model fitting at the
ffline stage. However, the addition of extra change points will also
ring uncertainties on the prediction of the location and the degrada-
ion amplitude of the final change point, which may significantly reduce
he prognostic accuracy. 

. Conclusion and discussion 

In this paper, a Bayesian multiple change-point Wiener process is
roposed for degradation modeling and online RUL prediction. To take
nto account the unit heterogeneity, all the model parameters except
he number of change points are modeled with random distributions. At
he offline stage, an empirical two-stage process is proposed for model
stimation. Besides, a cross-validation approach is proposed for opti-
al change-point number selection. At the online monitoring stage, an

xact recursive updating method is developed to sequentially calculate
he joint posterior distribution of key parameters, including the latest
hange point, phase index, and model parameters of the current phase,
hich is essential for RUL prediction. To control the computational cost,
 fixed-support-size strategy is proposed, which can effectively control
nd balance the computational load of each time step yet without influ-
ncing the estimation accuracy. In RUL prediction, an effective Monte
arlo simulation algorithm is proposed. Simulation and real case stud-

es demonstrate that the proposed prognostic framework can effectively
mprove the prediction accuracy. 
122 
There are still some issues that are worthy of further investigation.
irst, in the proposed method, the change points are assumed to be ex-
ctly on the inspection epochs in the offline model estimation and online
odel updating. In practice, the change points can be at any location

etween inspection epochs. Releasing this constraint may improve the
odel accuracy. In addition, in the current method, a linear drift func-

ion is assumed for all phases. In practice, however, nonlinear drift func-
ions or a mixture of linear and nonlinear drift functions may be more
referable. It may significantly reduce the model complexity and conse-
uently the model uncertainty. Furthermore, other stochastic processes,
uch as inverse Gaussian process, and Gamma process, may model the
egradation signal better. How to incorporate change points into these
tochastic processes needs to be investigated. 

ppendix A: Proof of Theorem 1 

For notational convenience, we ignore the subscript m for 𝛽m 

nd 𝜎2 𝑚 , and ignore the subscript s for phase index. Suppose 𝜋( 𝛽, 𝜎2 ) =
 𝐺( 𝑣 0 , 𝛾0 ) 𝑁 ( 𝜇0 , 𝜎2 𝜅2 0 ) 

 

(
𝛽, 𝜎2 |𝜹𝑗+1∶ 𝑚 , 𝜏𝑚 = 𝑗 

)
∝ 𝑝 

(
𝛽, 𝜎2 

)
𝑝 
(
𝜹𝑗+1∶ 𝑚 |𝛽, 𝜎2 )

∝
⎡ ⎢ ⎢ ⎢ ⎣ 

1 (
2 𝜋𝜎2 𝜅2 0 

) 1 
2 
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− ( 𝛽− 𝜇0 ) 

2 

2 𝜎2 𝜅2 0 

⎤ ⎥ ⎥ ⎥ ⎦ 
[ 

𝛾0 
𝑣 0 

Γ
(
𝑣 0 
) (𝜎2 )− 𝑣 0 −1 𝑒 − 𝛾0 𝜎2 

] 

×
⎡ ⎢ ⎢ ⎣ ( 2 𝜋) − 

𝑚 − 𝑗 
2 
(
𝜎2 
)− 𝑚 − 𝑗 2 𝑒 

− 
∑𝑚 
𝑖 = 𝑗+1 ( 𝛿𝑖 − 𝛽𝜆𝑖 ) 

2 ∕ 𝜆𝑖 

2 𝜎2 
⎤ ⎥ ⎥ ⎦ 

∝
(
σ2 
)− 𝑣 0 −1− 𝑚 − 𝑗 2 1 

2 𝜋
(
σ2 
)1∕2 

exp 
⎡ ⎢ ⎢ ⎣ − 

(
𝛽 − 𝜇0 

)2 ∕ 𝜅2 0 + 2 𝛾0 + 

∑𝑚 
𝑖 = 𝑗+1 

(
𝛿𝑖 − 𝛽𝜆𝑖 

)2 ∕ 𝜆𝑖 
2 𝜎2 

⎤ ⎥ ⎥ ⎦ 
∝
(
σ2 
)− 𝑣 0 −1− 𝑚 − 𝑗 2 1 

2 𝜋
(
σ2 
) 1 
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𝛽2 
( ∑𝑚 
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( 

𝜇0 
𝜅2 0 
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∑𝑚 
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∑𝑚 
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𝛿2 
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𝜆𝑖 
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exp 
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exp 
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− 
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( 

𝜇0 
𝜅2 0 

+ 
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𝑖 
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− 

( 
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𝜅2 0 

+ 

∑𝑚 
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ppendix B: Proof of Theorem 2 

For notational convenience, we ignore the subscript s for phase in-
ex. Based on Wiener process increment property 

 𝑚 = 𝑋 𝑚 −1 + 𝛽𝑚 𝜆𝑚 + 𝜎𝑚 𝐵 

(
𝜆𝑚 
)

Note that here 𝛽m 

and 𝜎m 

are the drift and diffusion parameters from
 𝜏𝑚 

to t m 

. 
If 𝜏𝑚 = 𝑗 < 𝑚 − 1 , then 𝜏𝑚 −1 = 𝑗, 𝛽𝑚 = 𝛽𝑚 −1 , 𝜎𝑚 = 𝜎𝑚 −1 . Based on

heorem 1 we can get 

𝛽𝑚 −1 |𝜎2 𝑚 −1 , 𝜏𝑚 −1 = 𝑗, 𝑠 𝑚 −1 = 𝑠, 𝑋 0∶ 𝑚 −1 
)
∼ 𝑁 

(
𝜇𝑗+1 ,𝑚 −1 , 𝜎

2 
𝑚 −1 𝜅

2 
𝑗+1 ,𝑚 −1 

)
(
𝜎2 
𝑚 −1 |𝜏𝑚 −1 = 𝑗, 𝑠 𝑚 −1 = 𝑠, 𝑋 0∶ 𝑚 −1 

)
∼ 𝐼𝐺 

(
𝑣 𝑗+1 , 𝑚 −1 , 𝛾𝑗+1 ,𝑚 −1 

)
Then 

𝑋 𝑚 |𝜎2 𝑚 −1 , 𝜏𝑚 = 𝜏𝑚 −1 = 𝑗, 𝑠 𝑚 −1 = 𝑠, 𝑋 0∶ 𝑚 −1 
)

∼ 𝑁 

(
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𝑚 −1 

(
𝜆𝑚 + 𝜅2 

𝑗+1 ,𝑚 −1 𝜆
2 
𝑚 
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Let 𝜇

′ = 𝜇𝑗+1 ,𝑚 −1 𝜆𝑚 + 𝑋 𝑚 −1 , 𝜂
′ = 𝜆𝑚 + 𝜅2 

𝑗+1 ,𝑚 −1 𝜆
2 
𝑚 , then 

 ( 𝑋 𝑚 |𝜏𝑚 = 𝑗, 𝑠 𝑚 = 𝑠, 𝑋 0∶ 𝑚 −1 ) 

∝
∞∫
0 

(
𝜎2 
𝑚 −1 𝜂

′)− 1 2 𝑒 
[ 

− ( 𝑋 𝑚 − 𝜇′) 2 
2 𝜎2 
𝑚 −1 𝜂

′
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𝜎2 
𝑚 −1 

)− 𝑣 0 − 𝑚 −1− 𝑗 2 −1 
𝑒 
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(
𝜎2 
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[ 
− ( 𝑋 𝑚 − 𝜇

′) 2 +2 𝛾𝑗+1 ,𝑚 −1 𝜂′
2 𝜎2 
𝑚 −1 𝜂

′

] 
𝑑𝜎2 

𝑚 −1 

∝
Γ
(
𝑣 0 + 

𝑚 − 𝑗 
2 

)
[ 
( 𝑋 𝑚 − 𝜇′) 2 

2 𝜂′ + 𝛾𝑗+1 ,𝑚 −1 

] 𝑣 0 + 𝑚 − 𝑗 2 

∝

[ 
1 + 

1 
2 𝑣 0 + 𝑚 − 𝑗 − 1 

(
𝑋 𝑚 − 𝜇′)2 (2 𝑣 0 + 𝑚 − 𝑗 − 1 

)
2 𝛾𝑗+1 ,𝑚 −1 𝜂′

] − ( 2 𝑣 0 + 𝑚 − 𝑗 ) 2 
123 
( 𝑋 𝑚 |𝑋 0∶ 𝑚 −1 , 𝜏𝑚 = 𝑗) ∼ 𝑡 1 

( 

2 𝑣 0 + 𝑚 − 𝑗 − 1 , 𝜇′, 
2 𝛾𝑗+1 ,𝑚 −1 𝜂′

2 𝑣 0 + 𝑚 − 𝑗 − 1 

) 

If 𝑗 = 𝑚 − 1 , similarly, we can get 

𝑋 𝑚 |𝑋 0∶ 𝑚 −1 , 𝜏𝑚 = 𝑚 − 1 
)
∼ 𝑡 1 

( 

2 𝑣 0 , 𝜇′, 
𝛾0 𝜂

′

𝑣 0 

) 

here 𝜇′ = 𝜇0 𝜆𝑚 + 𝑋 𝑚 −1 , 𝜂
′ = 𝜆𝑚 + 𝜅2 0 𝜆

2 
𝑚 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.ress.2018.04.005 . 
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