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Abstract— With the rapid development of sensor technologies,
multisensor signals are now readily available for health condition
monitoring and remaining useful life (RUL) prediction. To fully
utilize these signals for a better health condition assessment and
RUL prediction, health indices are often constructed through
various data fusion techniques. Nevertheless, most of the existing
methods fuse signals linearly, which may not be sufficient to
characterize the health status for RUL prediction. To address this
issue and improve the predictability, this article proposes a novel
nonlinear data fusion approach, namely, a shape-constrained
neural data fusion network for health index construction. Espe-
cially, a neural network-based structure is employed, and a
novel loss function is formulated by simultaneously considering
the monotonicity and curvature of the constructed health index
and its variability at the failure time. A tailored adaptive
moment estimation algorithm (Adam) is proposed for model
parameter estimation. The effectiveness of the proposed method
is demonstrated and compared through a case study using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) data set.

Index Terms— Condition monitoring, health index, neural data
fusion network, remaining useful life (RUL) prediction, shape
constrained.

NOMENCLATURE

N Number of historical units.
T Total life cycles of these N units.
S Number of sensors.
D Multisensor data.
Xn Multisensor data of size Tn × S for unit n.
xn,s Sensor data for unit n of sensor s.
xn,s,t Sensor data for unit n and sensor s at

observation epoch t .
hi (t) Health index of unit i .
H (·) Nonlinear data fusion function.
L(·) Loss function.
θ Model parameters.
δ(x) Indicator function.
λ1 Monotonicity penalty coefficient.
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λ2 Convexity penalty coefficient.
gn Gradient of loss function for sample n.
α Step size.
θ0 Initial value for θ to be optimized.
m0 First-moment vector.
v0 Second-moment vector.
k Time step.
β1 and β2 Exponential decay rates for the moment

estimates.
yt Degradation signal or health index at time

step t .
φ(·) Parametric linear or nonlinear function.
α Vector of the fixed-effect parameters.
γ Vector of the random-effect parameters.
zt Vector of polynomial basis functions.
εt Noise term.
σ 2 Variance of the noise εt .
μ0 and μt Prior and posterior means of γ .
�0 and �t Prior and posterior variances of γ .
ρ Pairwise correlation threshold.
R̂n Predicted residual life for unit n.
Rn True remaining useful life (RUL) of unit n.

I. INTRODUCTION

DEGRADATION is often unavoidable and invertible,
in nature, in the utilization of machines, tools, equipment,

or systems. The unexpected breakdown of machines due
to degradation may cause severe consequences, such as the
suspension of production, the occurrence of safety hazards,
economic losses, and delay in delivery. Therefore, monitor-
ing the health condition and predicting the remaining useful
life (RUL) are critically important to prevent unexpected fail-
ures and ensure the system/process reliability [1]–[3]. There
are generally two types of prognostic methods, physics-based
and data-driven approaches [4]. Physics-based methods require
a full understanding of the fundamental degradation mech-
anisms, which may not be realistic due to high system
complexity. The data-driven approaches, on the other hand,
do not need the knowledge of the failure processes and, thus,
have gained wide popularity as data acquisition becomes more
and more convenient. With the collected sensor signals in
hand, the progression of the degradation process can be well
characterized using various fit degradation models, such as
stochastic process models and general path models [5], [6].
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Most of the existing studies concentrate on the degradation
modeling based on a single-sensor signal [7], [8]. The
underlying assumption is that the single sensor is sufficient
to capture the degradation process. However, as the machines
or engineering systems become increasingly more complex,
it may not be possible for a single sensor to characterize
the health condition accurately [9], [10]. With the rapid
development of sensor technologies, multisensor signals are
now readily available for health condition monitoring and
residual life prediction. Multisensor signals have the advantage
of capturing multichannel information on the degradation
process from various physical aspects. Consequently, there
is a trend of incorporating multiple sensors to monitor the
health status of a working unit.

While multisensor systems are widely adopted in health
condition monitoring, how to make full use of multisensor sig-
nals to better capture the health condition and predict the RUL
is very challenging. In general, it is often not possible for every
sensor to have the same capability of capturing the degradation
process. Some signals may possess stronger relationships
than others with the underlying degradation process. As each
signal only contains partial information and multisensor
signals may be correlated with each other, a properly justified
data fusion of multisensors may yield a more precise and
robust health condition estimation and RUL prediction.

Based on the implementation strategy, data fusion tech-
niques can be generally classified into three categories [11]:
data-level fusion, feature-level fusion, and decision-level
fusion. Data-level fusion approaches directly utilize the mul-
tisensor data as input in the model building. The feature-level
fusion, on the other hand, first extracts various features from
the raw data and then combines these features using data-level
fusion techniques. In the decision-level fusion techniques,
individual models are built based on each sensor data, and
then, the outputs of all the individual models are fused to
generate the final prediction result. In this article, we focus
on the data-level fusion. We assume that the underlying
degradation process can be accurately characterized by one
unobservable metric, which is referred to as the health index.
Once the health index reaches a predefined threshold, the unit
or system is considered failed. The objective of this work is to
develop a novel data-level fusion technique in the construction
of a health index for health condition assessment and RUL
prediction. It should be noted that some neural network-based
RUL prediction methods [12]–[14] treat the predicted percent-
age of residual life as a health index or health indicator, which
linearly decreases to 0 and is fundamentally different from the
one defined earlier.

Health index construction using data fusion techniques
has been intensively studied recently [3], [15]. Compared
with those directly using multiple signals as model input to
predict the residual life, e.g., various neural network-based
approaches [13], [16], [17], the health index-based approaches
have the advantage of not only providing straightforward
visualization of the health condition but also facilitating
RUL prediction using various existing univariate prognostics.
Liu et al. [3] developed a composite health index by linearly
combining these sensor data by jointly minimizing the
variance of the constructed index at the failure time and

maximizing the degradation monotonicity. Later, another
linear fusion approach is developed by jointly minimizing the
model fitting errors and the variance of constructed health
index at the failure time [18]. Song and Liu [19] developed
a linear fusion approach by leveraging a quantile regression
for fusion coefficient optimization, where the prediction error
is directly utilized as the loss function. However, all these
data fusion methods for health index construction are linear,
which may have inherent limitations due to high nonlinearity
between sensor signals and health conditions. To capture the
nonlinearity, Song et al. [20] integrated the kernel method
with a linear fusion approach. Nevertheless, the form of the
nonlinearity is constrained by the type of kernel functions.
There are also some distance- or deviation-based health index
construction methods, which are inherently nonlinear, such
as the minimum quantization error (MQE) method [21], [22],
the Mahalanobis distance (MD)-based method [23], and the
support vector data description (SVDD)-based approach [24].
The basic idea of these methods is to calculate the distance
(e.g., the Euclidean distance) or deviation between the
degrading states and normal/initial conditions using the
multivariate degradation signals and treat the distance as
a health index. In these methods, it is often assumed that
the normal/initial condition is identical no matter what kind
of fault the unit will eventually have. However, due to
unit-to-unit heterogeneity, different units may have different
initial health conditions. Besides, although the distance can
somehow measure the severity of the degradation, it may
not be able to accurately capture the true health condition.
Therefore, it is hard to set a unified failure threshold for all
the units.

To overcome these issues, this article develops a novel
shape-constrained neural data fusion network for nonlinear
health index construction. Especially, an unsupervised neural
network is first proposed to model the nonlinear relationship
between the true health index and the multisensor signals.
Besides the property of monotonicity and minimum variance at
the failure time, we also innovatively incorporate the convexity
property into loss function to improve the quality of health
index construction. In addition, a new penalty function is
proposed to capture the shape constraints in the loss function
formulation. A tailored adaptive moment estimation algorithm
(Adam) is further proposed to optimize the loss function
for parameter estimation. Different from the existing neural
network-based methods where the RULs are used as labels in
a supervised learning process, the proposed method is unsu-
pervised and is intrinsically a dimension reduction technique
for health index construction.

The rest of this article is organized as follows.
Section II provides an overview of the Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) data set as
a motivating example and presents a general mathematical
formulation toward this problem. Section III describes the
detailed methodologies of the shape-constrained neural data
fusion approach to construct a health index. Section IV demon-
strates the effectiveness of the proposed method through a case
study of the NASA C-MAPSS data set for commercial aircraft
gas turbine engines [9]. Section V concludes this article and
outlines future directions.
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Fig. 1. Simplified engine diagram simulated in C-MAPSS [9].

II. PROBLEM DESCRIPTION

A. Overview of the C-MAPSS Data Set

Before introducing the proposed methodology, we first pro-
vide an overview of the motivating example, i.e., C-MAPSS
data set, which has been widely used as a benchmark prob-
lem in the prognostics and health management (PHM) field.
C-MAPSS is a simulation tool developed by the National
Aeronautics and Space Administration (NASA) for a realistic
simulation of a large commercial turbofan engine, whose
health condition is continuously monitored by multiple embed-
ded sensors. Fig. 1 shows a schematic of a commercial aircraft
gas turbine engine that was simulated by C-MAPSS [9].

In the C-MAPSS simulation, an engine model of the
90 000-lb thrust class is developed, and simulations are
run for operations at various levels of altitude (from 0 to
40 000 ft), Mach number (from 0 to 0.90), and throttle resolver
angle (TRA, from 20 to 100). Users can freely adjust these
three attributes (aircraft altitude, Mach number, and TRA)
to simulate various environmental conditions. C-MAPSS has
14 input variables to simulate various degradation scenarios
of the five rotating components of the simulated engine. The
outputs consist of 58 different variables in the form of sensor
response surfaces and operability margins, of which a total
of 21 variables were used for health condition monitoring and
prognosis, as shown in Table I.

To model unit-to-unit heterogeneity, the initial degradation
levels, the degradation trajectory parameters, and the process
noises were set random in the simulation. A hidden health
index that is not accessible to users was defined, and once
the health index exceeds the failure threshold, the unit is
considered failed. In total, there are four data sets with
each corresponding to certain failure modes and operating
conditions. The FD001 data set has a single failure mode
(HPC degradation) and a single operating condition, while
the FD002 data set contains six operating conditions, all
of which seriously affect the sensor measurements and the
degradation process. The FD003 data set has one operating
condition but two failure modes (HPC degradation and fan
degradation). For the FD004 data set, there are two failure
modes and six operating conditions mixed together. As illus-
trated in the original work for the C-MAPSS data set [9], the
degradation trajectories significantly vary for different failure
modes and change as a function of operational conditions

TABLE I

DESCRIPTION OF THE 21 C-MAPSS OUTPUTS

(e.g., TRA, altitude, and ambient temperature). Therefore,
if there are multiple failure modes or operating conditions,
a classification or clustering algorithm could be used first to
group the data set, and then, different fusion functions can be
applied accordingly [25]–[27]. In this article, we only consider
the first data set in the case study, which has been widely used
in performance evaluation and comparison. In future studies,
our approach will be extended to multiple failure modes and
multiple operating conditions.

The considered data set consists of 100 training units and
100 testing units. In the training data set, each unit is run until
failed, while, in the testing data set, the run of each unit ends at
some random time prior to system failure. A file of the actual
remaining lifetime of the 100 testing units is also included.
Sensor readings from the 21 outputs are collected at each
observation epoch for each unit. The objective of this research
is to develop a novel nonlinear data-level fusion approach to
combining these multisensor data so that a health index can
be constructed to accurately characterize the health condition
for better condition monitoring and RUL prediction.

B. Problem Formulation

Let N denote the total number of historical units,
e.g., the training units, and T=(T1, . . . , TN ) denote the total
life cycles of these N units. Suppose that the corresponding
multisensor data are represented by D = {Xn, n = 1, . . . ,N},
where Xn is the multisensor data of size Tn × S for unit n
given as

Xn = (xn,1, xn,2, . . . , xn,S)

=

⎡
⎢⎢⎢⎣

xn,1,1 xn,2,1 · · · xn,S,1

xn,1,2 xn,2,2 · · · xn,S,2
...

...
. . .

...
xn,1,Tn xn,2,Tn · · · xn,S,Tn

⎤
⎥⎥⎥⎦ (1)
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where xn,s=(xn,s,1, . . . , xn,s,Tn )
� is the sth sensor data for

unit n, xn,s,t is the sensor data for unit n, sensor s is at obser-
vation epoch t , and S is the total number of sensors. Without
loss of generality, we assume that all the measurements are
equally spaced in time with interval 1.

This article aims to find a nonlinear data fusion function
H (·) to combine multisensor signals for unit i into a health
index hi (t)

hi (t) = H (xi,1,t , xi,2,t , . . . , xi,S,t ). (2)

In order to guarantee that the resulting health index has
desirable properties for health condition monitoring and RUL
prediction, appropriate fusion function and loss function need
to be formulated for the nonlinear function learning. Suppose
that the formulated loss function is L(H, D, θ), where θ is
the model parameters and H is the selected fusion function,
and the learning process is then formulated to the following
optimization problem:

obj = min
θ

L(H, D, θ ).

In Section III, technical details will be provided on the
selection of nonlinear functions and appropriate loss function.
For the sake of completeness, the degradation and RUL
prediction based on a sequential Bayesian updating scheme
will also be introduced.

III. SHAPE-CONSTRAINED NEURAL

DATA FUSION NETWORK

In this section, we first introduce several key properties
that are essential in the construction of the health index and
then formulate the loss function by considering these key
properties. A tailored Adam algorithm is then proposed for
parameter estimation of the neural data fusion model. For
completeness, the Bayesian updating scheme is also provided
for RUL prediction based on a single degradation signal.

A. Key Properties for a Health Index

To facilitate health assessment and RUL prediction, it is
essential to set appropriate properties that the constructed
health index should satisfy. The most desirable properties are
the monotonicity of the degradation path and the consistency
of degradation level at the failure time across all units [3]. The
details of these two properties are given as follows.

Property 1: The health index should be monotonic after the
onset of the degradation of a monitored unit.

Property 2: The variance of the health index at the failure
time for different units should be minimal under the same
environmental condition and failure mode.

Property 1 suggests that the health index should have a
clearer monotonic trend despite the fact that the raw sensor
data may be contaminated by nonmonotonic noisy samples.
This property is very natural, as, in most cases, the damage
accumulates, and the degradation is irreversibly or monoton-
ically growing in the operation process. Property 2, on the
other hand, ensures the health index to be consistent at the

Fig. 2. Influence of the curvature property on the prediction accuracy.

failure time across different units under the same failure
mode. Although the degradation paths across different units
may differ significantly due to unit-to-unit heterogeneity,
the degradation values at their failure times should be close
to each other. This requirement is consistent with the soft
failure assumption that, once the degradation value reaches a
predefined threshold, the unit is considered failed. Therefore,
it is essential to incorporate the minimal variance property to
ensure the prognostic accuracy.

To further improve the quality of the constructed health
index, here, we propose another property regarding the degra-
dation rate, which is given in Property 3, as follows.

Property 3: The health index should be convex when
monotonically increasing or concave when monotonically
decreasing.

While Property 1 guarantees that the overall degrada-
tion trend should be monotonic with the operation time,
i.e., increasing or decreasing, Property 3 further puts a con-
straint on the shape of the health index in terms of degradation
rate. To be specific, this property indicates that the health index
should increase or decrease faster and faster, or equivalently,
the degradation rate is monotonically increasing with operating
time. This phenomenon of accelerated degradation occurs
in a wide variety of engineering systems and degradation
processes, such as bearings [28]–[31], batteries [32], [33],
gyros [34], and fatigue crack growth in aircraft structures and
other mechanical components [34], [35]. Taking this property
into consideration could enrich the prior knowledge of the
degradation path and, thus, improve the quality of the health
index. Another rationale of including this property is that it
could further increase the monotonicity of the health index
when the in-service unit approaches the end of its lifetime,
which, as a result, can increase the prognostic accuracy.

As illustrated in Fig. 2, two health indices, i.e., HI1 and HI2,
with different curvatures are developed for the same unit.
According to the definition of soft failure, the working unit
fails at time T as the health index reaches the failure thresh-
old. HI2 has a more convex degradation trend than HI1,
i.e., the derivative of the degradation rate of HI2 is larger than
that of HI1. The two solid curves represent the constructed
health indices, while the dashed curves are the predictions of
the health indices at the prediction time t0. To make a fair
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Fig. 3. Illustration of the neural data fusion network.

comparison, we assume that the errors of the predicted health
indices are the same at the failure time T (marked with a
double-sided arrow). It is clear that the RUL prediction using
HI2 tends to be more accurate than using HI1. It is worth
noting that, in Fig. 2, the predicted degradation level is below
the failure threshold, which results in an overestimated RUL.
On the other hand, if the predicted degradation level at T is
above the failure threshold, the estimated failure time will be
earlier than T , and HI2 will still be more accurate than HI1 in
RUL prediction.

Without loss of generality, we assume that the health index
is monotonically increasing, under which the Property 3 is
simply a convexity shape constraint on the health index.
As all units are assumed to fail under the same failure
mode and operating condition, this article aims to develop a
composite health index that exhibits a consistent pattern for
all units in the degradation process, which can be achieved
by jointly maximizing the monotonicity, convexity property,
and minimizing the variance of the health index at the failure
time in the health index construction. Most of the current
methods for health index development are based on linear
fusion approaches that have inherent limitations. Thus, this
article proposes an innovative neural data fusion model with
the consideration of the three aforementioned key properties
for health index construction.

B. Neural Data Fusion Model

In this article, the underlying health status for a unit at time t
is characterized by the health index H (x1,t , x2,t , . . . , xS,t).
Due to its excellent capability of approximating any nonlinear
functions, the artificial neural network is proposed to model
the fusion function H (·). Unlike the traditional neural network
where the output is just a single value for each instance,
the proposed neural data fusion model generates a health index
curve or profile for each unit.

Fig. 3 shows an illustrative example of the neural data fusion
model. The hyperbolic tangent function tanh(·) is selected
as the activation function among the input layer and the
hidden layers due to its advantages over the sigmoid function
in overcoming the vanishing gradient problem. Between the
last hidden layer and the output layer, the identity activation
function is used.

In the loss function formulation, since the true health
index is not available, we propose to apply the unsupervised
learning approach, i.e., jointly maximizing the monotonicity

and convexity properties and minimizing the variance at the
failure time. To minimize the variance, we could use the
following loss function based on the variance definition:

N�
n=1

[hn(Tn)− h]2 (3)

where h = (1/N)
	N

n=1 hn(Tn). The abovementioned loss
function actually does not involve the bias term or the intercept
of the last hidden layer; therefore, we can arbitrarily select
a bias term. Note that changing the bias term is equivalent
to shifting the whole health index upward or downward,
which will not influence the RUL prediction. In this article,
we specifically set the failure threshold to 1 to determine the
bias term, which leads to the following loss function:

N�
n=1

[hn(Tn)− 1]2. (4)

It can be easily shown that

N�
n=1

[hn(Tn)− 1]2 =
N�

n=1

[hn(Tn)− h]2 + N(1−h)2. (5)

Therefore, minimizing (4) is actually equivalent to minimiz-
ing (3) and then adjusting or shifting the bias parameter
in the last hidden layer so that h = 1. To impose the
monotonicity and convexity constraint, penalty terms are typ-
ically introduced. The most commonly used penalty term for
the monotonicity constraint is [3], [36]

λ1

N�
n=1

Tn�
t=2

max (0,hn(t − 1)− hn(t)) (6)

or equivalently

λ1

N�
n=1

Tn�
t=2

[hn(t − 1)− hn(t)]+ (7)

where [x]+ = max (0, x), and λ1 is a tuning parameter.
In this penalty function, the penalty linearly increases with
the difference h(t − 1)− h(t) when it violates the monotonic-
ity. Alternatively, we could use the exponential penalty
max(0, exp [h(t − 1)− h(t)] − 1) or the hyperbolic tangent
penalty max (0, tanh [h(t − 1)− h(t)]). The three types of
penalty as a function of the monotonicity violation amount x
are shown in Fig. 4.

It is clear that, for the exponential penalty, the penalty expo-
nentially increases with the amount of monotonicity violation,
while, for the hyperbolic tangent penalty, the penalty gradually
goes saturated. Intuitively, the exponential penalty is more
likely to eliminate a large decrease in the health index than the
other two functions. Indeed, in the case study, we found that
the exponential penalty outperforms the other two in terms of
prognostic accuracy. It is worth noting that, to impose strict
monotonicity constraint, [hn(t − 1)− hn(t)+ c]+ can be used
instead in (7), where c is a positive constant.

For the convexity constraint, a penalty term could be pro-
posed in the same way. Especially, if the exponential penalty
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Fig. 4. Three penalty functions.

function is utilized, the penalty term can be expressed as

λ2

N�
n=1

Tn�
t=3

[exp ((hn(t−1)−hn(t−2))−(hn(t)−hn(t−1)))−1]+
(8)

where λ2 is a tuning parameter.
In practical applications, the total lifetime often varies

significantly across different units. To reduce the penalty
unbalance caused by lifetime difference, we propose to average
the penalty in (6)–(8) by the number of terms for each unit.
Suppose that the exponential penalty function is adopted. Let
dn,t = hn(t − 1) − hn(t), and then, the overall loss function
considering the three key properties can be formulated as
follows:

L(H, D, θ) =
N�

n=1

[hn(Tn)− 1]2

+ λ1

N�
n=1

Tn�
t=2

1

Tn − 1
[exp(dn,t)− 1]+

+ λ2

N�
n=1

Tn�
t=3

1

Tn − 2
[exp(dn,t − dn,t−1)− 1]+.

(9)

C. Model Fitting Through Adaptive Moment
Estimation Algorithm

Stochastic gradient descent (SGD) with a backpropagation
algorithm is a generic and the most popular optimization
method for minimizing the loss function of artificial neural
networks. In each iteration, the SGD only uses a random
subset (minibatch) of the training samples to evaluate the
gradient, which can significantly reduce the computational
cost. Adam [37] is an extension of SGD that has been widely
adopted recently for model training in deep learning applica-
tions. It is an algorithm for the first-order gradient-based opti-
mization of stochastic objective functions based on adaptive
estimates of lower order moments. As it has many advantages
over the traditional SGD approach, e.g., straightforward to

implement, computationally efficient, and having little mem-
ory requirements, the Adam algorithm is adopted in our work
to minimize the loss function.

The key step in SGD or Adam is to compute the gradient
at each iteration. However, the loss function in (9) is not
differentiable everywhere. To apply Adam, we can use the
subgradient instead at those nondifferentiable points. Let δ(x)
be an indicator function, which is defined as

δ(x) =



0, x ≤ 0

1, x > 0.

Then, the gradient or one subgradient of Ln(H, D, θ) for
sample n can be derived as

gn = 2[hn(Tn)− 1]∂hn(Tn)

∂θ
+ λ1

Tn−1

Tn�
t=2

δ(exp(dn,t)−1)

× exp(dn,t)
∂dn,t

∂θ
+ λ2

Tn − 2

Tn�
t=3

δ(exp(dn,t−dn,t−1)−1)

× exp(dn,t − dn,t−1)
∂(dn,t − dn,t−1)

∂θ
. (10)

In the iteration process, the gradient or subgradient gn can be
efficiently calculated through the backpropagation algorithm.

The detailed Adam algorithm for the model fitting is pro-
vided in Algorithm 1, where q2

k represents the elementwise
square. Following the suggestions in [37], we set the hyperpa-
rameters as α = 0.001, β1 = 0.9, β2 = 0.999, and � = 10−8

in the training process.

Algorithm 1: Adam for Neural Data Fusion Model Fitting
Initialize:
α : step size;θ0: the initial value for θ to be optimized;
k ← 0 (time step);
m0, v0 ← 0 (the 1st and 2nd moment vector);
β1, β2 ∈ [0, 1) : exponential decay rates for the two
moment estimates.
While θ k not converged Do
k ← k + 1
Calculate the gradient or sub-gradient qk based
on (10)
mk ← β1 · mk−1 + (1− β1) · qk (update biased 1st

moment estimate)
vk ← β2 · vk−1 + (1− β2) · q2

k (update biased 2nd raw
moment estimate)
m̂k ← mk

1−βk
1

(compute bias-corrected 1st moment
estimate)
v̂k ← vk

1−βk
2

(compute bias-corrected 2nd raw moment
estimate)
θ k ← θ k−1 − α · m̂k/(

√
v̂k + �) (update parameters)

End
Return θ k

D. Bayesian Linear Modeling and RUL Prediction

For the sake of completeness, we provide a brief review
of the Bayesian inference-based RUL prediction approach.
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The Bayesian modeling and online updating approach has
been widely used for RUL prediction based on a single
degradation signal or a health index [5], [30]. It leverages both
the historical data in the form of prior distributions and in situ
measured degradation signals of an in-service unit for residual
life prediction. Therefore, it is capable of capturing both the
population degradation trajectory and unit heterogeneity. There
are often two stages: the off-line modeling of the historical
data using mixed-effect model and the online Bayesian model
updating of an individual unit for RUL prediction.

In the off-line modeling state, the mixed-effects model can
be generally formulated as

yt = φ(α, γ , t) + εt (11)

where yt is the degradation signal or health index at time
step t , φ(·) is a parametric linear or nonlinear function, α is
a vector of the fixed-effect parameters, γ is a vector of the
random-effect parameters, and εt is a noise term following
i.i.d. normal distributions, e.g., εt ∼ N(0, σ 2). A linear model,
particularly a polynomial model, is often specified in φ(·)
for its simplicity and flexibility. The linear model with a
polynomial form can be expressed as

yt = ztγ + εt (12)

where zt = (1, t, t2, . . . , tq) is a (q + 1)-D vector of poly-
nomial basis functions, and γ is the regression parameter of
dimension q + 1 following a multivariate normal distribution.
To make the model more flexible to capture the noise variance
heterogeneity, σ 2 can also be assumed random. To facilitate
the online Bayesian inference, a joint distribution is often spec-
ified [30], [38], i.e., σ 2 ∼ IG(a1, a2), γ |σ 2 ∼ N(μ0, σ

2�0),
where IG denotes the inverse Gamma (IG) distribution. The
hyperparameters (a1, a2,μ0,�0) can be estimated through the
maximum likelihood estimation method.

In the online stage, the individual model is updated for RUL
prediction. Define

Z1,t =

⎡
⎢⎢⎣

1 1 · · · 1q

1 2 · · · 2q

· · · · · · · · · · · ·
1 t · · · tq

⎤
⎥⎥⎦.

Suppose that the real-time measured degradation data up to
time t are y1:t = (y1, y2, . . . , yt), and then, it can be proven
that σ 2|y1:t follows an IG distribution and (γ | σ 2, y1:t ) follows
a multivariate normal distribution, which is given as follows:

σ 2|y1:t ∼ IG

�
a1 + t

2
, a2 + Ht

2

�


γ | σ 2, y1:t

� ∼ N


μt , σ

2�t
�

(13)

where

�t = (ZT
1,t Z1,t +�−1

0 )−1

M t = �−1
0 μ0 + Z1,t y1:t

μt = �t M t

Ht = �y1:t�2 + μT
0 �−1

0 μ0 − MT
t �t M t .

The proof can be found in [30]. Based on (13), we can fur-
ther prove that the predictive distribution of future observations

Fig. 5. Dendrogram of the hierarchical clustering for variable selection.

yt+1:t+L given the observations up to the current time follows
a multivariate t-distribution:
yt+1:t+L |y1:t ∼ MT

�
2a1 + t, Zt+1,t+Lμt ,

2a2 + Ht

2a1 + t

I + Zt+1,t+L�t ZT

t+1,t+L

��
(14)

where MT denotes a multivariate t-distribution with the three
parameters representing the degree of freedom, the mean, and
the shape matrix, respectively. The proof is provided in the
Appendix. With this predictive distribution, we can efficiently
predict the evolution of the degradation path and the time the
degradation signal reaches the failure threshold.

IV. CASE STUDY

In this section, numeric experiments are conducted on the
benchmarking C-MAPSS data set to evaluate the performance
of the proposed data fusion methodology. The detailed intro-
duction of the C-MAPSS data set is provided in Section II-A.

A. Variable Selection and Data Preprocessing

Before applying the proposed method, data preprocess-
ing and variable selection are first conducted. Among the
21 outputs, only 14 outputs have obvious increasing or
decreasing degradation trajectories. The others are almost
unchanged throughout the whole life cycle. Therefore, only
these 14 degradation signals are included for further selection.
In the correlation analysis, it is found that some signals are
highly correlated, with correlation coefficient ρ reaching up
to 0.96. To reduce the information redundancy and, at the
same time diversify, the degradation signals to capture var-
ious aspects of the degradation process, we set a pairwise
correlation threshold, e.g., 0.75 in this work, above which
only one degradation signal in each cluster is kept. Especially,
we propose to use a hierarchical clustering algorithm [39]
for variable selection, where 1 − ρ is used as the distance
or dissimilarity measure.

Fig. 5 shows the clustering dendrogram. In total, five
clusters are identified with the correlation threshold set to 0.75.
Within each cluster, a degradation signal is arbitrarily selected.
Here, we select Nc, T24, BPR, htBleed, and T30 for health
index construction. Fig. 6 shows a representative set of
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Fig. 6. Representative raw measurements with fit curves using exponential functions and a constructed health index.

selected degradation signals, and all of them demonstrate
an exponential growth for degradation. The corresponding
R-squares of model fitting using exponential functions are
0.7071, 0.6336, 0.9603, 0.7987, and 0.6637, respectively, for
the five selected signals. A constructed HI is also provided as
an illustration. Following the work of Liu et al. [3], we use
log-transformation to preprocess the data and apply a linear
model with quadratic form, i.e., zt = (1,t, t2), to model the
degradation path. To facilitate model training, the transformed
data are normalized to the interval [0, 1].

B. Model Training and Illustration

In the model training process, we need to select appropriate
network structures and penalty coefficients λ1 and λ2. The
K -fold cross-validation method is typically applied to fulfill
this goal. Here, we use the commonly adopted fivefold cross
validation on the 100 training units. Since the eventual goal is
to achieve an accurate estimation of the residual life, we used
the average prediction error at multiple time epochs throughout
the whole life cycle as the validation error. Note that a more
natural way is to use the averaged prediction error across
all the observation epochs as the validation error to achieve
the optimal overall performance. However, this method is
very computationally expensive. Here, we selected three time
epochs, 1/4, 2/4, and 3/4, of the entire life cycle to reduce the
computational cost. The mean value of the absolute percentage
error is used as the performance metric, which is defined as

err = 1

N

N�
n=1

|R̂n − Rn|
Tn

where R̂n is the predicted residual life at the time of prediction,
Rn is the true residual life, Tn is the total life from the
beginning to the failure time, and N is the total number of
units for prediction. In the prediction, the Bayesian updating
approach described in Section III-D is used to predict each
of the selected degradation signals, and the time when the
health index exceeds 1 is treated as the predicted failure time.

TABLE II

SELECTED MODEL STRUCTURES AND PENALTY COEFFICIENTS

In the early stage of the lifetime, the predicted degradation
path may be temporary decreasing due to small degradation
rate and measurement noise, which may cause huge errors in
predicting future degradation levels. To avoid such a situation,
the coefficient of the quadratic term is constrained to be
positive, i.e., the posterior distribution is truncated at 0.

The model is trained on a Windows server with two Tesla
V100 GPUs. The initial learning rate is set to 0.01. As the
training is inherently stochastic, the optimization for each
model structure is repeated 100 times with randomly generated
initial weights and biases, and the model parameters with
minimum fitting loss are selected as the trained parameters.

The select network structure and penalty coefficients for the
three penalty functions are shown in Table II.

To illustrate the influence of shape constraint on the con-
structed health index, we use the exponential penalty function
and selected model structure with different penalty coefficient
combinations. We randomly pick a unit (#41 in the testing
data set) to show the influence of penalty weight on the
constructed health indices. The vertical and horizontal dashed
lines represent the true failure time and the failure threshold.
The dashed lines on the curves are the predicted health indices.
Besides, increasing the penalty weight of the monotonicity
constraint in Fig. 7(a) could effectively reduce the noise
and obtain a smoothed and monotonic health index. Besides,
increasing the convexity penalty weight can further increase
the degradation acceleration and the range of health index from
the initial state to the failure time, as indicated in Fig. 7(b).
It is worth noting that the range of the health index is a very
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Fig. 7. Influence of the monotonicity and convexity shape constraint on the constructed health index. (a) Increasing the monotonicity penalty weight from
λ1 = 5 to λ1 = 10. (b) Increasing the convexity penalty weight from λ2 = 10 to λ2 = 15.

Fig. 8. Comparison of the three penalty functions on the prediction errors
of the proposed method.

important characteristic to evaluate the quality of constructed
health index [40]. It possesses the advantage of having a low
signal-to-noise ratio and providing more accurate residual life
prediction. With the convexity constraint posed in the model
training, we are able to obtain a health index with not only
more accurate shape, e.g., convexity, but also a large signal
range, which is a by-product for better prognosis.

C. Performance Evaluation and Comparison

The testing data set with 100 units is used to evaluate and
compare the performance of the proposed method with other
methods. First, we evaluate and compare the performance of
the three penalty functions, i.e., exp, tanh, and linear.

Fig. 8 shows the mean absolute percentage errors of the
RUL prediction at different levels of the actual RUL for
the proposed method using different penalty functions. The
level label “ALL” represents all the 100 testing units, while
“T-N” denotes those testing units with residual life not larger
than N cycles. From Fig. 8, we can see that, for all three
penalty functions, the prediction accuracy increases as the
actual RUL decreases, which is expected as more observations
are obtained to infer the degradation path, and the prediction
length, i.e., the number of cycles required to predict the

failure, is reduced. Comparing the three penalty functions,
the exponential function outperforms the other two at almost
all levels of actual RUL. The hyperbolic tangent penalty
function generally has the lowest performance. Note that, in
this application, the noise of the constructed health indices is
not significant, i.e., h(t−1)−h(t) is small, which reduces the
effects of penalty function types.

The proposed method is further compared with the state-of-
the-art data fusion approaches, HI-linear [3], HI-kernel [20],
and HI-quantile [19]. For the HI-linear method, the health
index is constructed by linearly combining these sensor
data. The HI-kernel method, on the other hand, utilizes the
kernel method to fuse multisensor signals nonlinearly. The
HI-quantile method is still a linear fusion approach. However,
it leverages the quantile regression in the optimization of the
linear fusion coefficient. To study the effects of the convexity
shape constraint, the method without the convexity constraint,
i.e., ignoring the third term in (9), is also included in the com-
parison. The network structure is set to be the same as the one
with both monotonicity and convexity considered. The optimal
penalty coefficient is λ1 = 4.7. These two methods are denoted
by HIconvex and HIno convex, respectively. Since the exponential
penalty function has the best performance, we adopt it in
the comparison. We ignore the comparison of the proposed
method with existing neural network-based approaches in RUL
prediction, which utilizes the percentage of life occurred or
alternatively the residual life percentage as model output.
These methods only provide the estimated residual life that
linearly decreases to zero (e.g., RUL(t) = T − t), and they are
not able to provide direct visualization of the degradation path
of the health condition. Therefore, following the convention
of existing health index construction work [3], [18], [20],
we ignore the comparison although the proposed method has
comparable performance in RUL prediction.

Fig. 9 shows the comparison results in terms of the mean of
the absolute percentage error. As expected, the prediction error
decreases for all methods when the units approach failure. The
proposed method outperforms all the other methods at almost
all degradation levels, especially in the early degradation
stages. At the degradation level T20, all the methods have
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Fig. 9. Comparison of the proposed method with other approaches.

TABLE III

VARIANCES OF NORMALIZED SIGNALS AND HEALTH INDEX

comparable prediction accuracy. The HI-linear method has the
highest prediction error. Due to the usage of indirect super-
vised learning, the linear method HI-quantile has significantly
lower prediction errors than HI-linear. However, due to the
limitation of linear fusion, it still has lower prediction accuracy
than the proposed nonlinear method. HIno convex has much
higher prediction accuracy than HI-kernel at early prediction
stages, e.g., ALL, T100, and T60, while its performance is
comparable with (or slightly lower than) HI-kernel at high
degradation levels (T40 and T20), which demonstrates the
advantages of using neural network data fusion approach
than using kernel method. Comparing HIno convex and HIconvex,
we can clearly see that the usage of the convexity shape
constraint can effectively improve the prediction accuracy.

To justify the necessity of fusing multiple sensor signals in
RUL prediction, we also have to make sure that the proposed
data fusion method has a better performance than using any
single-sensor signal. Since the HI-linear, HI-quantile, and
HI-kernel methods have already demonstrated their superiority
over using a single signal for prognosis [3], [19], [20], there is
no need to provide that comparison. Instead, we compare the
variances of selected sensor signals (normalized) at the failure
time and the constructed health index, as shown in Table III.
It is clear that the variance of the health index is much lower
than that of each sensor signal at the failure time, which also
justifies the necessity of data fusion methods.

V. CONCLUSION

With the rapid development in sensor and information
technology, deploying multiple sensors for condition monitor-
ing prevails in the modern PHM field. Health indices have
gained their wide popularity recently due to their advan-
tage of providing direct visualization of the health condi-
tion and facilitating RUL prediction using well-developed

univariate prognostic methods. However, the majority of data
fusion methods restrict themselves to linear combination,
which is incapable of characterizing the underlying nonlin-
ear relationship. To address this issue, this article proposed
a shape-constrained neural data fusion approach for health
index construction and RUL prediction. In this methodol-
ogy, an unsupervised learning neural network with shape
constraints is proposed to model the potentially nonlinear
relationship between the true health index and the observed
multisensor signals. A novel loss function is formulated by
jointly considering the variance of the health index at the
failure time across different units, the monotonicity, and the
convexity of the constructed health index. A tailored Adam
is developed for model parameter estimation. In the RUL
prediction, a Bayesian linear modeling and updating frame-
work is used to model sensor data to capture the population
degradation trend and the individual degradation path. The
effectiveness of the proposed methodology is demonstrated
and validated using the C-MAPSS data set. The results indicate
that the proposed neural data fusion model can not only
construct a composite health index reasonably but also has
much higher prediction accuracy than the existing approaches.

There are still several problems worthy of further investi-
gation. First, the current method is unsupervised or somehow
semisupervised in that the variance of the health index at the
failure time, instead of the prediction error, is used in the loss
function. Incorporating the prediction error in the loss function
may further improve the quality and prediction accuracy of the
constructed health index. Second, this article focuses on the
degradation with only one failure mode and one operational
mode. Extensions to multiple failure and operational modes
are desirable in practical applications. Last but not least,
more information about the health index could be incorporated
to obtain a more accurate health index. For example, many
degradation processes demonstrate two obvious stages, with
the first stage representing the nondefective phase with almost
no degradation while the second stage denoting the defective
phase with a monotonic degradation trend. The introduction of
change points could potentially improve the quality of health
indices.

APPENDIX

DERIVATION OF (14)

Based on (13)

(γ | σ 2, y1:t ) ∼ N(μt , σ
2�t )

(Zt+ jγ | σ 2, y1:t ) ∼ N(Zt+ jμt , σ
2 Zt+ j�t ZT

t+ j )

(σ 2 | y1:t ) ∼ IG

�
a1 + t

2
,a2 + Ht

2

�

Since yt+1:t+L = Zt+1,t+Lγ + σεt+1:t+L , then (yt+1:t+L |σ 2,
y1:t ) ∼ N(Zt+1,t+Lμt , σ

2(I + Zt+1,t+L�t ZT
t+1,t+L )).

Let μ∗ = Zt+1,t+Lμt ,�∗ = I + Zt+1,t+L�t ZT
t+1,t+L

p(yt+1:t+L | y1:t ) = ∫p


yt+1:t+L | σ 2, y1:t

�
p


σ 2 | y1:t

�
dσ 2

∝
� 


σ 2�− L
2 |�∗|− 1

2
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× exp

�
− (yt+1:t+L − μ∗)�−1

∗ (yt+1:t+L − μ∗)
T

2σ 2

�

× 

σ 2�−a1− t

2−1
exp

�
−2a2+H t

2σ 2

�
dσ 2

∝
� 


σ 2�−a1− t+L
2 −1

× exp

�
− (yt+1:t+L−μ∗)�−1

∗ (yt+1:t+L−μ∗)
T+(2a2+Ht)

2σ 2

�

× dσ 2

∝ 



a1 + t+L

2

�
�

(yt+1:t+L−μ∗)�−1∗ (yt+1:t+L−μ∗)
T+(2a2+Ht )

2

�a1+ t+L
2

∝
�

1+ 1

v

(yt+1:t+L − μ∗)�−1
∗ (yt+1:t+L − μ∗)

T
v

2a2+H t

�− L+v
2

where v = 2a1 + t . Therefore, the future observation vector
yt+1:t+L given the observations up to the current time follows
a multivariate t-distribution:

yt+1:t+L |y1:t ∼ MT

�
2a1 + t, Zt+1,t+Lμt ,

2a2 + Ht

2a1 + t

× 

I + Zt+1,t+L�t ZT

t+1,t+L

��
.
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