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 

Abstract— Steady state detection is critically important in 

many engineering fields, such as fault detection and diagnosis, 

process monitoring and control. However, most of the existing 

methods were designed for univariate signals, and thus are not 

effective in handling multivariate signals. In this paper, we 

propose an efficient online steady state detection method for 

multivariate systems through a sequential Bayesian partitioning 

approach. The signal is modeled by a Bayesian piecewise constant 

mean and covariance model, and a recursive updating method is 

developed to calculate the posterior distributions analytically. The 

duration of the current segment is utilized for steady state testing. 

Insightful guidance is also provided for hyperparameter selection. 

The effectiveness of the proposed method is demonstrated 

through thorough numerical and real case studies. 

 

Note to Practitioners—This paper addresses the problem of 

online steady state detection of systems captured by multivariate 

signals. Existing approaches often monitor each signal 

independently, and the system is claimed steady when all signals 

reach steady state. These methods have many shortcomings, such 

as failing to consider the correlations among signals, and suffering 

the multiple testing problem. In this paper, we propose a novel 

joint monitoring approach, where the multivariate signal is 

sequentially partitioned into segments of constant mean and 

covariance through an online Bayesian inference scheme, and 

once the current segment duration is sufficiently large, the signal 

is considered steady. We also provide several insightful guidelines 

to select appropriate hyperparameters under different scenarios. 

The proposed approach is much more accurate and robust than 

existing ones. However, this method may face prohibitive 

computational cost and ill-posed covariance inversion problem 

when there are hundreds or even thousands of variables in the 

system. In future research, we will develop efficient distributed 
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monitoring and data fusion techniques to overcome these 

challenges.  

Index Terms—Steady state detection, multivariate system, 

sequential Bayesian partitioning, hyperparameter selection, 

change-point detection. 

I. INTRODUCTION 

ETECTING whether a system is operating under 

steady-state condition is essential in process performance 

assessment and optimization [1, 2], fault detection and 

diagnosis [3, 4], process automation and control [5-9]. It arises 

in many engineering fields, such as process industries, 

chemical engineering, and manufacturing process automation 

and control. In these applications, a steady state condition is the 

basic requirement for process modeling, evaluation, monitoring 

and control. In discrete-event simulations [1, 10], for example, 

the steady state is not achieved until some time after the system 

is started or initialized. The initial situation is often referred to 

as transient state, start-up or warm-up period. Only the 

steady-state period data (e.g., throughput, work-in-process) 

represents the true performance of the system and thus needs to 

be identified for process assessment and optimization. In 

process or chemical industries, it is often mandatory to use 

steady-state data (e.g., flow rate, pH value, temperature, 

pressure, etc.) for process modeling and design, and real time 

optimization (RTO) [6, 11]. In batch processes manufacturing 

[12], the operation is often unsteady during the start-up period 

due to unstabilized material or machine conditions, which 

cannot guarantee a satisfied product quality. To avoid costly 

quality inspection and scrap costs, the steady state operation 

needs to be identified. In process automation and control, the 

steady state can be used to trigger the next action. For example, 

in ultrasonic cavitation-based nanoparticle dispersion process, 

the particles are considered completely dispersed and the 

process can be stopped when the cavitation noise signal enters 

into steady state [7-9]. 

In the past few decades, various types of univariate offline 

methods have been developed for initial bias truncation in 

discrete-event simulations [1, 10]. These methods often require 

a sufficiently large number of steady-state observations for 

warm-up truncation, and thus are not applicable for online 

detection. In contrast, there is a relatively small number of 

online steady-state detection algorithms for univariate signals 

in the existing literature, most of which can be classified into 
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the following categories: (1) regression based approach [13] 

where a simple linear regression is performed over a moving 

data window and the fitted slope is monitored. Once the 

magnitude of the slope is below a predefined threshold, the 

signal is considered steady; (2) performing a t-test on the 

difference of the means of two adjacent moving windows. If the 

difference is significantly small, the signal is claimed steady 

[14]; (3) performing an F-test (variance ratio test) on the ratio 

of two variances of a moving window calculated using different 

methods, namely, the mean squared deviation and the mean 

squared differences of successive data [15]. In the steady state 

period, the ratio is expected to be near unity; and (4) monitoring 

the variance of a moving window [4]. When the variance is 

below a threshold, the signal is steady.  

However, all the aforementioned online methods are 

developed for univariate signals. In practice, most of the 

systems or processes are inherently multivariate. With the rapid 

development of sensing technology, multiple sensor signals 

have become unprecedentedly available to better capture the 

system conditions. Therefore, multivariate steady state 

detection algorithms are highly desirable. To the best of our 

knowledge, there are very limited methods for multivariate 

signals. Brown and Rhinehart [16] proposed to monitor each 

signal separately using an existing univariate steady state 

detection algorithm. Once all signals are steady, the process is 

claimed to be steady. However, this strategy inevitably suffers 

the notorious multiple testing problem [17] with inflated type II 

error or detection delay. Besides, it is incapable of detecting the 

change of correlation among different variables. Jiang et al [18] 

proposed to fuse the steady-state indices of all variables into 

one through the Dempster’s rule of combination [19]. This 

approach is nevertheless a generalization of Brown and 

Rhinehart’s method [16] and thus shares the same 

shortcomings. Besides, it requires sufficient historical 

steady-state data to determine the testing threshold, which is 

often unrealistic in practice due to the data unavailability and 

run-to-run trajectory variations. Note that if sufficient historical 

steady-state observations are available and follow the same 

statistical distribution for all runs, a large number of existing 

statistical process control (SPC) techniques [20] are readily 

available for steady state detection, e.g., detecting the first 

in-control sample. However, in steady-state detection 

applications, the distribution of steady state data often varies 

from run to run, due to known or unknown process conditions. 

Therefore, the existing multivariate SPC techniques cannot be 

directly used. Most of the other multivariate methods are 

developed in the chemical batch processes [12, 21]. In these 

methods, a dimension reduction technique is applied first, such 

as the multi-way principal component analysis (MPCA) [21], 

dynamic principal component analysis (DPCA) [12], and then 

either a univariate method is applied on a combined index, or 

each extracted feature is monitored individually. These 

methods also have more or less the aforementioned 

disadvantages.  

To overcome these disadvantages, this paper develops an 

efficient online multivariate steady state detection method 

using a sequential Bayesian partitioning approach. In this 

method, the multivariate signal is sequentially segmented into 

phases of constant mean and covariance matrix under the 

Bayesian framework, and the posterior distribution of the phase 

duration is used to test the steady state. Once the duration is 

sufficiently large, the signal is claimed steady. The main 

challenges of this method are how to sequentially find the 

change-point regarding the mean and covariance, and how to 

select appropriate hyperparameters. To overcome these 

challenges, we develop an efficient recursive method to 

calculate the posterior distributions analytically, and then 

provide several insightful guidelines on hyperparameter 

selection.  

The rest of this article is organized as follows. In Section II, 

the steady state detection problem is formulated into a 

piecewise constant modeling of multivariate signals. Section III 

presents the technical details of online change-point detection, 

computational cost reduction and appropriate hyperparameter 

selection. The numerical illustration, performance comparison, 

and real case studies are provided in Section IV. Section V 

presents our conclusions and discussions. 

II. PIECEWISE CONSTANT MODELING OF MULTIVARIATE 

SIGNALS FOR STEADY STATE DETECTION 

To detect whether a system is steady, it is necessary to first 

define what steady state is. In mathematics or statistics, an 

alternative term ‒ stationary process, is often used, which is 

defined as a stochastic process {𝑥𝑡}  whose joint probability 

distribution 𝑝(𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑠) does not change over time 𝑡 
(strict or strong stationarity). Consequently, the mean and 

variance or covariance parameters do not change over time. In 

this paper, we define steady state as the condition where the 

mean and covariance of signals capturing the system dynamics 

are unchanging in a certain period. It is worth noting that in 

some practical applications, such as the discrete-event 

simulations and batch processes manufacturing, once steady 

state occurs, it is expected not to change anymore. Therefore, 

the online monitoring can be stopped once steady state is 

detected. However, in many other applications, e.g., monitoring 

temperature, pressure and pH value in process or chemical 

industries [6], the transient state and steady state often occur 

alternatively, due to unexpected system faults, disturbances or 

closed-loop control actions. Therefore, it requires the 

monitoring scheme to be able to detect the occurrence of 

multiple steady states and transient states.  

 
Fig. 1 Illustration of piecewise constant modeling of nonlinear signals with 

initial transient period: (a) exponential function in the transient period; (b) 

oscillating function in the transient period. 

(a) (b)
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Based on the definition, we propose to utilize a piecewise 

constant model to fit the multivariate signals, where each 

segment is modeled with a unique mean and covariance matrix. 

Take two univariate signals for example (Fig. 1). The segment 

duration would be very short in the transient period whereas it 

is expected to be long in the steady state period. In other words, 

the change-points between the successive segments occur more 

frequently and continuously in the transient period due to the 

rapid change of mean or covariance. When the system is in the 

steady state period, there would be no change-points. In online 

steady state detection, the segment duration can be used as a 

monitoring statistic. Once it is sufficiently large, e.g., larger 

than a certain threshold, the system is considered steady. 

Let the multivariate signal be 𝑿𝑡 , 𝑡 = 1,2, …, where 𝑿𝑡  is a 

p-dimensionial vector. Suppose 𝑿𝑡~𝑁(𝝁𝑡 , 𝚺𝑡)  and 𝑿𝑡 , 𝑡 =
1,2, …,  are independent. Define 𝜱𝑡 = (𝝁𝑡 , 𝚺𝑡) . Suppose the 

change-points are at positions {𝑐1, 𝑐2, … , 𝑐𝑘, … } , where 0 <
𝑐1 < 𝑐2 < ⋯ < 𝑐𝑘 < ⋯. Then the piecewise constant model 

can be mathematically expressed as 

𝜱𝑡 =

{
 
 

 
 
𝚽(1) ,          if   𝑐0 < 𝑡 ≤ 𝑐1  

   𝚽(2),           if  𝑐1 < 𝑡 ≤ 𝑐2    
⋯ 

𝚽(𝑘),        if 𝑐𝑘−1 < 𝑡 ≤ 𝑐𝑘
       ⋯      

 (1) 

where 𝚽(𝑖)  is the distribution parameter of the ith segment. 

Based on the above discussion, any interval [𝑐𝑘−1, 𝑐𝑘]  with 

length 𝑐𝑘 − 𝑐𝑘−1 greater than a certain value, e.g., 𝐿0, can be 

claimed as a steady state period. 

In the online steady state detection, the testing is performed 

each time a new observation is obtained. Therefore, the 

multivariate signal needs to be fitted sequentially using a 

piecewise constant model, and the duration of the current 

segment has to be estimated to decide if the current segment is 

long enough to claim a steady state. Although the idea is simple, 

how to efficiently estimate the latest change-point (i.e., the 

starting time of the current segment) in a real time manner is 

nevertheless very challenging. Online Bayesian updating is 

particularly effectively in the dynamic analysis of a sequence of 

data with change-points [22]. Besides, it provides uncertainty 

estimates in the number and locations of change-points, which 

is more realistic in applications. Therefore, in this article, we 

propose to use a Bayesian approach, where a Bayesian 

piecewise constant model is formulated, and then the posterior 

distribution of the latest change-point is calculated for steady 

state detection. The technical details are provided in Section III. 

III. ONLINE BAYESIAN PIECEWISE CONSTANT MODEL FITTING 

AND STEADY-STATE DETECTION 

A. Bayesian Formation and Prior Specification 

For a Bayesian piecewise constant model, appropriate priors 

for the change-points, the mean and covariance matrix of each 

segment need to be assigned. For a time series of fixed length, a 

joint prior can be specified for both the change-point number 𝑘 

and positions [23], e.g., 𝜋(𝑘, {𝛿𝑖}𝑖=1
𝑖=𝑘+1) = 𝜋(𝑘)𝜋({𝛿𝑖}𝑖=1

𝑖=𝑘+1|𝑘) 

where 𝛿𝑖  is the duration of the ith segment. However, this 

approach is not appropriate or straightforward for dynamic 

sequences with an increasing length. Instead, the prior is often 

specified by modeling the occurrence of change-points through 

a Markov process, where the next change-point only depends 

on the duration of the current segment [22]. For example, a 

Poisson point process can be assumed for the occurrence of the 

change-points, or equivalently an exponential distribution is 

assumed for the segment durations. Another simple prior is the 

geometric prior applied to the segment duration, which 

corresponds to a constant Markov transition probability for the 

latest change-point at each time step. Actually, the stochastic 

process approach indirectly specifies a joint prior distribution 

for the number of change-points and their positions [24]. The 

advantage of this approach is that the prior transition 

probability of the latest change-point can be easily calculated, 

which is convenient for online change-point detection. Suppose 

the latest change-point (the time index for the last observation 

of the previous segment) at time step 𝑡 is 𝜏𝑡, then  

𝑃(𝜏𝑡 = 𝑗|𝜏𝑡−1 = 𝑗
′) =

{
 
 

 
 

1 − 𝐺(𝑡 − 𝑗′)

1 − 𝐺(𝑡 − 1 − 𝑗′)
, if 𝑗 = 𝑗′

𝐺(𝑡 − 𝑗′) − 𝐺(𝑡 − 1 − 𝑗′)

1 − 𝐺(𝑡 − 1 − 𝑗′)
, if 𝑗 = 𝑡 − 1

0, otherwise

 (2) 

where 0 ≤ 𝑗 ≤ 𝑡 − 1 , 𝐺(∙)  is the cumulative distribution 

function for the segment duration. The geometric distribution is 

the most popular and simplest one for the segment duration in 

sequential change-point inferences [22, 25]. Other priors 

include Poisson distribution and gamma distribution, which are 

often used in speech segmentation [26]. As observed in our 

study, the detection is not very sensitive to the distribution type. 

Therefore, we select the geometric distribution for the segment 

duration for the purpose of simplicity. It is easy to show that 

when a geometric distribution with parameter 𝑝0 is assumed for 

the segment duration 𝛿 , i.e., 𝑃(𝛿 = 𝑙) = (1 − 𝑝0)
𝑙−1𝑝0 , the 

prior transition probability is simply 

 

𝑃(𝜏𝑡 = 𝑗|𝜏𝑡−1 = 𝑗′) = {
1 − 𝑝0, if 𝑗 = 𝑗

′

𝑝0, if 𝑗 = 𝑡
0,    otherwise

− 1 (3) 

As we can see, it specifies a constant prior Markov transition 

probability for the latest change-point.  

For the changing parameters 𝜱𝑡 = (𝝁𝑡 , 𝚺𝑡) , a conjugate 

prior is specified as follows for all segments: 

𝑝(𝝁𝑡, 𝚺𝑡) = 𝑝(𝚺𝑡)𝑝(𝝁𝑡|𝚺𝑡) = InvWishp(𝚿0, 𝑣0)𝑁 (𝝁0,
1

𝛾0
𝚺𝑡), (4) 

where 𝚺𝑡~InvWishp(𝚿0, 𝑣0)  is a p-dimensional 

Inverse-Wishart distribution with degrees of freedom 𝑣0  and 

scale matrix 𝚿0 , and 𝝁𝑡|𝚺𝑡~𝑁 (𝝁0,
1

𝛾0
𝚺𝑡) is a p-dimensional 

normal distribution. Besides, to facilitate online Bayesian 

updating, we assume that the changing parameters are 

independent across different segments. In the following section, 

we will show that such prior is a conjugate prior and the 

posterior distribution of both the latest change-point and 
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changing parameters, i.e., 𝑝(𝜏𝑡|𝑿1:𝑡)  and 𝑝(𝝁𝑡 , 𝚺𝑡|𝑿1:𝑡 , 𝜏𝑡) , 

where 𝑿1:𝑡 = {𝑿1, 𝑿2, … , 𝑿𝑡}, are analytically tractable. 

B. Sequential Bayesian Change-point Detection and Steady 

State Detection 

As mentioned in Section II, the duration of the current 

segment is a critical parameter to determine if the system is 

steady. Therefore, it is essential to calculate the posterior 

distribution of the segmental duration, or equivalently the latest 

change-point sequentially. In this subsection, the exact 

posterior probability mass function (PMF) of the latest 

change-points and the posterior density functions of the 

changing parameters will be derived. 

The posterior distribution can be expressed as 

𝑃(𝜏𝑡+1 = 𝑗|𝑿1:𝑡+1) ∝ 𝑝(𝜏𝑡+1 = 𝑗, 𝑿𝑡+1|𝑿1:𝑡) 
= 𝑃(𝜏𝑡+1 = 𝑗|𝑿1:𝑡)𝑝(𝑿𝑡+1|𝑿1:𝑡 , 𝜏𝑡+1 = 𝑗), 

(5) 

where 𝑗 = 0,1, … , 𝑡  is the observation index. The predictive 

probability mass function of the latest change-point in Eq. (5) 

can be calculated by 

𝑃(𝜏𝑡+1 = 𝑗|𝑿1:𝑡) =∑ 𝑃(𝜏𝑡+1 = 𝑗|𝜏𝑖 = 𝑖)𝑃(𝜏𝑡 = 𝑖|𝑿1:𝑡)
min(𝑗,𝑡−1)

𝑖=0
,   (6) 

Based on Eq. (3), Eq. (6) can be further simplified as 

𝑃(𝜏𝑡+1 = 𝑗|𝑿1:𝑡) = {
𝑝0, 𝑗 = 𝑡

𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡)(1 − 𝑝0), 𝑗 ≤ 𝑡 − 1
 (7) 

The predictive density function 𝑝(𝑿𝑡+1|𝑿1:𝑡 , 𝜏𝑡+1 = 𝑗) in Eq. 

(5) can be expressed as 

 

𝑝(𝑿𝑡+1|𝑿1:𝑡, 𝜏𝑡+1 = 𝑗) = {
𝑝(𝑿𝑡+1|𝑿𝑗+1:𝑡 , 𝜏𝑡+1 = 𝑗), 𝑗 ≤ 𝑡 − 1

𝑝(𝑿𝑡+1), 𝑗 = 𝑡
 (8) 

 

Therefore Eq. (5), (7)and (8) can be summarized as 

 

𝑃(𝜏𝑡+1 = 𝑗|𝑿1:𝑡+1) ∝ 

{
   𝑝0𝑝(𝑿𝑡+1), 𝑗 = 𝑡

(1 − 𝑝0)𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡)𝑝(𝑿𝑡+1|𝑿𝑗+1:𝑡 , 𝜏𝑡+1 = 𝑗), 𝑗 ≤ 𝑡 − 1
 
(9) 

Let 𝑃𝑗
(𝑡+1)

= 𝑃(𝜏𝑡+1 = 𝑗|𝑿1:𝑡+1)  and 𝑝𝑗+1,𝑡 =

𝑝(𝑿𝑡+1|𝑿𝑗+1:𝑡 , 𝜏𝑡+1 = 𝑗)  then Eq. (5), (7) and (8) can be 

summarized using a state transition equation as follows 

 

[𝑃0
(𝑡+1)

, 𝑃1
(𝑡+1)

, … , 𝑃𝑡
(𝑡+1)

] ∝ [𝑃0
(𝑡)
, 𝑃1

(𝑡)
, … , 𝑃𝑡−1

(𝑡)
] × 

[
 
 
 
(1 − 𝑝0)𝑝1,𝑡 0 ⋯ 0 𝑝0 ∙ 𝑝(𝑿𝑡+1)

0 (1 − 𝑝0)𝑝2,𝑡 ⋯ 0 𝑝0 ∙ 𝑝(𝑿𝑡+1)

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ (1 − 𝑝0)𝑝𝑡,𝑡 𝑝0 ∙ 𝑝(𝑿𝑡+1)]

 
 
 

 
(10) 

 

The matrix in Eq. (10) can be considered as a posterior 

transition matrix. It is the only term involving the newest 

observation 𝑋𝑡+1, and thus is essential in updating the posterior 

PMF of the latest change-point. From Eq. (10) we can see that if 

Eq. (8), or equivalently the posterior transition matrix, is 

tractable, the posterior PMF can be recursively calculated based 

on the posterior PMF obtained at the previous time step. 

Therefore the calculation of Eq. (8) is critical for sequential 

change-point detection.  

To get the analytical form of 𝑝(𝑋𝑡+1|𝑿1:𝑡 , 𝜏𝑡+1 = 𝑗), we first 

derive the posterior 𝑝(𝝁𝑡 , 𝚺𝑡|𝑿1:𝑡 , 𝜏𝑡) , which is provided in 

Theorem 1. 

Theorem 1 Suppose the joint prior for 𝝁𝑡 and 𝚺𝑡 is specified as 

𝚺𝑡~InvWishp(𝚿0, 𝑣0) and 𝝁𝑡|𝚺𝑡~𝑁 (𝝁0,
1

𝛾0
𝚺𝑡) , then the 

posterior 𝑝(𝝁𝑡 , 𝚺𝑡|𝑿1:𝑡 , 𝜏𝑡) can be derived as 

 

(𝚺𝑡|𝑿1:𝑡 , 𝜏𝑡)~InvWishp(𝚿𝜏𝑡+1,𝑡
∗ , 𝑣𝜏𝑡+1,𝑡

∗ ) 

(𝝁𝑡|𝚺𝑡 , 𝑿1:𝑡 , 𝜏𝑡)~𝑁(𝝁𝜏𝑡+1,𝑡
∗ , 𝚺𝑡/𝛾𝜏𝑡+1,𝑡

∗  ) 
(11) 

 

where 

𝑣𝜏𝑡+1,𝑡
∗ = (𝑡 − 𝜏𝑡) + 𝑣0,   𝛾𝜏𝑡+1,𝑡

∗ = 𝛾0 + (𝑡 − 𝜏𝑡), 

𝝁𝜏𝑡+1,𝑡
∗ =

(𝑡 − 𝜏𝑡)�̅�𝜏𝑡+1,𝑡 + 𝛾0𝝁0

𝛾0 + (𝑡 − 𝜏𝑡)
, 

𝚿𝜏𝑡+1,𝑡
∗ = 𝚿0 + (𝑡 − 𝜏𝑡)𝑆𝜏𝑡+1,𝑡 

+
(𝑡 − 𝜏𝑡)𝛾0
(𝑡 − 𝜏𝑡) + 𝛾0

(�̅�𝜏𝑡+1,𝑡 − 𝝁0)(�̅�𝜏𝑡+1,𝑡 − 𝝁0)
′
 

(12) 

 

Here �̅�𝜏𝑡+1,𝑡  and 𝑆𝜏𝑡+1,𝑡  are the mean and variance of the 

observations 𝑿𝜏𝑡+1:𝑡 calculated as 

�̅�𝜏𝑡+1,𝑡 =
1

𝑡 − 𝜏𝑡
∑ 𝑿𝑖

𝑡

𝑖=𝜏𝑡+1
,  

𝑆𝜏𝑡+1,𝑡 =
1

𝑡 − 𝜏𝑡
∑ (𝑿𝑖 − �̅�𝜏𝑡+1,𝑡)(𝑿𝑖 − �̅�𝜏𝑡+1,𝑡)

′𝑡

𝑖=𝜏𝑡+1
 

The proof is given in Appendix A. Based on Theorem 1, the 

predictive density 𝑝(𝑿𝑡+1|𝑿1:𝑡 , 𝜏𝑡+1 = 𝑗)  can be derived as 

follows.  

 

Theorem 2 For 𝜏𝑡+1 < 𝑡 

(𝑿𝑡+1|𝑿1:𝑡, 𝜏𝑡+1)~ 

𝑡 (𝑑𝜏𝑡+1+1,𝑡
∗ , 𝝁𝜏𝑡+1+1,𝑡

∗ ,
(𝛾𝜏𝑡+1+1,𝑡

∗ + 1)𝚿𝜏𝑡+1+1,𝑡
∗

𝛾𝜏𝑡+1+1,𝑡
∗ 𝑑𝜏𝑡+1+1,𝑡

∗ ). 
(13) 

 

For 𝜏𝑡+1 = 𝑡 

(𝑿𝑡+1|𝑿1:𝑡 , 𝜏𝑡+1 = 𝑡)~𝑡 (𝑣0 − 𝑝 + 1,𝝁0,
(𝛾0 + 1)𝚿0

𝛾0(𝑣0 − 𝑝 + 1)
), (14) 

where 𝑑𝜏𝑡+1+1,𝑡
∗ = 𝑣𝜏𝑡+1+1,𝑡

∗ − 𝑝 + 1 is the degree of freedom, 

and the other two arguments are the mean and shape matrix of 

the p-dimensional multivariate t distribution, respectively. The 

proof is provided in Appendix B.  

After the posterior PMF of the latest change-point is updated, 

the distribution of the duration of the current segment can be 

easily obtained to test if the multivariate signal is steady. 

Specifically, we define a probability index 𝑃𝑡 , which is the 

posterior probability of the current segment being longer than a 

threshold 𝐿0: 

𝑃𝑡 = 𝑃(𝑡 − 𝜏𝑡 ≥ 𝐿0|𝑿1:𝑡) = 𝑃(𝜏𝑡 ≤ 𝑡 − 𝐿0|𝑿1:𝑡) =∑ 𝑃𝑖
(𝑡)

𝑡−𝐿0

𝑖=0
 (15) 
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Once 𝑃𝑡 is larger than a threshold 𝛼, the signal is claimed to 

be steady. It is intuitive that 𝐿0 directly influences the detection 

timeliness and false alarm rate or misclassification rate, i.e., the 

probability of signaling a steady state alarm in transient state. It 

may be determined based on engineering knowledge or process 

requirement. However, in most of the practical applications, the 

steady state needs to be detected as early as possible, yet 

without causing the false alarm rate to exceed a certain level. 

Therefore 𝐿0  can be treated as a tuning parameter to make 

trade-off between the detection delay and false alarm rate. For 

𝛼, since the probability index often increases rapidly to a value 

close to 1 (see Section IV.A for details), we simply set it to 0.9 

and do not treat it as a tuning parameter. 

C. Controlling the Computational Cost 

From Section II we know that the posterior distribution of the 

latest change-point can be calculated analytically. However, the 

computational and memory cost of each time step increase 

almost linearly with time 𝑡, as can be seen from Eq. (10). At 

time 𝑡, we need to calculate the posterior PMF 𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡)at 

𝑡  positions, i.e., 𝑗 = 0,1, … , 𝑡 − 1 . For a long multivariate 

signal, the computational cost may become very prohibitive for 

online applications and thus needs to be controlled.  

As observed in applications, the posterior PMF often 

concentrates around a small region and is almost zero at all 

other positions, especially those far before the latest 

change-point. Therefore, a natural way to control the 

computational cost is to approximate the posterior PMF using a 

fixed-support-size strategy, where a fixed number of positions 

with high probabilities are selected to calculate the posterior 

PMF and set the posterior PMF at other locations to zero. 

Specifically, suppose the support size is 𝑚, then at time 𝑡 ≥
𝑚 + 1, 𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡) is calculated at the 𝑚 positions selected 

at the previous time step along with the position 𝑗 = 𝑡 − 1. 

Therefore there are in total 𝑚 + 1  positions to update the 

posterior PMF 𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡) . After the 𝑚 + 1  probabilities 

are calculated, we randomly select 𝑚 positions using weighted 

sampling without replacement to approximate 𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡). 
The weight for each location in the random sampling is simply 

its posterior PMF. Note that from Eq. (9) we can see that if 

𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡) = 0 , then 𝑃(𝜏𝑡+1 = 𝑗|𝑿1:𝑡+1) = 0 , therefore 

we only need to calculate the posterior PMF at the 𝑚 positions 

selected at the previous time step and the new position 𝑗 = 𝑡 −
1. Using this fixed-support-size strategy, the computational 

cost can be effectively controlled and balanced without 

influencing much of the detection accuracy.  

D. Hyperparameter Selection 

The choice of hyperparameters is often crucial in Bayesian 

data analysis when the sample size is limited. In our online 

application, the change-point needs to be detected in a timely 

manner, e.g., detecting the occurrence of a new change-point 

with only a few observations in the new segment, yet without 

resulting in overfitting or excessive change-points. Therefore, 

the hyperparameters need to be selected appropriately. In 

Bayesian inference, if a sufficient amount of historical data is 

available, informative priors are more preferable and could be 

estimated through these data. However, in many applications, 

historical data is very limited. Besides, in our case, to simplify 

the problem, we assume that all segments of different 

characteristics (in terms of duration, noise, amplitude) are 

independent and share the same hyperparameters. As a result, it 

may be unrealistic to obtain a set of hyperparameters that is 

informative for all segments. In this section, we provide some 

guidelines and heuristics for hyperparameter selection.  

Recall that the priors are 𝚺𝑡~InvWishp(𝚿0, 𝑣0) , 

𝝁𝑡|𝚺𝑡~𝑁(𝝁0, 𝚺𝑡/𝛾0), and the prior transition probability given 

in Eq. (3). Therefore the hyperparameters include 𝑝0, 𝑣0, 𝚿0, 𝛾0 

and 𝝁0. Similar to the proof of Theorem 1 and 2, we can get the 

prior distribution of 𝝁𝑡 by integrating out 𝚺𝑡 as  

𝝁𝑡~𝑡(𝑣0 − 𝑝 + 1, 𝝁𝟎, 𝚿0/[(𝑣0 − 𝑝 + 1)𝛾0]). (16) 

As observed in the numerical and real case studies, the 

detection results are not sensitive to the prior transition 

probability 𝑝0 . Any values in the interval [0.05, 0.2] works 

quite well. For the covariance prior InvWishp(𝚿0, 𝑣0) , the 

mean value is 𝐸(𝚺𝑡) = 𝚿0/(𝑣0 − 𝑝 − 1)  for 𝑣0 > 𝑝 + 1 . 

Based on the mean and covariance of 𝚺𝑡 [27], we can see that 

𝑣0 directly controls the noise level. The larger the value is, the 

smaller the noise level of the prior, and thus the more sensitive 

the change-point detection will be or the more change-points it 

will result in. In other words, if the prior noise level is much 

larger than the actual one, the algorithm may not be able to 

detect the mean-shift timely, as the shift is masked by the large 

noise specified by the prior. On the other hand, if the prior noise 

level is too low, an overfitting issue may occur, i.e., too many 

change-points are produced. To select 𝚿0 and 𝑣0 appropriately, 

several scenarios are considered:  

(1) The noise covariance is constant in the whole process 

and some historical data is available. We could calculate the 

sample covariance matrix 𝑺 using the steady state data, and 

then select a very large 𝑣0  and set 𝚿0 = 𝑣0𝑺 . Based on 

Theorem 1, as 𝑣0 → ∞ , (𝚺𝑡|𝑿1:𝑡 , 𝜏𝑡) → 𝑺 . Therefore, the 

problem degenerates to a piecewise constant model with fixed 

covariance 𝚺𝑡  (only mean-shift), which could significantly 

reduce the uncertainty and thus improve the detection accuracy.  

(2) No prior information is available but the noise level is 

roughly known (e.g., within certain range). In this case, for 

simplicity, we can roughly set 𝚿0 = 𝑰𝑝  and select 𝑣0 

accordingly to match the noise level.  

(3) The prior information is not available, yet we want our 

algorithm to be robust enough to handle signals with 

significantly different noise levels. In such case, selecting an 

appropriate set of hyperparameters is not easy. Besides, using a 

single set of hyperparameters may be too restrictive and cannot 

handle all signals. To solve this problem, we propose to use an 

adaptive prior approach, where the covariance prior is 

dynamically updated or learned from the data in the monitoring 

process. More specifically, based on Eq. (11) we can get 
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𝐸(𝚺𝑡|𝑿1:𝑡) =∑ 𝐸(𝚺𝑡|𝑿1:𝑡, 𝜏𝑡 = 𝑗)𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡)
𝑡−1

𝑗=0

=∑
𝚿𝜏𝑡+1,𝑡
∗

𝑣𝜏𝑡+1,𝑡
∗ − 𝑝 + 1

𝑃(𝜏𝑡 = 𝑗|𝑿1:𝑡)
𝑡−1

𝑗=0
. 

(17) 

At time step 𝑡 + 1, we set 𝚺𝑡+1~InvWishp(𝚿0
(𝑡+1), 𝑣0) where  

𝚿0
(𝑡+1) = (𝑣0 − 𝑝 − 1)𝐸(𝚺𝑡|𝑿1:𝑡). (18) 

It is easy to show that 𝐸(𝚺𝑡+1) = 𝐸(𝚺𝑡|𝑿1:𝑡), which is often 

more informative than arbitrarily specified priors. This strategy 

is particularly effective for signals with only mean shift.  

For the mean prior 𝝁𝑡|𝚺𝑡~𝑁(𝝁0, 𝚺𝑡/𝛾0) or Eq. (16), since 

different segments may have different means along the 

multivariate trajectories, a non-informative prior or a “flat” 

prior is recommended to reduce the influence of priors and let 

the data “speak” for themselves. To make the prior 

non-informative, we could roughly select a 𝝁0 (e.g., 0) based 

on the order of the signal magnitude and then select a very 

small positive value for 𝛾0. From Eq. (11) we can see that as 

𝛾0 → 0, 𝝁𝜏𝑡+1,𝑡
∗ → �̅�𝜏𝑡+1,𝑡  and (𝝁𝑡|𝚺𝑡 , 𝑿1:𝑡 , 𝜏𝑡)~𝑁(�̅�𝜏𝑡+1,𝑡 , 𝚺𝑡/

(𝑡 − 𝜏𝑡) ), which does not involve 𝝁0. 

IV. NUMERICAL STUDIES FOR ILLUSTRATION AND 

COMPARISON 

In this section, we use numerical studies to illustrate the 

sequential change-point and steady-state detection process, and 

compare our method with several existing approaches. To 

simulate signals with initial bias in the comparison, we use four 

types of bias functions as signal means, namely, the linear, 

quadratic, exponential and oscillating functions, which are 

commonly used in testing initial bias elimination heuristics [10]. 

The bias functions and their shapes are shown in TABLE I. 

TABLE I 

BIAS FUNCTIONS AND THEIR SHAPES 

Bias Type Function Form Shape 

Linear 𝑥(𝑖) = {

𝑖 − 1

𝑇0
𝐻  , 𝑖 = 1,… , 𝑇0

𝐻  , 𝑖 = 𝑇0 + 1,… , 𝑇

 

 

Quad. 𝑥(𝑖) = {
𝐻 [1 −

(𝑖 − 𝑇0 − 1)
2

𝑇0
2  

]  , 𝑖 = 1,… , 𝑇0

𝐻  , 𝑖 = 𝑇0 + 1,… , 𝑇

 

 

Exp. 𝑥(𝑖) = {
𝐻 [1 −

(𝑖 − 𝑇0 − 1)
2

𝑇0
2  

]  , 𝑖 = 1,… , 𝑇0

𝐻  , 𝑖 = 𝑇0 + 1,… , 𝑇

 

 

Osc. 𝑥(𝑖) = {
𝐻
𝑇0 − 𝑖 + 1

𝑇0
sin (

𝜋𝑖

𝑓
) , 𝑖 = 1,… , 𝑇0

0  , 𝑖 = 𝑇0 + 1,… , 𝑇

 

 

A. Illustration 

To illustrate the detection process and also show its 

robustness, we use four types of signals with different 

characteristics in terms of the change of mean and covariance 

matrix: (1) continuous mean and constant covariance; (2) 

abrupt mean shift and constant covariance; (3) constant mean 

and abrupt variance change; and (4) constant mean and abrupt 

correlation change, as shown in Fig. 2.  

For display convenience, we only consider bivariate signals 

(i.e., 𝑝 = 2) in the illustration. For the signal with continuous 

mean and constant covariance (Fig. 2a), the first dimension 𝑥1 

is an exponential signal while the second dimension 𝑥2 is an 

oscillating signal. The signal parameter is set as 𝐻 = 1, 𝑇0 =
200, 𝑓 = 30, and 𝚺 = 𝜎2𝑰2 where 𝜎 = 0.1. For the signal with 

abrupt mean shift and constant covariance (Fig. 2b), the 

covariance is 𝚺 = 𝜎2𝑰2, the mean for 𝑥1 is set to 0, 0.8, 0.5 and 

0.2 within the time intervals (0, 100), (100, 200), (200, 300) and 

(300, 400), respectively, and the mean for 𝑥2 is set to 0.2, 0.5 

and 0 within (0, 150), (150, 300) and (300, 400), respectively. 

For the signal with constant mean and abrupt variance change 

(Fig. 2c), 𝝁 = 𝟎 and 𝚺 = 𝑑𝑖𝑎𝑔(𝜎1
2, 𝜎2

2), where 𝜎1 = 0.3, 1 and 

0.3 in the time intervals (0, 100), (100, 300) and (300, 400) 

respectively, and 𝜎2 = 0.3, 1 and 0.3 in the time intervals (0, 

150), (150, 300) and (300, 400) respectively. For the case with 

constant mean and abrupt correlation change (Fig. 2d), 𝝁 = 𝟎, 

and 𝚺 = 𝜎2 [
1 𝜌
𝜌 1

] , where 𝜎2 = 1 , 𝜌 = 0.9  for 𝑡 ∈ (0, 200) 

and 𝜌 = 0.6 for 𝑡 ∈ (200,400). The hyperparamters are set to 

𝝁0 = 0, 𝚿0 = 𝑰2 , 𝑝0 = 0.1, 𝛾0 = 0.01 for all cases. For the 

hyperparameter 𝑣0, which is critical to control the prior noise 

level, we set it to 100 for Fig. 2 (a) and (b), and 2 for Fig. 2 (c) 

and (d). The duration threshold 𝐿0 = 30  and probability 

threshold 𝛼 = 0.9. 

 
Fig. 2 Illustration of the sequential change-point detection and steady state 

detection process. (a) continuous mean and constant covariance; (b) abrupt 

mean shift and constant covariance; (c) constant mean and abrupt variance 

change; and (d) constant mean and abrupt correlation change. 

 

(a) (b)

(c) (d)
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In Fig. 2, the vertical dashed lines denote the true steady state 

time. The dashed lines among the observations are the 

estimated means 𝐸(𝝁𝑡|𝑿1:𝑡)  for the posterior distribution 

𝝁𝑡|𝑿1:𝑡. Similar to Eq. (16), we can prove that  

(𝝁𝑡|𝑿1:𝑡 , 𝜏𝑡)~𝑡 (𝑑𝜏𝑡+1,𝑡
∗ , 𝝁𝜏𝑡+1,𝑡

∗ ,
𝚿𝜏𝑡+1,𝑡
∗

𝛾𝜏𝑡+1,𝑡
∗ 𝑑𝜏𝑡+1,𝑡

∗ ). 

Therefore 

𝐸(𝝁𝑡|𝑿1:𝑡) =∑ 𝝁𝜏𝑡+1,𝑡
∗

𝜏𝑡=𝑡−1

𝜏𝑡=0
𝑃(𝜏𝑡|𝑿1:𝑡). 

Clearly, the estimated means are very close to true values, 

indicating that the proposed method can effectively fit the 

signal sequentially through Bayesian inference. The third row 

of each subfigure is the expected duration of the current 

segment, i.e., 𝐸(𝑡 − 𝜏𝑡) , which is used to demonstrate the 

change-point detection. The sharp decrease of the duration 

indicates a newly detected change-point. As we can see, the 

detection is very accurate and timely. The last row of each 

subfigure is the probability index for steady state detection. 

Recall that the probability index is defined as the probability of 

the duration of current segment larger than the threshold 𝐿0. 

We can see that the index often increases rapidly from a 

near-zero value to a value close to 1. Therefore, we simply 

select the probability threshold 𝛼 = 0.9 and do not treat it as a 

tuning parameter. 

To show the effectiveness of the adaptive prior with dynamic 

updating strategy, we choose a signal with the same parameters 

as Fig. 2 (a). As shown in Fig. 3, three cases are considered: (a) 

a covariance prior with an appropriate noise level and without 

dynamic updating; (b) a covariance prior with an excessively 

large noise level, and without dynamic updating; and (c) a 

covariance prior with an excessively large noise level, but with 

dynamic updating. From Fig. 3 (b) we can clearly see that if the 

prior noise level is too high, the algorithm is not able to timely 

detect the change-points, resulting in poor model fitting and 

steady state detection. However, as shown in Fig. 3 (c), if we 

use dynamic updating strategy to “correct” the prior, the model 

fitting and steady state detection become much more accurate, 

even if the initial prior is specified inappropriately. 

 

 
Fig. 3 The performance of adaptive prior in steady-state detection process: (a) 𝚿0 = 𝑰2, 𝑣0 = 100, no dynamic updating; (b) 𝚿0 = 𝑰2, 𝑣0 = 4, no dynamic updating; 

and (c) 𝚿0 = 𝑰2, 𝑣0 = 4, dynamic updating. 

 

B. Performance Comparison with Other Methods 

In this subsection the performance of the proposed method is 

evaluated and compared with existing methods. In statistical 

process control area, two types of performance measures are 

often used, the α-error and the β-error (or detection delay). 

Usually, the α-error is specified at a desired level (e.g., 0.05) 

and the corresponding β-error is used as an evaluation metric to 

compare different control charts. However, this comparison 

scheme is not appropriate for steady state detection, as the 

α-error does not make any sense for non-i.i.d. samples in the 

transient period. Instead, another evaluation metric, namely, the 

false alarm rate (FAR) may be used, which is defined in our 

case as the probability of signaling a steady-state alarm in the 

transient period. Nevertheless, this metric still has shortcoming, 

in that it does not capture the closeness of the false alarm time 

to the true steady state time. In fact, the closeness of the alarm 

time in the transient period to the true steady state is very 

important as it directly reflects the amount of initial bias 

undetected or the remaining time needed to reach steady state. 

Naturally, we could use the closeness measure to evaluate the 

performance. Considering the fact that the detection delay is 

often better than false alarm with the same closeness, we use 

another metric, the weighted standard error (WSE) [8], defined 

as 

WSE = √
1

𝑁
∑ 𝑤(�̂�𝑖)(�̂�𝑖 − 𝑇𝑖0)

2𝑁

𝑖=1
, (19) 

(a) (b) (c)
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where �̂�𝑖 is the detected time, 𝑇𝑖0 is the true steady state time, 𝑁 

is the total number of multivariate signals, and 𝑤(∙)  is the 

penalty weight ratio of detection delay over false alarm given as  

𝑤(�̂�𝑖) = {
𝑤 ∈ (0,1], if �̂�𝑖 ≥ 𝑇𝑖0

1, otherwise
 (20) 

Note that if 𝑤 = 1 , only the closeness is considered in 

performance assessment.  In the comparison, 𝑝 = 4  are 

selected and each dimension is simulated by a bias function, 

which is randomly selected from TABLE I to cover various 

initial bias. To further diversify the initial bias severity, 

different 𝐻, 𝑇0 and noise levels are specified. Specifically, 𝐻 =
1 and 2, 𝑇0 = 200, 300. The length of the signal is set as 𝑇 =
500. To test the robustness of the algorithm under different 

noise types, four scenarios are considered: (1) no 

auto-correlation and no correlation among variables, denoted 

by AR(0); (2) first-order auto-correlation and no correlation, 

denoted by AR(1); (3) second-order auto-correlation and no 

correlation, denoted by AR(2); and (4) no auto-correlation and 

with correlation among variables, denoted by CR. The noise 

types and their parameters are shown in TABLE II.  

TABLE II 
FOUR NOISE TYPES 

Type Equation Parameter 

AR(0) 𝝍𝑡 = 𝝐𝑡 𝝐𝑡~𝑁(0, 𝜎
2𝑰𝑝) 

AR(1) 𝝍𝑡 = 𝜙1𝝍𝑡−1 + 𝝐𝑡  
𝝐𝑡~𝑁(0, 𝜎

2𝑰𝑝), 

𝜙1 = 0.4 

AR(2) 𝝍𝑡 = 𝜙2𝝍𝑡−1 + 𝜙3𝝍𝑡−2 + 𝝐𝑡 
𝝐𝑡~𝑁(0, 𝜎

2𝑰𝑝), 

𝜙2 = −0.25,𝜙3 = 0.5 
CR 𝝍𝑡 = 𝝐𝑡 𝝐𝑡~𝑁(0, 𝜎

2𝑪𝑟) 

 

For each type of signal, three noise levels are considered. For 

AR(0) and CR, 𝜎 = 0.06, 0.1, 0.14. For CR, the correlation 

matrix 𝑪𝑟 is randomly generated through vines method [28]. In 

the simulation, each signal is replicated 100 times, so that a 

total of 1200 signals (2𝐻 × 2𝑇0 × 3𝜎 × 100) are generated for 

each of the four noise types. 

The proposed method (SBP) is compared with three existing 

methods. The first method is the exponentially weighted 

moving average based variance ratio test (VRT) [16], where 

each dimension is monitored separately using the well-known 

method by Cao [6], and the steady state is claimed once all 

dimensions reach steady state. The second method is the SSD 

algorithm [29], which employs a moving window and tests if 

there is any non-stationary drift within that window. The third 

one is a wavelet transform (WT) based method [18], where the 

status index for each dimension is combined using the 

Dempster’s combination rule to form a global detection index.  

The hyperparamters for SBP are set and fixed as 𝝁0 = 0, 

𝚿0 = 𝑰2, 𝑣0 = 100 , 𝑝0 = 0.1 , 𝛾0 = 0.01  for all cases. The 

duration threshold 𝐿0  is selected by optimizing the overall 

WSE under each noise type and weight 𝑤. For all the other 

three methods, the detection parameters are chosen by 

optimizing the overall WSE under each noise type and weight 

𝑤. Note that in practical applications, the true steady state times 

of the training data may be unknown, or there may even not be 

sufficient training data. For the former case, some offline 

method could be used as a benchmark to estimate the steady 

state times, and then the estimated values can be used to 

evaluate WSE. For the latter case, we could use Monte Carlo 

simulation to generate a training database covering various 

initial bias conditions of different characteristics, e.g., noise 

level and changing rate to select an optimal 𝐿0.    

 

 
Fig. 4 The WSE and FAR of SBP, VAR, SSD and WT as functions of penalty weight ratio for different noise types: (a-e) AR(0), (b-f) AR(1), (e-g) AR(2) and (d-h) 

CR. 

 

Fig. 4 shows the WSE and FAR of the four detection 

methods as functions of 𝑤  under different noise types. It is 

worth noting that here the FAR is used only as an auxiliary 

metric to show the detection details. Clearly, the proposed SBP 

outperforms VRT, SSD and WT methods significantly in terms 

of WSE. The FAR of SBP is also much lower than other three 
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methods, indicating that if we reduce the FAR of all other 

methods to the same level as SBP, the WSE will become worse. 

For WT, the WSE does not change when 𝑤 varies. The reason 

is that FAR is above 0.9 for all cases. Based on Eq. (20), the 

WSE will not change much when 𝑤  varies. Note that the 

hyperparameters of the SBP are selected using only several 

trials under the guidelines of the hyperparameter selection in 

Section III.D. The performance could be further improved if 

these parameters are optimized. 

 
TABLE III 

COMPARISON OF SBP, VRT, SSD AND WT FOR 𝑤 = 1. THE DETECTION 

PARAMETERS ARE (1) SBP, 𝐿0 = 50; (2) VRT, 𝜆1 = 0.05, 𝜆2 = 𝜆3 = 0.2, 

THRESHOLD=0.8; (3) SSD, WINDOW SIZE=24 AND (4) WT, 𝛥𝑡 = 20. 

Signal 
 

WSE(𝑤 = 1) 
 

FAR 

𝐻 𝑇0 σ SBP VRT SSD WT SBP VRT SSD WT 

1 

200 

0.06  27.3 47.8 66.3 38.2  0.03 0.01 0.24 0.91 

0.10  28.1 30.0 65.8 49.3  0.14 0.35 0.55 0.91 

0.14  26.6 35.1 70.1 59.8  0.15 0.69 0.68 0.94 

300 

0.06  39.2 36.0 83.0 73.8  0.42 0.17 0.57 0.97 

0.10  35.9 74.8 127.5 105.9  0.37 0.75 0.78 1.00 

0.14  69.7 97.9 155.4 135.3  0.64 0.78 0.84 1.00 

2 

200 

0.06  36.3 66.8 60.4 31.6  0 0.00 0.00 0.97 

0.10  36.9 52.4 63.3 36.6  0 0.00 0.11 0.92 

0.14  32.6 39.6 57.3 39.0  0.02 0.02 0.29 0.94 

300 

0.06  28.3 51.8 70.2 61.1  0.1 0.00 0.13 0.99 

0.10  32.9 40.0 73.2 72.0  0.05 0.12 0.51 0.94 

0.14  29.8 39.8 91.2 76.6  0.2 0.47 0.70 0.97 

Overall  37.0 54.4 86.8 71.4  0.18 0.28 0.45 0.96 

 

TABLE III shows the detailed detection for each type of 

signal with noise AR(0) and penalty weight ratio 𝑤 ≡ 1 (only 

consider closeness). Due to space limitation, the detailed results 

for other noise types and penalty weight ratios are not provided 

here. We can see that SBP is much more robust in handling 

signals of various noise levels and initial bias severity. Bear in 

mind that SSD and WT are moving window based methods, 

and thus are not robust. Too long a moving window may delay 

the detection while too short a moving window may result in 

large FAR. As shown in TABLE III, all the three methods could 

not uniformly perform well across all types of signals. The 

proposed SBP method incorporate the sequential Bayesian 

inference scheme and thus could online “learn” the monitoring 

signal, which could significantly improve its robustness. 

V. REAL CASE STUDIES 

In this section we apply the proposed method to two real 

cases to demonstrate its effectiveness: the Tennessee Eastman 

(TE) process [30] and a serial production line with perishable 

products [31]. 

A. Tennessee Eastman Process 

The TE process is based on a simulation of a realistic 

chemical plant. It has been widely used as a benchmark process 

in the process monitoring community to test various fault 

detection, identification, diagnosis and closed-loop control 

methodologies [32]. As shown in Fig. 5, the process consists of 

five major units: a reactor, condenser, compressor, separator, 

and stripper, and it contains eight chemical components: A, B, 

C, D, E, F, G, and H, where A, C, D and E are reactants, B is 

inert gas, G and H are products and F is byproduct. For the 

detailed process description, please refer to [30] and [32]. 

 

 
Fig. 5 The Tennessee Eastman process. 
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The process contains in total 53 measurement variables (see 

[30, 32] for details), out of which 41 are process variables, i.e., 

XMEAS(1) to XMEAS(41), and 12 manipulated variables, i.e., 

XMV(1) to XMV(12). A total of 21 process faults are 

preprogrammed, i.e., IDV(1) to IDV(21), including A/C feed 

ratio step change, B composition step change, D feed 

temperature step change, etc. Here we only consider Fault 1. 

When Fault 1 occurs at time step 160 (8 hours), a step changed 

is induced for the A/C feed ratio, which results in a decrease in 

A feed in Stream 5 and control loop reacts to increase the A 

feed in Stream 1. After a certain amount of time, the A feed 

becomes steady in Stream 6. Fig. 6 shows the dynamic change 

of A Feed in Stream 1 and Composition of A in Stream 6 once 

Fault 1 occurs. 

 

 
Fig. 6 A Feed in Stream 1 and Composition of A in Stream 6 under normal 

operating condition and Fault 1: (a) A Feed under normal operating condition 

(XMEAS(1)); (b) A composition under normal operating condition 

(XMEAS(23)); (c) A Feed under Fault 1 (XMEAS(1)) and (d) A composition 

under Fault 1 (XMEAS(23)). The vertical dashed lines denote the onset of Fault 

1. 

 

To monitor the steady state of the whole system, we utilize 

all the 41 measurement variables. Since the historical data of all 

these variables under the normal operating condition is 

available or can be easily generated, we use these data to 

roughly estimate the hyperparameter 𝝁0 and 𝚿0. Suppose the 

mean and sample covariance of these normal data are �̅� and 𝑺 

respectively. Then we select 𝝁0 = �̅�, 𝑣0 = 1 × 10
6, and 𝚿0 =

𝑣0𝑺. Other parameters are set as 𝑝 = 0.1, 𝛾0 = 1 × 10−4 and 

𝐿0 = 60. 

Fig. 7 shows the signal segmentation and steady state 

detection results. Note that for space limitation, here we only 

show the first 6 process variables, from XMEAS(1) to 

XMEAS(6). Fig. 7 (g) is the histogram of the simulated 

change-points. They are simulated in this way: (1) randomly 

draw a sample 𝜏𝑇 from 𝑃(𝜏𝑇|𝑋1:𝑇) and then randomly draw 𝜏𝜏𝑇  

from 𝑃(𝜏𝜏𝑇|𝑋1:𝜏𝑇), continue this process until we reach the 

beginning of the signal; (2) repeat the whole process 1000 

times.  

As we can see, the proposed method can accurately detect the 

onset of Fault 1 and can effectively partition the whole 

multivariate system into transient period and steady state period. 

The detected onset time of Fault 1 is 166, which is very close to 

the true onset time 160. Since we know the true onset time, we 

use it to compare the detection accuracy between the proposed 

method and SSD, VT and WT methods. The optimal detection 

parameters that minimize the detection error are (1) VRT: λ1 =
0.1, 𝜆2 = 𝜆3 = 0.2 , Threshold = 1.7 ; (2) SSD: 

window size = 15; and (3) WT: 𝛥𝑡 = 7. The detection results 

are 139, 135, and 237 for VRT, SSD and WT respectively. We 

can see that the proposed SBP method is much more accurate. It 

is worth noting that in the other three methods, we need to build 

up to 41 monitoring charts, which is very time consuming, let 

alone the detection accuracy after fusing all detection results. 

 

 
Fig. 7 Steady state detection of the TE process under Fault 1 with 41 

measurements (only the first 6 measures are shown here). (a)-(f): XMEAS(1) to 

XMEAS(6); (g) the histogram of change-points; (h): the mean duration of the 

current segment 𝐸(𝑡 − 𝜏𝑡) ; and (i): the probability index 𝑃𝑡 . The vertical 

dashed lines denote the onset of Fault 1. 
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B. Serial Production Lines with Perishable Products 

The perishable products refer to those having maximum 

allowable waiting time, exceeding which the item will be 

scrapped due to quality deterioration. Typical examples 

including yogurt and battery production, etc. [31]. Due to 

dynamic changes and frequent disruptions in the manufacturing 

process, and product perishability, the production system often 

operates partially or even entirely in the transient regime. After 

the production system is initiated, it needs some time (warm-up 

period) for the production to reach steady state, e.g., production 

rate, scrap rate, etc. To facilitate process monitoring and real 

time control policy optimization, it is essential to detect when 

the production system reaches steady state. 

Suppose there is a serial production with two Bernoulli 

reliability machines, 𝑚1  and 𝑚2 , a finite buffer 𝐵1  and 

perishable products, as shown in Fig. 8. 

 

 
Fig. 8 Bernoulli line with perishable products 

 

 
Fig. 9 Steady state detection of the Bernoulli line of two machines. The bottom 

three subfigures are the histogram of the change-points, the mean duration of 

the current segment, and the probability index 𝑃𝑡, respectively. The vertical 

dashed line denotes the detected steady state time.  

 

The performance measures that are of interest and are used to 

describe the system state include: (1) the production rate 𝑃𝑅(𝑡), 
which is the average number of parts producted by machine 𝑚2 

in the 𝑡th cycle; (2) the consumption rate 𝐶𝑅(𝑡), which is the 

average number of parts consumed by machine 𝑚1 in the 𝑡th 

cycle; (3) scrap rate 𝑆𝑅(𝑡) , i.e., the expected number of 

scrapped parts in the 𝑡 th cycle; and (4) the work-in-process 

𝑊𝐼𝑃(𝑡), which is the average number of parts in buffer 𝐵1 at 

the end of the 𝑡th cycle. For the detailed description of the 

dataset, please refer to [31, 33].  

The four-dimensional signal and detection results are shown 

in Fig. 9. All the other detection parameters are set using the 

same way as Fig. 7, except that 𝝁0 = 0 and 𝐿0 = 20 are set 

here. To evaluate the detection accuracy, we use an offline 

method, namely, the adaptive minimal confidence region rule 

(AMCR), as a benchmark. AMCR determines the steady state 

starting time by minimizing the confidence region of the mean 

estimate using all the observations since that time [33]. The 

detected steady state starting time using the proposed online 

method is 37, which is very close to the AMCR detected time 

35. In comparison, the VRT, SSD and WT detected times are 

38, 40 and 30 respectively. The corresponding optimal 

detection parameters are λ1 = 𝜆2 = 𝜆3 = 0.5, Thereshold = 1 

for VRT, window size = 5 for SSD, and 𝛥𝑡 = 12 for WT. We 

can see that the proposed SBP approach is still better than the 

other three methods. Note that the advantage of the proposed 

method is that it is much more robust in handling various 

signals of different characteristics using only one set of 

detection parameters. For one multivariate signal, the 

advantage may not be obvious, as other methods can always 

find a set of detection parameters that works well on that 

specific signal. 
 

VI. CONCLUSION AND DISCUSSION 

In this paper, an efficient online steady state detection 

method has been developed for multivariate systems through a 

sequential Bayesian partitioning approach. In this approach, 

multivariate signals are modeled by piecewise constant models, 

where the mean and covariance are constant in each segment, 

and then the duration of each segment is utilized to determine if 

the signal is steady. To facilitate online inference, a Bayesian 

formulation of the piecewise constant model is proposed. By 

using conjugate priors, it is found that the posterior 

distributions of the latest change-points can be calculated 

analytically through a recursive updating approach. Once the 

posterior probability of the duration larger than a predefined 

threshold, the signal is considered steady. To control and 

balance the computational cost, a fixed-support-size strategy is 

proposed to approximate the posterior probability mass 

function of the latest change-points. The role and sensitivity of 

hyperparameters are discussed and several guidelines are 

provided to help select hyperparameters appropriately. 

Thorough simulation and real case studies have demonstrated 

that the proposed method can timely detect the change-points 

and effectively partition the multivariate signal sequentially. 

𝑚1
𝑚2

𝐵1

Scrap
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The comparison results show that the proposed method is much 

more accurate and robust than existing methods in tackling 

signals of various characteristics.  

On the other hand, we need to point out that although our 

approach can handle signals with mild autoregressive noise, 

due to its Gaussian noise assumption, it may not be able to 

detect the steady state accurately when the autocorrelation is 

very severe. Besides, in the current work, we assume that all the 

dimensions of the multivariate signal reach steady state at the 

same time. In practice, however, some dimensions may reach 

steady state earlier than the other ones, which will influence the 

detection performance. We will leave these problems in our 

future investigation. Last but not least, with the recent advances 

in sensing and information technology, we are more and more 

faced with the problem of monitoring up to hundreds or even 

thousands of process variables. In such cases, the proposed 

method may face severe challenges, e.g., prohibitive 

computational cost for online application and ill-posed 

covariance inversion. To overcome these challenges, data 

fusion and distributed monitoring techniques may be needed, 

which will be investigated in near future. 

APPENDIX A PROOF OF THEOREM 1 

Based on the definition of change-point, 𝝁𝑡 = 𝝁𝑡−1 = ⋯ =
𝝁𝜏𝑡+1, 𝚺𝑡 = 𝚺𝑡−1 = ⋯ = 𝚺𝜏𝑡+1. 

𝑓(𝝁𝑡|𝚺𝑡, 𝑿1:𝑡 , 𝜏𝑡) ∝ 𝑓(𝝁𝑡|𝚺𝑡)𝑓(𝑿𝜏𝑡+1:𝑡|𝝁𝑡, 𝚺t, 𝜏𝑡) 

∝ exp [
−𝛾0(𝝁𝑡 − 𝝁0)

′𝚺𝑡
−1(𝝁𝑡 − 𝝁0)

2
] exp [−

∑ (𝑿𝑖 − 𝝁𝑡)
′𝚺𝑡
−1(𝑿𝑖 − 𝝁𝑡)

𝑡
𝑖=𝜏𝑡+1

2
] 

∝ exp [
−𝛾𝜏𝑡+1,𝑡

∗ (𝝁𝑡 − 𝝁𝜏𝑡+1,𝑡
∗ )

′
𝚺𝑡
−1(𝝁𝑡 − 𝝁𝜏𝑡+1,𝑡

∗ )

2
] 

where 

𝛾𝜏𝑡+1,𝑡
∗ = 𝛾0 + (𝑡 − 𝜏𝑡) 

𝝁𝜏𝑡+1,𝑡
∗ =

(𝑡 − 𝜏𝑡)�̅�𝜏𝑡+1,𝑡 + 𝛾0𝝁0

𝛾0 + (𝑡 − 𝜏𝑡)
 

Therefore 

(𝝁𝑡|𝚺𝑡 , 𝑿1:𝑡, 𝜏𝑡)~𝑁 (𝝁𝜏𝑡+1,𝑡
∗ ,

𝚺𝑡
𝛾𝜏𝑡+1,𝑡
∗  ) 

For (𝚺𝑡|𝑿1:𝑡 , 𝜏𝑡), 

𝑓(𝚺t|𝑿1:𝑡 , 𝜏𝑡) = ∫𝑓(𝚺t, 𝝁𝑡|𝑿𝜏𝑡+1:,𝑡 , 𝜏𝑡) 𝑑𝝁𝑡

∝ ∫𝑓(𝚺t, 𝝁𝑡)𝑓(𝑿𝜏𝑡+1:,𝑡|𝚺t, 𝝁𝑡, 𝜏𝑡) 𝑑𝝁𝑡 

where  

𝑓(𝚺t, 𝝁𝑡) ∝ |𝚺t|
−
𝑣0+𝑝+1

2 exp [−
1

2
tr(𝚿0𝚺𝑡

−1)] |
1

𝛾0
𝚺t|

−
1
2
 

exp [
−𝛾0(𝝁𝑡 − 𝝁0)

′𝚺𝑡
−1(𝝁𝑡 − 𝝁0)

2
] 

and  

𝑓(𝑿𝜏𝑡+1:,𝑡|𝚺t, 𝝁𝑡, 𝜏𝑡)

∝ |𝚺𝑡|
−
𝑡−𝜏𝑡
2 exp [−

∑ (𝑿𝑖 − 𝝁𝑡)
′𝚺𝑡
−1(𝑿𝑖 − 𝝁𝑡)

𝑡
𝑖=𝜏𝑡+1

2
] 

Therefore 

𝑓(𝚺t|𝑿1:𝑡, 𝜏𝑡)

∝ ∫∫|𝚺𝑡|
−
𝑣0+𝑝+1

2 exp [−
1

2
tr(𝚿0𝚺𝑡

−1)] |𝚺𝑡|
−
𝑡−𝜏𝑡+1

2 exp [−
1

2
((𝝁𝑡

− 𝝁𝜏𝑡+1,𝑡
∗ )

′
(

𝚺𝑡
𝛾0 + 𝑡 − 𝜏𝑡

)
−1

(𝝁𝑡 − 𝝁𝜏𝑡+1,𝑡
∗ )

− (𝛾0 + 𝑡 − 𝜏𝑡)(𝝁𝜏𝑡+1,𝑡
∗ )

′
𝚺𝑡
−1𝝁𝜏𝑡+1,𝑡

∗ + 𝛾0𝜇0
′𝚺𝑡𝜇0 +∑ 𝑿𝑖

′
𝑡

𝑖=𝜏𝑡+1
𝚺𝑡
−1𝑿𝑖)]𝑑𝝁𝑡 

∝ |𝚺𝑡|
−
𝑣0+𝑝+𝑡−𝜏𝑡+1

2 exp [−
1

2
tr (𝚿0 + (𝑡 − 𝜏𝑡)𝑆𝜏𝑡+1,𝑡

+
(𝑡 − 𝜏𝑡)𝛾0
𝑡 − 𝜏𝑡 + 𝛾0

(�̅�𝜏𝑡+1,𝑡

− 𝝁0)(�̅�𝜏𝑡+1,𝑡 − 𝝁0)
′
)𝚺𝑡

−1] 

where  

�̅�𝜏𝑡+1,𝑡 =
1

𝑡 − 𝜏𝑡
∑ 𝑿𝑖

𝑡

𝑖=𝜏𝑡+1
, 𝑆𝜏𝑡+1,𝑡

=
1

𝑡 − 𝜏𝑡
∑ (𝑿𝑖 − �̅�𝜏𝑡+1,𝑡)(𝑿𝑖 − �̅�𝜏𝑡+1,𝑡)

′𝑡

𝑖=𝜏𝑡+1
 

Therefore  

(𝚺𝑡|𝑿1:𝑡 , 𝜏𝑡)~InvWishp(𝚿𝜏𝑡+1,𝑡
∗ , 𝑣𝜏𝑡+1,𝑡

∗ ) 

where  

𝚿𝜏𝑡+1,𝑡
∗ = 𝚿0 + (𝑡 − 𝜏𝑡)𝑆𝜏𝑡+1,𝑡

+
(𝑡 − 𝜏𝑡)𝛾0
𝑡 − 𝜏𝑡 + 𝛾0

(�̅�𝜏𝑡+1,𝑡 − 𝝁0)(�̅�𝜏𝑡+1,𝑡 − 𝝁0)
′
 

𝑣𝜏𝑡+1,𝑡
∗ = (𝑡 − 𝜏𝑡) + 𝑣0 

APPENDIX B PROOF OF THEOREM 2 

If 𝜏𝑡+1 < 𝑡 , then 𝜏𝑡+1 = 𝜏𝑡 , 𝝁𝑡+1 = 𝝁𝑡 = ⋯ = 𝝁𝜏𝑡+1+1 , 

𝚺𝑡+1 = 𝚺𝑡 = ⋯ = 𝚺𝜏𝑡+1+1. For notational convenience, let 𝝁 =

𝝁𝑡+1 = ⋯ = 𝝁𝜏𝑡+1+1, 𝚺 = 𝚺𝑡+1 = 𝚺𝑡 = ⋯ = 𝚺𝜏𝑡+1+1.  

Based on Theorem 1, 

(𝝁|𝚺, 𝑿1:𝑡 , 𝜏𝑡+1)~𝑁 (𝝁𝜏𝑡+1,𝑡
∗ ,

𝚺

𝛾𝜏𝑡+1+1,𝑡
∗  ) 

(𝚺|𝑿1:𝑡, 𝜏𝑡+1)~InvWishp(𝚿𝜏𝑡+1+1,𝑡
∗ , 𝑣𝜏𝑡+1+1,𝑡

∗ ) 

Since  
(𝑿𝑡+1|𝑿1:𝑡 , 𝜏𝑡+1, 𝚺) = (𝝁|𝚺, 𝑿1:𝑡, 𝜏𝑡+1) + 𝑁(0, 𝚺), 

it is easy to show that  

(𝑿𝑡+1|𝑿1:𝑡, 𝜏𝑡+1, 𝚺)~𝑁 (𝝁𝜏𝑡+1+1,𝑡
∗ , (

1

𝛾𝜏𝑡+1+1,𝑡
∗ + 1)𝚺) 

Therefore  

𝑓(𝑿𝑡+1|𝑿1:𝑡, 𝜏𝑡+1) = ∫𝑓(𝑿𝑡+1|𝑿1:𝑡, 𝜏𝑡+1, 𝚺)𝑓(𝚺|𝑿1:𝑡, 𝜏𝑡+1)𝑑𝚺 

∝ ∫ |(
1

𝛾𝜏𝑡+1+1,𝑡
∗ + 1)𝚺|

−
1
2

× 

 exp

[
 
 
 
 

−

(𝑿𝑡+1 − 𝝁𝜏𝑡+1+1,𝑡
∗ )

′
[(

1
𝛾𝜏𝑡+1+1,𝑡
∗ + 1)𝚺]

−1

(𝑿𝑡+1 − 𝝁𝜏𝑡+1+1,𝑡
∗ )

2

]
 
 
 
 

× 

|𝚿𝜏𝑡+1+1,𝑡
∗ |

𝑣𝜏𝑡+1+1,𝑡
∗

2 |𝚺|−
𝑣𝜏𝑡+1+1,𝑡
∗ +𝑝+1

2 exp [−
1

2
tr(𝚿𝜏𝑡+1+1,𝑡

∗ 𝚺−𝟏)]𝑑𝚺 

∝ ∫|𝚺|−
𝑣𝜏𝑡+1+1,𝑡
∗ +𝑝+2

2 exp [−
1

2
tr((𝚿𝜏𝑡+1+1,𝑡

∗

+
𝛾𝜏𝑡+1,𝑡
∗

𝛾𝜏𝑡+1+1,𝑡
∗ + 1

(𝑿𝑡+1

− 𝝁𝜏𝑡+1+1,𝑡
∗ )(𝑿𝑡+1 − 𝝁𝜏𝑡+1+1,𝑡

∗ )
′
)𝚺−𝟏)]𝑑𝚺 
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∝ |𝚿𝜏𝑡+1+1,𝑡
∗ +

𝛾𝜏𝑡+1,𝑡
∗

𝛾𝜏𝑡+1+1,𝑡
∗ + 1

(𝑿𝑡+1 − 𝝁𝜏𝑡+1+1,𝑡
∗ )(𝑿𝑡+1 − 𝝁𝜏𝑡+1+1,𝑡

∗ )
′
|

−
𝑣𝜏𝑡+1+1,𝑡
∗ +1

2

 

According to the generalized matrix determinant lemma, 

∝ |1 +
(𝑿𝑡+1 − 𝝁𝜏𝑡+1+1,𝑡

∗ )
′

(𝑣𝜏𝑡+1+1,𝑡
∗ − 𝑝 + 1)

(
(𝛾𝜏𝑡+1+1,𝑡

∗ + 1)𝚿𝜏𝑡+1+1,𝑡
∗

𝛾𝜏𝑡+1+1,𝑡
∗ (𝑣𝜏𝑡+1+1,𝑡

∗ − 𝑝 + 1)
)

−1

(𝑿𝑡+1

− 𝝁𝜏𝑡+1+1,𝑡
∗ )|

−
(𝑣𝜏𝑡+1+1,𝑡
∗ −𝑝+1)+𝑝

2

 

Therefore 

(𝑿𝑡+1|𝑿1:𝑡, 𝜏𝑡+1)~𝑡 (𝑑𝜏𝑡+1+1,𝑡
∗ , 𝝁𝜏𝑡+1+1,𝑡

∗ ,
(𝛾𝜏𝑡+1+1,𝑡

∗ + 1)𝚿𝜏𝑡+1+1,𝑡
∗

𝛾𝜏𝑡+1+1,𝑡
∗ 𝑑𝜏𝑡+1+1,𝑡

∗ ) 

Similarly, for 𝜏𝑡+1 = 𝑡, we can get  

(𝑿𝑡+1|𝑿1:𝑡 , 𝜏𝑡+1 = 𝑡)~𝑡 (𝑣0 − 𝑝 + 1,𝝁0,
(𝛾0 + 1)𝚿0

𝛾0(𝑣0 − 𝑝 + 1)
), 

which is just a special case of Eq. (13) by setting 𝜏𝑡+1 = 𝑡. 
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