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Abstract— Active learning is a subfield of machine learning
that is devised for the design and modeling of systems with highly
expensive sampling costs. Industrial and engineering systems
are generally subject to physics constraints that may induce
fatal failures when they are violated, while such constraints
are frequently underestimated in active learning. In this paper,
we develop a novel active learning method that avoids failures
considering implicit physics constraints that govern the system.
The proposed approach is driven by two tasks: safe variance
reduction explores the safe region to reduce the variance of
the target model, and safe region expansion aims to extend the
explorable region. The integrated acquisition function is devised
to conflate two tasks and judiciously optimize them. The proposed
method is applied to the composite fuselage assembly process with
consideration of material failure using the Tsai-Wu criterion, and
it is able to achieve zero failure without the knowledge of explicit
failure regions.

Note to Practitioners—This paper is motivated by engineering
systems with implicit physics constraints related to system
failures. Implicit physics constraints refer to failure processes
in which explicit analytic forms do not exist, so demanding
numerical simulations or real experiments are required to check
one’s safety. The main objective of this paper is to develop an
active learning strategy that safely learns the target process in
the system by minimizing failures without preliminary reliability
analysis. The proposed method mainly targets real systems whose
failure conditions are not thoroughly investigated or uncertain.
We applied the proposed method to the predictive modeling of
composite fuselage deformation in the aircraft manufacturing
process, and it achieved zero failure in sampling by considering
the composite failure criterion.

Index Terms— Active learning, physics-integrated machine
learning, composite structures assembly.
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I. INTRODUCTION

ACTIVE learning is a subfield of machine learning
that maximizes information acquisition to reduce the

labelling cost in supervised learning [1]. Contrary to passive
learning such as factorial, maximum entropy, Latin Hypercube
design (LHD) [2], active learning optimizes the acquisition
function that quantifies the potential importance of unlabelled
data, and interactively queries the most informative design
point to the oracle. Generally, acquisition functions refer to
the up-to-date model or labelled data, while there are various
strategies that can be adopted according to the preference
in information criteria and characteristics of systems. The
engineering domain is one of the beneficiaries of active
learning due to the high complexity of systems and the
expensive evaluation cost [3], [4], [5].

However, active learning in engineering applications has
been mostly utilized without considering coexisting or inherent
constraints that may have different processes thereof. It is very
crucial to consider such constraints in engineering systems,
since most of them are subject to physics constraints that
may induce fatal and irreversible failures. For example, design
of the automatic shape control system in composite aircraft
manufacturing need to consider potential material failures such
as crack, buckling, and delamination caused by intolerable
inputs [6]. The inverse partial differential equation (PDE)
problem is another example that is used to calibrate parameters
in physics models based on observations. It usually involves
physics constraints comprised of different PDEs, and the
constraints must be satisfied in order to build first-principle
models. In both cases, the application of active learning
without considering physics constraints may induce fatal
failures or biased models, so constraints must be considered
in engineering problems.

To consider physics constraints in active learning, it is
straightforward to define a safe region where design points
satisfy the safe conditions (with high probability at least),
and conduct active learning within the safe region. However,
it is not always possible in practice, since physics constraints
cannot be explicitly attained due to the complex nature of
the system. Examples include the crash damage analysis of
commercial vehicles composed of different materials, and
physicochemical interactions in corrosion of alloys. In these
cases, fundamental physics laws and equations cannot be
directly applied or are insufficient to accommodate the com-
plexities of mechanisms. Physics-based numerical methods
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such as finite difference methods and finite element methods
(FEM) [7] are well-established and convincing to analyze large
classes of complex structures including failures, while they
are too computationally demanding to identify the entire safe
region. Moreover, their deterministic solutions are vulnerable
to various uncertainty sources such as material properties,
geometries, and loads.

In order to circumvent the aforementioned limitations of
physics-based approaches, machine learning models have been
widely used in the engineering domain due to their flexibility,
inexpensive prediction, and capability of uncertainty quantifi-
cation (UQ). Physics information can be highly advantageous
for machine learning in several aspects such as generalization
and physical consistency [8]. Especially, Gaussian processes
(GPs) have shown remarkable performance in stochastic analy-
sis of structural reliability that aims to evaluate the probability
of system failure [9]. A common reliability analysis approach
employs the GP surrogate model of performance function
associated with the system failure, and uses the acquisition
function (e.g., [10] and [11]) that leads to sampling near the
boundary of safe and failure regions. The boundary is called
the limit-state, which is the margin of acceptable structural
design. However, the reliability analysis is mainly interested
in the response surface associated with failure, and it is
time-consuming due to the requirement of a large number
of samples to estimate the underlying distribution at the
limit-state. Hence, it can be data-inefficient to implement
reliability analysis prior to the estimation of safe region. So the
development of flexible active learning that takes account of
target and failure processes simultaneously is promising for
systems with implicit physics constraints.

The principle of active learning is exploitation of knowledge
from observations, and exploration by tackling the knowledge
such as the design point with maximum entropy or the
most disagreeable point in the set of hypotheses. However,
if implicit constraints exist in the design space, active learning
can be very challenging, since the most informative design
point may be located in the failure region. Conversely, if active
learning is too conservative to avoid failures, the resulted
model will be vulnerable in the unexplored safe region. Conse-
quently, active learning for physics-constrained systems should
simultaneously take into account the following objectives:

1) maximizing the information acquisition for the target
model;

2) expanding the explorable safe region by focusing on
constraint functions,

and they are must be achieved safely. Definitely, two objectives
are at odds since they are associated with different functions,
so the active learning strategy must be judiciously controlled.

In this paper, we propose an active learning methodology
for systems that are constrained by implicit failure processes.
The overview of the proposed method is illustrated in Fig. 1.
The target process in the system which we aim to learn is
subject to failure processes with implicit physics constraints.
Both processes can be evaluated via physics-based simulations
or experiments, which are expensive to observe. In order to
alleviate the sampling cost, we build the predictive model for
the target function and constraints by imposing GP priors

on them, and initializing with a proper design (e.g., space-
filling). The objective of our active learning is to train
the predictive model of the target function data-efficiently
and safely by minimizing the cost from undesirable failures
incurred by implicit physics constraints. The active learning
strategy is built upon two sub-strategies: (i) safe variance
reduction; and (ii) safe region expansion. To minimize the
predictive model variance with respect to the implicit safe
region, safe variance reduction explores the estimated safe
region induced by the constraint model. Concurrently, safe
region expansion evaluates unobserved samples with respect
to their closeness to the safe region boundary to improve
the estimated safe region. Two sub-strategies are threaded
under the multi-objective optimization (MOO) framework so
that informativeness in both the target and the safety can be
simultaneously considered. Our contributions in this paper are
as follows.

1) We develop the safe variance reduction strategy to
improve the predictive performance of the target model
under the regime of implicit physics constraints.

2) The safe region expansion strategy is devised to expand
the explorable safe region for further improvement of the
target model, which concurrently dedicates to avoiding
failures.

3) A new acquisition function is proposed that flexibly
integrates two heterogeneous strategies.

This paper is organized as follows. In Section II, we review
literature related to active learning applications in which
physics involved and machine learning with implicit con-
straints. In Section III, we elucidate our active learning
strategy considering implicit constraints to avoid failures.
Section IV illustrates how the proposed strategy works under
the regime of implicit constraints with the simulation study.
The real-world application to predictive modeling of com-
posite fuselage deformation considering structural failures is
presented in Section V. Lastly, a summary of this paper is
provided in Section VI.

II. LITERATURE REVIEW

In this section, we discuss related literature dichotomiz-
ing into (i) active learning for engineering systems; and
(ii) sequential sampling with implicit constraints. While the
literature of two topics may not be related, the integration of
two approaches can be the cornerstone of our approach. In the
application of active learning to engineering systems, we focus
on that how physics in the engineering system influences active
learning. In sequential sampling with implicit constraints,
we do not restrict the constraints therein being related to
physics, yet focus on the ways of considering constraints
in sequential sampling, which includes active learning and
Bayesian optimization.

A. Active Learning for Engineering Systems

In the engineering domain, active learning is vastly utilized
for surrogate modeling of expensive-to-evaluate systems, and
the limit-state estimation in structural reliability analysis. For
surrogate modeling, active learning aims to sample design
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Fig. 1. Overview of the proposed methodology.

points that can minimize the generalization error of the model.
One of the most applied areas is computational physics
that often involves surrogate models of systems of which
physics-based models are costly or absent. For response sur-
face method (RSM), Alaeddini et al. [12] proposed an active
learning strategy adopting the variance reduction of Laplacian
regularized parameters. Since RSM is often too restrictive
to approximate complex phenomena, deep neural networks
(DNNs) and GPs are substantially used for surrogate modeling
of PDE-based models. For DNNs, Costabal et al. [13] pro-
posed a physics-informed neural network for cardiac activation
mapping. The neural network model is guided by the loss
function that involves the physics equation, one of the most
widely used approaches to infuse physics into machine learn-
ing. In their active learning, they chose the design point with
the largest uncertainty. Lye et al. [14] proposed active learning
for surrogate modeling of PDE solutions that chooses the next
query point minimizing the cost function with the sequentially
updated DNN model. In order to ensure the feasibility, they
confined the explorable settings with the feasible region known
a priori. Pestourie et al. [15] employed the ensemble neural
network model for photonic-device model, and used quantified
uncertainty of the network model for active learning. However,
the aforementioned works do not consider implicit constraints,
so they may induce failures if there exist failure conditions in
the design space.

For GP models, Yang et al. [16], [17] proposed a
physics-informed GP for the stochastic PDE simulator. The
GP model is informed by replicated observations of the PDE
simulator, and predictive variance is referred to for active
learning. Chen et al. [18] developed the GP that incorporates
linear and nonlinear PDE information. They involved the
active learning strategy to determine PDE points for their GP
model by employing the integrated mean-squared error (IMSE)
criterion [2]. Yue et al. [4] proposed the variance-based and
the Fisher information criteria for GPs considering uncertainty,
and applied them to modeling of composite fuselage defor-
mation. Likewise, existing active learning strategies for GPs
in engineering applications are also unconstrained, so their
approaches may lead to infeasible design points in constrained
systems.

In structural reliability analysis, active learning confines its
interest to the limit-state, which is a hyperplane of the input
space, in order to estimate the probability of failure in the
system. Generally, their acquisition functions are designed
to give more weights on sampling from the vicinity of

the limit-state. Echard et al. [11] proposed an acquisition
function to estimate the limit-state with GP models, and
suggested the framework that encompasses the limit-state
estimation and the Monte-Carlo simulation for the conditional
density estimation. Bichon et al. [10] proposed an acquisition
function called expected feasibility function that quantifies
the closeness of a design point to the limit-state considering
quantified uncertainty with the GP. More explicitly, the vicinity
of the limit-state was defined with predictive uncertainty of
the GP for every candidate design point. Bect et al. [19]
proposed the stepwise uncertainty reduction approach that
employs the IMSE criterion associated with the estimated safe
region. Wang et al. [20] proposed the maximum confidence
enhancement method whose acquisition function aggregates
the distance to the limit-state, input density, and the predictive
uncertainty by multiplying them. The components are the
same to [10], while the formulation of the acquisition function
is different. Sadoughi et al. [21] proposed a dynamically
adjustable acquisition function, which uses smoothly weighted
closeness, unlike the aforementioned approaches. However,
surrogate-based structural reliability analysis is specifically
devised for the estimation of constraints, so it does not involve
other non-failure processes such as the target process in our
problem. Furthermore, it does not constrain sampling from the
safe region as far as the point is close to the limit-state, since
their objective is to estimate the limit state with simulations.

B. Sequential Sampling With Implicit Constraints

Constraints are critical in optimization problems, while
the feasible set may be unknown a priori in practice. It is
important to consider such implicit constraints in machine
learning as well, since it is one way to incorporate background
domain knowledge and make the model more consistent
with the reality. There are mainly two distinct manners in
considering implicit constraints in sequential sampling, and
the most appropriate scenario to engineering problems is
that any evaluation in the infeasible design space should
be avoided. We refer to this type as safe exploration, since
any design point violating the constraint invokes undesirable
system failures. Schreiter et al. [22] proposed active learning
for GPs whose motivation is closest to ours. They used
the nuisance function of GP classification to discriminate
the safe region and the unsafe region, and used the lower
confidence interval to ensure safety during the maximum
entropy based active learning. However, their approach only
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focuses on entropy of the target function, so it may not
efficiently expand the explorable safe region. Consequently,
it may lead to inactive learning due to insufficiently revealed
safe region, and poor performance of the target model over the
unexplored safe region. Furthermore, the nuisance function of
GP classification needs some attention in its application. First,
the nuisance function refers to binary labels, so it may distort
the numerical information from the constraint observations that
are usually related to closeness to the boundary of the safe
region. Second, when the dataset contains only either safe or
unsafe samples, it fails to provide promising discrimination.
Turchetta et al. [23] suggested safe exploration for interactive
machine learning that can be adopted for active learning. They
conduct safe region expansion when the most informative data
is not located in the current safe region. However, their safe
region expansion aims to validate the safety of unobserved
data, so it is inefficient to expand the explorable space to the
true safe region which should be maximized to reduce the risk
of the model.

Another way to address implicit constraints is that the
feasibility can be disregarded in the middle of the tra-
jectory in sequential sampling. This type is usually found
in constrained Bayesian optimization, which is a sequential
design strategy for global optimization of black-box func-
tions with constraints. First of all, it should be noted that
active learning and Bayesian optimization have different aims.
Active learning focuses on summarizing unobserved samples
to improve the model’s quality over the input space, while
Bayesian optimization aims to find the optimal location over
the input space by evaluating samples directly associated with
improvement in the objective function. Although they have
different aims and derivations of their acquisition functions,
constrained Bayesian optimization problems have some com-
mon features in consideration of constraints in their queries.
Many constrained Bayesian optimization methods [24], [25],
[26], [27], [28] follow the framework of Schonlau et al. [29]
that multiplies the probability of feasibility to the expected
improvement (EI) function. Gramacy and Lee [30] deemed
infeasible samples also can be informative, so they proposed
the integrated expected conditional improvement that is also
weighted by expected feasibility. AlBahar et al. [31] proposed
a physics-constrained Bayesian optimization with multi-layer
deep GPs, and used it for the optimal actuators placement.
Hernández et al. [32] proposed the predictive entropy search
with constraints that refers to the expected entropy reduction at
the minimum associated with observations from the objective
function and constraints. It automatically focuses on objective
and constraints by merging them into the integrated entropy.
Basudhar et al. [33] used the probabilistic support vector
classifier to discriminate the safe region. Then, the probability
of constraint satisfaction is used to weigh the EI function as
well. However, the multiplication of the feasibility probability
only aids in leading their solutions to be feasible, so it is not
much informative to expand the feasible region. Meanwhile,
Sui et al. [34] proposed a constrained Bayesian optimization
algorithm which devoted to both optimization and safe region
expansion. They expanded the safe region in the first phase,
and then implemented typical Bayesian optimization within

the disclosed safe region. However, their safe expansion may
be subject to slow convergence to the ground-truth unless
the Lipschitz constants of constraint functions are known
beforehand.

III. METHODOLOGY

An efficient safe exploration under implicit constraints can
be accomplished when active learning devotes to both target
approximation improvement and explorable region expan-
sion. However, existing methods in Section II-B are lack
of explorable region expansion, and indeliberate in avoid-
ance of failure sampling. In this section, we propose our
failure-averse active learning method for physics-constrained
systems. We begin with specifying our problem whose con-
straints can be evaluated along with the target process. Then,
we describe safe variance reduction and safe region expansion
in detail, respectively. At last, they are combined in the
integrated acquisition function under the MOO paradigm, and
the practical implementation of overall algorithm is discussed.

A. Problem Statement and Gaussian Process Priors

Consider a system defined over a compact and connected
design space � ⊆ R

D . The system includes the target function
f : � → R, we want to predict, and the constraint function
h : � → R, related to the system failure and assumed to be
independent of f . Let ξ ∈ R be a tolerable failure threshold
associated with h, which should be defined conservatively
considering intrinsic uncertainty of the process. For any design
point x = [ x1 · · · xD ]� ∈ �, the system failure occurs when

h(x) ≥ ξ, (1)

and safe otherwise. For example, f can be dimensional
deformation of a solid structure given a force vector x, and
h can be the resulted von Mises stress in the structure. Both
functions can be observed or evaluated with the costly real
experiment and relevant physics-based models as

y = f (x) + � f , z = h(x) + �h,

where � f ∼ N (0, ν2
f ) and �h ∼ N (0, ν2

h ) are observation
noise. We assume that both f and h are continuous, and ν f

and νh are known, while they can be also estimated with GP
priors on f and h to be described later with nugget effects.
The safe region �S , the subset of design space comprised of
non-failure design settings, is unknown and difficult to obtain
due to the prohibitive cost of the evaluation. We refer to the
complementary of safe region as the failure region such that
�F = � \ �S.

In our case, due to the high cost of evaluation of h and f ,
we prefer to sample the most informative set of design points
that minimizes the generalization error associated with the
target function. Suppose we have n samples from the system,
denoted by Dn = {(xi, yi , zi)}n

i=1, and f̂n and ĥn are our
predictors of f and h trained with Dn , respectively. Then, the
expected risk of f̂n using L p loss is

R f ( f̂n) =
∫

�S

L p( f (x), f̂n(x)) dλ(x), (2)
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where L p(y, y �) = |y − y �|p is the loss function, and λ(x)
is a probability measure defined over �. In our problem, any
violation of (1) may incur prohibitive cost of failure in the
system, so any x ∈ �F will not be considered for the system.

We assume that there exists a reproducing kernel Hilbert
space for each of f and h, and they are bounded therein.
It allows us to model both functions with GPs with corre-
sponding kernels such that k f : �2 → R and kh : �2 →
R [35]. In this paper, we consider the automatic relevance
determination using radial basis function (RBF) kernel for
x, x� ∈ � as

k f (x, x�) = κ2
f (x − x�)�M2

f (x − x�) + ν2
f δ(x, x�),

where κ f is the nonnegative scale hyperparameter, M f is the
diagonal matrix of nonnegative length hyperparameters θ f =
[ θ f,1, . . . , θ f,D ]�, and δ is the Kronecker delta function for
the nugget effect. By defining kh in the same manner, we can
write f and h as

f (x) ∼ GP(
μ f (x), k f (x, x�)

)
,

h(x) ∼ GP(
μh(x), kh(x, x�)

)
,

where μ f and μh are mean functions, assumed to be zero
without loss of generality.

Instead of employing a discriminative function for esti-
mating the safe region, the GP regressor is more suitable
for physics constraints since the output of h is numerically
informative. More explicitly, as h(x) is closer to the failure
threshold, we may notice that x is closer to the safe boundary.
Moreover, discriminative functions require observations from
both safe and failure regions, while regressors are not subject
to such imbalance or absence of one class. Therefore, we fit
our GP regression model directly on observed outputs from h,
and refer to the distance between the output and the failure
threshold to infer the probability of safety.

Let us denote Xn as the D×n design matrix of [ x1 · · · xn ],
and yn and zn as the vector of n observations from f and h,
respectively. With GP priors on f and h, the hyperparameters

 f = {κ f , θ f } and 
h = {κh, θh} can be estimated by
maximizing the log marginal likelihoods, which are

�(yn| Xn,
 f ) = −1

2
y�K −1

f,ny − 1

2
log |K f,n| − n

2
log 2π,

�(zn| Xn,
h) = −1

2
z�K −1

h,nz − 1

2
log |Kh,n| − n

2
log 2π,

where K f,n and Kh,n are covariance matrices comprised of
every pair of x, x� ∈ Xn given 
 f and 
h , respectively. Once
f̂n and ĥn are obtained with maximizing their log marginal
likelihoods, the predictive mean and variance of f̂n at an
unobserved design point x ∈ � can be derived as

E[ f̂n(x)] = k f (x, Xn)K −1
f,nyn,

Var
(

f̂n(x)
) = k f (x) − k f (x, Xn)K −1

f,nk f (x, Xn)
�,

and so does ĥn’s.

B. Safe Variance Reduction

Let us consider L2 loss called the mean squared error
(MSE), although it is not required in practice for our approach,

and suppose f∗ is an unbiased predictor of f with the
minimum MSE (also called the best MSE predictor [2])
with respect to �S in the family of GP. Then, (2) can be
decomposed as

R f ( f̂n) = R f ( f∗) +
∫

�S

Var
(

f̂n(x)
)
dλ(x), (3)

which is the sum of the L2 risk of f∗ and the variance of f̂n .
Since the L2 risk of f∗ is negligible due to its unbiasedness, (3)
can be reduced by focusing on the variance reduction in f̂n .
Let us denote the integrated variance of the predictor in (3) as

V�S ( f̂n) =
∫

�S

Var
(

f̂n(s)
)
dλ(s),

where s ∈ �S . Then, the expected variance reduction over �S

in f̂n for an unobserved x ∈ � is

V�S ( f̂n|x) = V�S ( f̂n) −
∫

�S

Var
(

f̂n(s|x)
)
dλ(s), (4)

Var
(

f̂n(s|x)
) = k f (s)−k f (s, Xn+1)

�K −1
f,n+1k f (s, Xn+1), (5)

where Xn+1 = [ Xn x ], and K f,n+1 is the covariance matrix of
Xn+1. Eq. (4) is the IMSE criterion and always nonnegative
(Proposition 1 and 2 in [36]), and it turns out that the IMSE
criterion can be simplified by (5) as

V�S ( f̂n|x)=
∫

�S

k f (s, Xn+1)
�K −1

f,n+1k f (s, Xn+1)dλ(s), (6)

which is to be maximized. For the GP, choosing the next point
with the IMSE criterion is called active learning Cohn (ALC),
and it is widely used along with active learning Mckay (ALM)
which refers to the maximum entropy [37].

Unfortunately, (4) cannot be used directly, since the safe
region is unknown a priori. Thus, we stick to our predictor ĥn

to estimate the safe region as

Sn = {x ∈ �| μ̂h
n(x) + βn σ̂

h
n (x) < ξ}, (7)

where μ̂h
n(x) and σ̂ h

n (x) are the mean and standard deviation
of ĥn(x), and �(βn) = Pr(ĥn(x) < ξ) = 1 − γn for which
γn ∈ (0, 1). That is, βn is related to the failure probability
of x ∈ Sn . By constraining our choice of next design point
x ∈ Sn , (4) can be written as

V�S ( f̂n|x) = V�S\Sn( f̂n) + VSn( f̂n|x). (8)

The first term of (8) indicates the irreducible variance induced
by discrepancy between �S and Sn , while the second term is
the reducible variance in the estimated safe region. It implies
that a consequence of adopting Sn instead of �S with
extremely low γ is underestimating the expected variance
reduction of x over �S. In order to extend the purview of
variance reduction by x in (8), we may consider another safe
region, called the progressive safe region, which has a more
generous safety level than Sn as

S+
n = {x ∈ �| μ̂h

n(x) + β+
n σ̂ h

n (x) < ξ},
where �(β+

n ) = Pr(ĥn(x) < ξ) > 1 − γ +
n of which γ +

n < γn.
Straightforwardly, we have Sn ⊂ S+

n ⊆ �. By considering S+
n

as the reference set for the integrand (5), i.e., s ∈ S+
n , we can
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reduce the irreducible variance in the first term. Consequently,
we have the following acquisition function

J f (x) = VS+
n
( f̂n |x), (9)

where x ∈ Sn .
Eq. (8) shows that the choice of γn for Sn affects the

learnability of active learning and the safety. More explicitly,
Sn needs to be conservative to prevent failure by setting
γn small enough, while too conservative setting of Sn will
increase the irreducible variance term in (8) and reduce the
explorable region. Therefore, a promising choice of γn should
consider the capacity to afford failures, and the following
proposition can be prescribed.

Proposition 1 (Failure Probability): For N-sampling bud-
get and any ζ ∈ (0, 1), choosing design points xi ’s from the
safe region Si for i ∈ {n + 1, . . . , n + N} has the failure
probability as

Pr

(⋃
i

(
ĥ(xi) ≥ ξ

∣∣ xi ∈ Si−1
)) ≤ ζ,

where Si of which β = �−1(1 − ζ/N) for ∀ i .
The proof is provided in supplementary material. For the
progressive safe region, increasing γ +

n will reduce the uncon-
sidered safe region �S \ S+

n , while it can also simultaneously
increase the variance in �F \ Sn , which is meaningless.
Therefore, S+

n also need not to be defined too generous.
Even though J f is designed carefully with appropriate

safe regions, we can minimize the irreducible variance by
minimizing the discrepancy between Sn and �S. Generally
speaking, J f only focuses on reducing the variance of f̂n ,
and does not care about reducing the discrepancy. In order
to efficiently expand the explorable region and improve the
estimation accuracy of safe region, we need to incorporate the
information from h as well as f in the information criterion.
In the following section, we illustrate safe region expansion
that focuses on the estimation of safe region boundary.

C. Safe Region Expansion

Safe region expansion is required to reduce the error
induced by the mismatch of Sn and �S, and to furnish
higher confidence in exploration. It is metaphorically similar
to that we can win when we know much more about the
opposite. To expand the safe region without failure, we need
to exploit the numerically informative output of h to approach
the boundary of safe region from inside thereof, and expansion
can be maximized when the design point is closest to the
boundary [38]. Based on [39], we incorporate uncertainty of
ĥn and closeness to the boundary with the following criterion:

I (x) =
{

ηn(x)2 − (ĥn(x) − ξ)2 ĥn(x) ∈ (ξ − ηn(x), ξ)

0 Otherwise
,

where ηn(x) = ασ̂ h
n (x) of which α > 0. I (x) attains its

maximum when ĥn(x) = ξ , which is the case of x ∈ ∂�S.
Otherwise, it gets additional scores when ĥn(x) does not
exceed the threshold within an acceptable interval. The role
of α is to magnify the effect of uncertainty in I (x). Let the

expected value of I (x) with respect to ĥn be Jh(x), which
is the acquisition function for safe region expansion, and
expressed as

Jh(x) = ηn(x)2(�̂h
n(ξ) − �̂h

n(ξ − ηn(x))
)

−
∫ ξ

ξ−ηn(x)

(h − ξ)2φ̂h
n (h)dh, (10)

where �̂h
n and φ̂h

n are the CDF and the PDF of ĥn(x).
Eq. (10) is composed of two terms: the first term is related to
uncertainty, and the second term is related to closeness to the
boundary. Consequently, maximizing (10) leads to sampling
near the boundary with high uncertainty if such points exist,
and the most uncertain point otherwise.

Obviously, interests of J f and Jh are inherently different,
since they are associated with different mechanisms, f and
h. Also, they are formulated for different purposes. It implies
that the safe approximation of target function and the safe
region expansion have trade-off, thus we need to compromise
between both criteria to determine the most informative design
point. We discuss the framework for addressing the balance
between two criteria in the next section.

D. Harmonizing Acquisition Functions

In this section, we integrate two acquisition functions to
optimize (maximize) them judiciously to achieve safe active
learning. Two distinct acquisition functions are proposed
to accomplish different objectives, and optimization of two
criteria is a MOO problem. Conceptually, we may think of a
point x ∈ Sn that achieves the maximum of each criterion
simultaneously, called as the utopia point. However, MOO
typically has no single optimal solution contrary to usual
single-objective optimization. Therefore, the Pareto optimality
concept is mostly referred to define the optimality in this
regime. Let J(x) = [

J f (x) Jh(x)
]�

, then Pareto optimality
and its weaker version are defined as follows.

Definition 1 (Pareto Optimal): A point, x∗ ∈ �, is Pareto
optimal if and only if there does not exist another point, x ∈ �,
such that J(x) ≤ J(x∗), and Ji(x) < Ji(x∗) for at least one of
i ∈ { f, h}.

Definition 2 (Weakly Pareto Optimal): A point, x∗ ∈ �,
is weakly Pareto optimal if and only if there does not exist
another point, x ∈ �, such that J(x) < J(x∗).
Note that inequalities in the definitions associated with vectors
stand for element-wise inequality. Obviously, every Pareto
optimal point is weakly Pareto optimal, while the reverse is
not true.

It is common to scalarize the vector-valued objective func-
tions in MOO, and the formulation of problem is critical for
Pareto optimality of the solution. In this paper, we use the
weighted sum, which is widely used, to scalarize our criteria
with the integrated acquisition function:

J (x) = (
(1 − w)J f (x)p + wJh(x)p

)1/p
, w ∈ [0, 1], (11)

where p ∈ N. The weight parameter w in (11) exactly conveys
the preference of decision maker between two objectives.
For example, if one is more interested in the safe region
expansion, the decision maker will weigh more on Jh , and
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decrease w when the estimated safe region seems acceptable.
Otherwise, some may begin with small w to see if the safe
region expansion is necessary. It turns out that the integrated
acquisition function guarantees the Pareto optimality of its
solution given w as shown in the following proposition.

Proposition 2 (Sufficient Pareto Optimality, [40]): For any
w ∈ (0, 1), a solution that maximizes the integrated criterion
is Pareto optimal associated with w. When w = 0 or w = 1,
a solution of the integrated criterion is weakly Pareto optimal
associated with w.

However, J f and Jh may be different in their scales, so the
weight parameter w cannot be determined straightforwardly.
It is common to transform component objective functions in
the formulation of MOO, so we may normalize each criterion
as

Ji(x) = Ji (x) − min Ji

max Ji − min Ji
,

where minimum and maximum of Ji for i ∈ { f, h} stand for
the minimum and maximum over Sn . To normalize objective
functions, we need their maxima and minima, so we provide
two scaling options in this paper. The first scaling method
is for global searching in a dense-grid over the design
space. By discretizing the design space into a dense-grid,
we may evaluate all criteria over the grid. It can provide the
heuristically global optimal solution, and make scaling more
consistent. Another scaling method is to incorporate the lower
and upper bounds of criteria. We already have that both criteria
are nonnegative, so they are lower bounded by zero. For the
upper bounds, J f is upper bounded by

VS+
n
( f̂n) =

∫
S+

n

Var
(

f̂n(s)
)
dλ(s),

since the expected variance reduction in (9) is nonnegative.
Meanwhile, Jh is upper bounded by

sup
x∈Sn

ηn(x)2 = sup
x∈Sn

α2σ̂ h(x)2

from its original formulation. In this way, we can scale both
criteria by their tractable bounds that can be obtained prior to
the evaluation of every candidate.

The upper bounds of J f and Jh can be referred to the
asymptotic convergence of the integrated acquisition function
as described in Proposition 3, of which proof is given in
supplementary material.

Proposition 3 (Asymptotic Convergence): Suppose a non-
empty Sn. As n → ∞, Sn → S∗ ⊆ �S, and also J (x|Sn) → 0,
for every x ∈ Sn, and any w ∈ [0, 1].
Proposition 3 shows that the integrated criterion J leads our
estimators to the best estimators of f and h over a conservative
estimation of �S , regardless of the choice of w.

Let us refer to our active learning as PhysCAL (Physics-
Constrained Active Learning), and its pseudocode is provided
in Algorithm 1. In practice, integrals in (9) and (10) require
numerical methods such as averaging integrand uniformly
sampled within integration limits. The computational cost of
the algorithm is mostly dominated by the inverse of K f,n+1

in (5), which originally takes O(n3). Thus, we adopt the rank
one Cholesky update in [41] to alleviate the cost to O(n2)

Algorithm 1 Active Learning for Physics-Constrained Sys-
tems
1: Prerequisite: N(Sampling budget), D, β, β+, α, w
2: Train f̂ , ĥ with D
3: while N > 0 do
4: Evaluate Sn, S+

n over �
5: x∗ = arg maxx∈Sn J(x)
6: Observe y∗, z∗ at x∗
7: N = N − 1
8: D = D ∪ {x∗, y∗, z∗}
9: Update f̂ , ĥ with D

10: Update β, β+, α,w (Optional)
11: end while

and to improve the numerical stability. If active learning has
no finite candidate pool, we may need a grid or uniform
space-filling designs over � to realize Sn and S+

n and solve line
5 in the algorithm. Note that PhysCAL can be terminated by
not only the sampling budget, but also the prediction accuracy
of the target model when the sampling budget is implicit or
early stopping is reasonable. In order to do so, a separated
testing dataset or cross-validation is required.

IV. SIMULATION STUDY

In this section, we apply our active learning to the approxi-
mation of a constrained 2-D simulation function. The response
surface of the target function is defined over � = [−0.5, 0.5]2,
which is

f (x) = |x0 x1|,
where x = [ x0 x1 ]� ∈ �, and the constraint function is

h(x) = (cos(2πx0) − cos(2πx1))
2 − 0.8 exp(|x0 x1|),

which is assumed to be implicit. Both functions and the failure
region are illustrated in Fig. 2a. We set the safe region as
�S = {x ∈ �| h(x) < 0.7}, thereby the failure region ratio
to the design space being approximately 0.28. Assuming we
have no prior knowledge of the safe design settings, 10 initial
samples are obtained over the design space using the maximin
LHD, which yields 2-3 samples from the failure region in
10 replications. Observations from f and h are corrupted
by Gaussian noise, and additional 20 samples are obtained
with active learning. Parameters of each method were fixed in
this study, so we omit the subscription n in the parameters.
For PhysCAL, we set γ = 0.001/20, which is less than
the defective percentage of six sigma in statistical process
control, and γ + = 0.01 to extend the considered region in
safe variance reduction to the progressive safe region with the
failure probability of 0.99. As the benchmark method, safe
exploration for GP in [22] (referred as SEGP) is considered.
For the other parameter settings, α = 2 according to [39] and
w = {0.0, 0.1, . . . , 0.9, 1.0} are used.

During the simulation, setting the safety level in SEGP
as high as ours was impossible in some replications due
to the insufficient number of failure samples to make a
nontrivial explorable region, which was also mentioned in
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Fig. 2. Simulation Study Result (a) Ground truths of target (top) and constraint (bottom) functions. (b) PhysCAL’s (proposed method) estimation of target
(top) and constraint (bottom). (c) Benchmark method’s (Schreiter et al. [22]) estimation of target (top) and constraint (bottom). Hatched regions in top figures
are the true failure region, and the bottom of (b) is the estimated failure region. Note that the bottom of (c) has no estimated failure region. White circles are
initial design points, and red squares are sampled with active learning.

their work. Furthermore, we observed that the benchmark
method failed to estimate a meaningful failure region as shown
at the bottom of Fig. 2c. These issues can be explained as
follows. First, the dataset is imbalanced due to the larger
safe region, so it resulted in unsatisfactory classification,
which underestimates the failure region. Second, the nuisance
function of SEGP is adapted for binary classification via the
Laplace approximation [35], so the predictive variance induced
by the nuisance function is inadequate for the safe region esti-
mation as ours. More explicitly, encoding the failure process
observation into a binary class discards numerical information
from the original output (i.e., the response of the failure
process). Consequently, the GP classifier determines the failure
only based on the spatial input in disregarding of output’s
numerical information, thereby inducing improper predictive
variance.

As a result, PhysCAL achieved the prediction error (MSE)
of 0.0023 with 0.5 additional number of failures on average,
and there were five zero-failure cases of ten replications.
Meanwhile, the benchmark method achieved a better pre-
diction accuracy with 0.001, while the averaged number of
additional failures was 6.7 among 20 queries with no case of
zero-failure. It is not surprising that the benchmark method
did better in target process prediction, since exploration was
unrestricted by underestimating the failure region. Fig. 2c
shows that the classifier learned that the center region is safe
(with dark blue), while it could not discriminate the failure

region due to the aforementioned reasons. Consequently, the
entropy-based strategy in SEGP led to evenly distributed
sampling as their property [2]. Meanwhile, our method esti-
mated the failure region much better and explored more safely
as shown at the bottom of Fig. 2b. Hence, in the case that
a single failure is very crucial, our approach will be more
suitable.

Fig. 3 shows the performance of PhysCAL with different
weight parameter settings. We can observe that a low weight
parameter may improve the prediction accuracy by focusing
more on variance reduction, while it does not necessarily make
our approach safe due to lack of knowledge in failure region.
Meanwhile, setting w too high also induced the increased
number of failures and low predictive accuracy due to indif-
ference to variance reduction in the target approximation.
In this simulation, w = 0.4 was the best choice among
considered values with promising predictive accuracy and the
least number of failures.

V. CASE STUDY

In this section, the proposed method is applied to predictive
modeling of composite fuselage deformation in the aerospace
manufacturing process. Composite materials such as carbon
fiber reinforced polymers are extensively applied to various
domains (including aerospace, automotive, construction and
energy) due to their versatility, high strength-to-weight ratio,
and corrosion-resistance. However, composite materials are
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Fig. 3. Performance of PhysCAL associated with different weight parameters
in the simulation study.

nonlinear and anisotropic due to their structural natures [42],
so flexible models and adaptive design of experiments are
required to predict their deformation precisely. Moreover,
since they are also subject to structural failures, manufacturers
should avoid unsafe load settings in the fabrication of com-
posite structures.

Aerospace manufacturing considered in this case study is
subject to dimensional deviations at the joint rim of composite
fuselage sections due to the multi-batch manufacturing system.
Therefore, to assemble fuselage sections, the shape control
procedure is required to reshape them homogeneously. In the
shape control procedure, the fuselage section is placed on
the supporting fixture, and ten equispaced hydraulic actuators
are introduced to reshape the fuselage as shown in the left
figure of Fig. 4. A promising approach for the optimal shape
control procedure is to employ a highly precise predictive
model of composite fuselage’s deformation instead of time-
consuming physics-based model. However, the construction of
such model validated with real experiment is very challenging
due to the expensive cost of sampling, and the risk of structural
failure because of unsafe loads. Especially, since composite
failures in the shape control process may result in disposal of
nonconforming parts or delayed delivery due to the restoration,
up to date applications have restricted viable actuator forces in
a conservative manner to prevent structural failures [43], [44].
It may lead to a suboptimal shape control, so our objective is to
extend the feasible actuator forces that may include structural
failure settings, thereby providing higher degrees of freedom
to the shape control.

There are different types of failures in composite materials
such as fiber, matrix, and ply failures. Likewise, a number
of composite material failure criteria (e.g., Tsai-Wu, Tsai-
hill, Hoffman, Hashin) are devised for different modes of
failures [45]. In this paper, we considered the Tsai-Wu
criterion, which is one of the most widely used interactive
failure criterion. Note that it is possible to consider more than
one criterion simultaneously by taking the most parsimonious
criterion, or considering the intersection of safe regions defined
by multiple constraint GP models. Briefly, Tsai-Wu criterion
considers interactions between different stress components in
addition to the principal stresses (in a homogeneous element).

Using the principal material coordinate system on the cubic
element of composite material, consider three directions: 1 is
the fiber direction; and 2 and 3 are directions perpendicular
to 1, respectively. Let σ T

i and σ C
i be the tensile failure stress

and the compressive failure stress in i ∈ {1, 2, 3} direction,
and τ F

12 be the shear failure stress in the 12 plain. The Tsai-Wu
criterion is defined as(

1

σ T
1

− 1

σ C
1

)
σ1 +

(
1

σ T
2

− 1

σ C
2

)
σ2 + σ 2

1

σ T
1 σ C

1

+ σ 2
2

σ T
2 σ C

2

+
(

τ12

τ F
12

)2

− σ1σ2

σ T
1 σ C

1 σ T
2 σ C

2

≥ 1,

where the left-hand side is the nonnegative criterion value, and
the failure occurs when it exceeds one.

The Tsai-Wu criterion value induced by the shape adjust-
ment solved by the FEM is shown in the right of Fig. 4.
We can observe that failures are occurred at the bottom
of the fuselage, since fixtures that sustain the fuselage are
restricting its deformation. Not only limited to the Tsai-Wu
criterion, physics constraints have many assumptions such
as homogeneity, absence of higher-order interactions, etc.,
although they are convincing apparatuses to consider the
structural reliability. Hence, they are typically utilized with
the safety-of-margin (the reciprocal of the acceptable failure
criterion) or UQ to prevent unexpected failures. Likewise,
the safe shape control system should consider the failure
criterion not only its value, but also the additional safety
measures.

A. Experiment Settings

A well-calibrated FEM simulator of the procedure is
referred to as our oracle considering the risk of real experi-
ment. The target function’s input is the vector of unidirectional
forces (in lbf) of ten actuators, and the output is Y, Z -
directional deformation (in microinch) of fuselage at one of
91 critical points around the rim. The maximum magnitude of
actuator force is 1,000 lbf, which may cause failures in the
structure (see Fig. 4). As our additional safety measure, the
margin of safety with Tsai-Wu criterion is set at 1.25 (i.e., the
acceptable criterion is 0.8).

For the initial design, the maximin LHD is used to generate
20 observations for both deformation and failure criterion,
and additional 20 samples are queried by different methods:
random, ALM, ALC, SEGP, and PhysCAL. We adopted
the pool-based scenario in this case study by providing the
400 size of candidate pool that uniformly spreads out the
design space. Considering the variability in the initial design,
we have generated ten initial dataset independently, and
replicated the experiment. It is noteworthy that we do not
cease active learning, even though we encounter a failure in the
construction of the predictive model for this case. In practice,
the composite failure is definitely an undesirable event, while
it is feasible as far as the design point is within the input space
(i.e., the maximum actuator forces). Therefore, failure events
are also included in the training dataset, and we compare the
number of additional failures in learning to evaluate that how
well each method avoids failures.
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Fig. 4. Shape control of composite fuselage in the FEM. (left) Actuator input. (center) Resulted deformation. (right) Resulted Tsai-Wu criterion.

TABLE I

RESULT OF CASE STUDY

For PhysCAL, we also considered different weight parame-
ters as the simulation study, and set other parameters as α = 2,
γ = 0.001/20, and γ + = 0.1. In SEGP, we reduced the safety
level of which from the PhysCAL’s until that SEGP induced a
nonempty explorable space. For the model evaluation, we used
100 safe samples as the testing dataset that is independently
generated with the candidate pool, and the mean absolute error
(MAE) is used as the metric.

B. Result

The result is summarized in Table I. First, we can observe
that PhysCAL outperforms other methods in the number of
additional failures. It achieves nine zero-failures from ten
cases. Also, we can observe that ALM, ALC, and SEGP
incurred more failures than the random. The reason is that the
design space is almost dominated by the safe region, while
the failure region may be more interesting than elsewhere.
Interestingly, SEGP is inapplicable in this case when the initial
dataset does not contain failure samples, since the method
uses the binary classifier. It implies that employing a regressor
as the constraint model is more advantageous when the prior
information has no failure.

In terms of prediction accuracy, PhysCAL performs much
better than random sampling, and comparable to other active
learning approaches considering the scale of metric. We can
conjecture that other methods are able to observe from the
failure region that may be informative, so their accuracy is
the consequence of unsafe exploration. Furthermore, PhysCAL

is more flexible than other methods, since we may update
the weight parameter in PhysCAL during data acquisition
to focus more on the variance reduction as well as other
methods. Therefore, PhysCAL is more promising for this case
considering the risk of failure in the system.

C. Weight Parameter

Different weight parameters are considered for PhysCAL
in the case study, and the performance of different weight
parameters is provided in Fig. 5. Likewise, only focusing
in one acquisition function is not optimal in this case, and
the performance is better with w = 0.7 ∼ 0.9, which is
higher than the simulation study. The possible reasons are
as follows. First, the failure region in this case is much
smaller than the safe region, thus quite aggressive exploration
may be acceptable (i.e., increasing w). Second, the actuator
force is positively correlated with both von Mises stress,
which is linearly correlated with the Tsai-Wu criterion, and
deformation [6]. Consequently, the uncertainty term of safe
region expansion could be informative to model variance
reduction.

D. Margin of Safety

In order to observe the effect of margin of safety,
we increased the value from 1.25 to 1.5, which reduces
the acceptable Tsai-Wu criterion to 0.66. Although we may
consider margin of safety higher than 1.5, such high value is
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Fig. 5. Performance of PhysCAL associated with different weight parameters
in the case study.

irrelevant in practice. Increasing the margin of safety yields
the increment of failure region, so it results with the increased
numbers of failures. In average of 10 replications, PhysCAL
got 0.5 additional failures (six zero-failures), which is the least
among considered methods, and achieved the predictive accu-
racy of 3.74 microinches. Random sampling got 0.6 additional
failures, and achieved the predictive error of 5.16 microinches.
Meanwhile, ALM and ALC achieved 8.3 and 7.9 failures,
respectively. Likewise, SEGP was applicable only for the last
three cases, and induced 3.3 failures from those cases.

VI. SUMMARY

For physics-constrained systems that are expensive-to-
evaluate, failure-averse active learning is proposed in this
paper. In order to achieve safe active learning under the regime
of implicit physics constraints, GP priors are imposed on the
target function and physics constraints, and two acquisition
functions are developed for safe variance reduction and safe
region expansion. For safe variance reduction, two safe regions
with different safety levels are employed in the IMSE criterion,
thereby maximizing the safety and variance reduction over
the underlying safe region. For the safe region expansion, the
acquisition function is devised to sample near the safe region
boundary considering uncertainty. Two acquisition functions
are endowed with different objectives, so the MOO framework
with Pareto optimality is applied to integrate them into the
flexible global criterion. The integrated acquisition function
is sufficient for the Pareto optimality of the design point to
be queried, and can be flexibly adjusted by decision maker’s
preference considering the trade-off between two acquisition
functions. Also, it is shown that the integrated acquisition
function asymptotically leads to the best estimation of system.

In the simulation study, the proposed approach showed
promising performance with the achievement of zero-failure,
while the benchmark method failed to avoid failures in
its learning process. Furthermore, with different parameters
settings, we empirically observed that safe variance reduction
and safe region expansion should be involved simultaneously
for better predictive accuracy and higher safety. Our method
has also shown remarkable performance in the predictive
modeling of composite fuselage deformation considering its

structural failure with Tsai-Wu criterion. It achieved zero-
failure in most cases, while other benchmark methods induced
more failures or inferior predictive accuracy. Our proposed
method is adaptive, since it can incorporate domain knowledge
and decision maker’s preference with amenable parameters.
Therefore, it is also applicable to other domains that are
subject to implicit constraints.

VII. CODE

The code for physics-constrained active learning can be
found from https://github.com/cheolheil/ALIEN.
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