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Multiple-Phase Modeling of Degradation Signal
for Condition Monitoring and Remaining
Useful Life Prediction

Yuxin Wen, Jianguo Wu, and Yuan Yuan

Abstract—Remaining useful life prediction plays an important
role in ensuring the safety, availability, and efficiency of various
engineering systems. In this paper, we propose a flexible Bayesian
multiple-phase modeling approach to characterize degradation sig-
nals for prognosis. The priors are specified with a novel stochastic
process and the multiple-phase model is formulated to a novel
state-space model to facilitate online monitoring and prediction.
A particle filtering algorithm with stratified sampling and partial
Gibbs resample-move strategy is developed for online model up-
dating and residual life prediction. The advantages of the proposed
method are demonstrated through extensive numerical studies and
real case studies.

Index Terms—Condition monitoring (CM), multiple change-
point model, particle filters (PF), prognostics and health manage-
ment, remaining useful life (RUL) prediction.

NOMENCLATURE

Abbreviations and Acronyms

RUL Remaining useful life.

CM Condition monitoring.

BIC Bayesian information criterion.

ii.d. Independent and identically distributed.
MLE Maximum likelihood estimate.

PF Particle filtering.

SIS Sequential importance sampling.

SPF Stratified particle filtering.

RMSD Root mean square deviation.
NOTATION

k; Number of change-points for unit 7.

Y; Vector of observations for unit 7.

T; Number of observations for unit 7.
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Cik, Location of the k;th change-point for unit <.

i Intercept of the kth line segment for unit .

bir Slope of the kth line segment for unit 1.

ik Standard deviation of the kth line segment for unit i.

Y1t Observations of a working unit by the current time
index t.

x; State vector at the current time .

St Phase or stage index at time .

() Prior distribution.

Ty Latest change-point at time ¢.

5% Duration of the sth segment.

P Hyperparameters of all priors.

o) Model parameters of the sth segment.

pi+1 () Prior transition probability of state vector x; at time
t+1.

B Vector of coefficients including slope and intercept.

Bl Estimated coefficients including slope and
intercept.

52(5) Estimated measurement noise.

uik’s) Mean of normal distribution of the sth segment.

Eik’ *) Covariance of normal distribution of the sth
segment.

a§k=5> Shape parameter of inverse Gamma distribution of
the sth segment.

agk's> Scale parameter of inverse Gamma distribution of
the sth segment.

7 Positive lower bound of the slope of the last phase

for k-change-point case.

Prior transition probability density function of the
state-space model.

Density function of the observation model.

N Number of particles.

Normalized weight for each particle i.

VV;" ) Group weight coefficient for each group g.

R, Remaining useful life at the current time ¢.

r Failure threshold.

D(4) Cumulative distribution function of Gaussian
distribution.

I. INTRODUCTION

HE remaining useful life (RUL) refers to the time remain-
ing before a failure occurs at a particular time of operation
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[1]. RUL prediction plays a critical role in support of executing
preventive actions [2], replacement strategies [3], and health
management [4], as well as maximizing manufactured prod-
ucts availability [5]. Condition monitoring (CM) signals, also
referred as degradation signals, are often in situ collected dur-
ing system operations. They are directly related to the health
condition of the system and have been widely used for CM and
RUL prediction in the past few decades [6]-[8]. According to
Zio et al. [9] and Dragomir et al. [10], the existing scientific lit-
erature on data-driven modeling and prediction can be classified
into two categories, the statistical and artificial intelligence ap-
proaches. The statistical approaches include regression-based,
Wiener process, and Markovian based models, while the artifi-
cial intelligence approaches include neural networks, decision
tree, support vector machines, fuzzy system, etc. Due to the
excellent statistical properties and interpretation characteristics,
statistical-based methods have become more and more popular.
A comprehensive review of statistical approaches can be found
inSietal [11].

The commonly applied statistical approach s to fit CM signals
using parametric regression models to describe and predict how
the currently available CM signal evolves [9]. In these methods,
the functional forms of the models are often linear, polynomial,
exponential, or combination of them [12]. However, these para-
metric models are often too rigid and not adequate or flexible
enough to model the real CM signals in the whole time period.
For example, Son et al. [13] showed that the internal resistance
degradation signal of vehicle batteries changes its functional
form and evolves more rapidly after the system has degraded
down to a certain level before failure occurs. Bae and Kvam [14]
also demonstrated that the degradation path of vacuum fluores-
cent displays is not monotonic, showing obviously two phases
or even three phases. This phenomenon has also been observed
in many other CM signals, such as high-performance capaci-
tors [15], the semiconductor laser diodes [16], and vibrational
signals of rotational bearings [17]. Some researchers chose to
delete early degradation measurements at the first stage, un-
der the assumption that the failure will not occur at the early
stage, and then apply the parametric models to the second phase
data for better model fitting and prediction [18], [19]. However,
the truncated measurements may contain valuable information
about the degradation process or the prediction may need to be
made at the early stage.

To avoid measurement truncation, some researchers proposed
to add a change-point to divide CM signals into two phases and
fit each phase with different models. Bae et al. [20] found that
the prediction accuracy can be improved substantially by the ad-
dition of a change-point for modeling incomplete burn-in data
of light displays. Li and Nilkitsaranont [21] employed a combi-
nation of a linear model in the first phase and a quadratic model
in the second phase to estimate the RUL of gas turbine engines,
and used “compatibility check” to determine the transition point
from one model to another. Gebraeel et al. [6] developed an
exponential (i.e., log-linear) degradation model with a preset
location of a change-point to illustrate the updating process of
rolling element bearings. Later Chen and Tsui [17] revisited

Gebraeel’s work [6], and applied a two-phase regression model
with one change-point at unknown location to characterize both
phases of the bearing degradation signals.

All these aforementioned methods assume a two-phase pat-
tern on CM signals. In many situations, however, the degradation
path may have three or even more phases during the whole life
cycle. It would be difficult to select proper functional forms to
characterize the degradation behavior with no change-point or
only one change-point. To fill such gap, this paper endeavors
to develop a multiple-phase modeling approach for CM and
RUL prediction. Here it is necessary to discuss more about the
term “phase”. In the existing literature, the definition of “phase”
can be classified into two categories: 1) it is commonly re-
ferred to as different operational conditions or states, such as
the working state and storage state for missiles [22], multiple
consecutive phases of operations required to finish the service
for phased-mission systems [23] and 2) it is also frequently used
to denote health conditions with different characteristics (e.g.,
normal working stage and irreversible degradation stage with
defects occurred for bearings [6], [24]), or different patterns
shown on CM signals, which may not have specific physical
meanings [13], [17]. In our approach, “multiple-phase” is more
related to the second category, though it can be easily applied
to the first case as long as the degradation signals exist multiple
patterns. The main difference between our work and the exist-
ing multiple-phase approaches by Si et al. [22], [23] lies in the
motivation and methodologies. In Si ef al.’s work, as mentioned
earlier, the multiple phases are used to model different opera-
tional states or stages, e.g., take-off, ascent, cruise, approach,
and landing phases of the on-board systems for the aided-guide
of aircraft. Therefore, in these methods, the number of phases
are fixed, the phase index and the starting point of each phase
before the current time can be exactly observed. However, in
our work, the purpose is to provide a flexible multiple change-
point based approach to model highly nonlinear degradation
signals where the existing functional forms are inadequate or
not applicable. Therefore, each phase may not have any physi-
cal meanings, the number of phases may not be fixed, and both
the phase index and its starting time are random variables across
all the life cycle and need to be estimated.

To characterize the population-level trend as well as the in-
dividual heterogeneity, mixed-effects or random-effects models
are most commonly selected in offline modeling of historic CM
signals. When predicting the RUL of a new unit, the Bayesian
approach is naturally selected for online model updating, predic-
tion and uncertainty quantification, where the fitted parameters
in the offline stage are used as priors [17], [25]. However, there
are several challenges on how to effectively apply the multi-
ple change-point model for CM and RUL prediction under the
Bayesian framework. Due to significantly increased dimension-
ality and complexity, it is difficult to specify reasonable priors
(e.g., phase durations or number of change-points, model pa-
rameters of each phase) in the offline modeling of historical
CM signals. In addition, in the online model updating stage,
the posterior distributions of model parameters need to be up-
dated sequentially. However, the multiple change-point model
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is highly nonlinear and the conventional Kalman filtering tech-
niques [26], which are commonly used for linear models, are
not applicable. Besides, the RUL prediction given the posterior
of the current model parameters is still very challenging due to
the uncertainty of future change-points and model parameters.
To address these challenges, we propose a series of approaches
in both offline modeling and online model updating and RUL
prediction. In the offline modeling, a novel stochastic process is
proposed to specify and estimate priors in the offline modeling.
In the online stage, the multiple change-point model is formu-
lated as a nonstandard state-space model and a novel stratified
particle filtering (SPF) algorithm is developed for online model
updating and RUL prediction. The contribution of this paper lies
in the following threefold:

1) we innovatively apply the multiple change-point model
to degradation signals to improve modeling and prognos-
tics, which is fundamentally different from the existing
multiple-phase modeling approaches in terms of motiva-
tion, methodology, and applications;

2) a full Bayesian framework is proposed for the multiple
change-point model through a novel stochastic process;
and

3) an efficient SPF algorithm with partial Gibbs sampling
strategy is developed for model updating and RUL pre-
diction.

The rest of the paper is organized as follows. In Section II,

a multiple change-point model for the CM signals is pre-
sented. The prior parameters specification and state-space
representation for the multiple change-point model are given
in Section III. Section IV presents the technical details on how
to sequentially update the posterior distributions of the phase
index, latest change-point, and model parameters of the current
phase, and how to predict the RUL using the particle filtering
algorithm. Section V demonstrates the effectiveness and
accuracy of the proposed method through numerical and case
studies. The conclusion and discussion are given in Section VI.

II. MULTIPLE CHANGE-POINT MODEL
FOR DEGRADATION SIGNAL

In this paper, a piece-wise linear functional form is proposed
to model CM signals. The piecewise linear model with a proper
number of change-points at proper locations is flexible enough
to capture the nonlinear and multiple-phase characteristics of
various kinds of degradation signals in application. It could
avoid the nontrivial selection of appropriate functional forms to
model the CM signals. Besides, it makes more sense physically
to define it as a phase when CM signal is degrading with a
constant rate.

Here we use the bearing vibration signals [6], [17] to demon-
strate the superiority of the proposed method. As shown in
Fig. 1(a), the second phase of the bearing data is poorly fitted
if only one change-point is introduced. It can be seen that there
are two abrupt changes on this bearing CM signal before it hits
the prespecified failure threshold. From Fig. 1(b) we can clearly
see that a three-phase model is much more accurate. Note that

IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 3, SEPTEMBER 2017

-3 3
L) L
© o -
= 2
s =
£ £ -
© @
c f=
S S -
© g
g 8
5 S -
-8 -8
0 200 400 600 0 200 400 600
Time Time
(@) (b)
Fig. 1. Piecewise linear model for bearing signal. (a) One change-point.

(b) Two change-points.

the model accuracy may significantly influence the accuracy of
the RUL prediction. For example, if only one change-point is
adopted, then at a certain time between 400 and 500, the fitted
line of the second phase would be very flat, which will cause the
predicted RUL to be significantly larger than the actual value.

In some applications, all units may have the same degrad-
ing behavior, i.e., they will experience the same number of
degrading phases before failure. However, it is also common
in practice that the units are heterogeneous, and the number
of change-points required across all units could be different.
Therefore, we assume the number of phases is random to make
our model more flexible. Denote k; as the number of change-
points for unit ¢ with T; observations Y; = {vi1, Yi2, .-, ¥ir, }-
Suppose the k; change-points are the integer-valued observation
indices ¢;1, ¢;i2, - . ., ¢ik,; . For notational convenience, we define
Cio = Oandcik,ﬁﬂ =T, .Thencjy = 0<¢1 <c¢pg <--- <
ik, < Cik,+1 = 1; and these k; change-points divide the sig-
nal into k; + 1 line segments. Mathematically, the piece-wise
linear model can be expressed as

a1 + bty + oii€ij,
a2 + biati; + oincij,

0< t,;j S Ci1
cit <t <o
yl‘] P P
ik, + bik, tij + oik, €ijs
@ik, +1 + bir, +1ti; + Oik, 41605,

Cik,—1 < tij < Cik,
ik, <tiy <T;

ey
where ¢;; follows i.i.d. standard normal distribution, a;y., b,
and o, are the intercept, slope, and standard deviation of the kth
line segment, respectively. Denote the true degradation signal
without noise as §;;. Without loss of generality, we assume that
all the sampling intervals equal to 1 for all units, i.e., t;; = j
for the sake of simplicity.

Bayesian approach is commonly employed to integrate his-
torical data with newly observed CM signal of a working unit for
sequential model updating and RUL prediction. The historical
data provide prior information on the number of change-points,
locations of change-points, and possible values of model param-
eters of each line segment. Based on the prior information and
observed CM signal of a working unit up to the current time,
the posterior distribution of the model parameters of the current
line segment and future observations can be updated. Denote
y1.¢ as the observations of a working unit by the current time
index t, and denote x; = (ay, by, 07,7, 5¢, k) where a;, by, o7
are the parameters of the current line segment, 7; is the latest
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change-point, i.e., the starting time of the current line segment,
sy is the phase or stage index, and k is the total number of phases
in the whole life cycle. In the model updating, the posterior of
the current line segment can be expressed as

D (xe|y1:4) o (x) p(Yi:t|2e) 2

where 7(+) is the prior distribution obtained in the offline mod-
eling of historical data. To predict the RUL, the posterior dis-
tribution of the future true degradation g+, Vt* > ¢ needs to be
calculated based on the updated model

P (G |yr:e) = Z /]9(ta*|il3t)]9(3’»'7.‘@1::5)datdbtdat2 (3)
k,s¢ T
where
yt |CBt Z / yt |.’Et .’Bt* ac,)dat dbt*dO’t . (4)

Spx,Ty*

Although the above three equations have simple formulation,
they are generally intractable due to high dimensionality and
high nonlinearity caused by the unknown change-points. To
address this challenge, we reformulate the multiple change-
point model to a nonstandard state-space model and use particle
filtering techniques to approximate these posteriors. Section III
will introduce the specification and calculation of priors based
on the historical data, and the state-space representation of the
multiple change-point model. Section VI will give the technical
details of the developed particle filtering algorithm.

III. PRIOR SPECIFICATION AND STATE-SPACE REPRESENTATION

Denote a multiple change-point model as M =
(k, {6)} 1 {0¢)}* 1) where k is the number of change-
points, 5(¢) is the duration of the sth segment, i.e., 56 =
Ccs — Cs_1,and 6% is the model parameters of the sth segment,
e.g., 8% = (a'® b*) %)) in this paper. In the Bayesian
formulation of multiple change-point models with a fixed num-
ber of observations, the priors for the number of change-point
k, the segment durations {6(*), s = 1,...,% + 1} and the seg-
ment parameters {0(*) s = 1,...,k 4 1} canbe specified eas-
ily. For the change-points, a joint prior could be placed, i.e.,

7 (k, {6y = 7(k)m ({64} |k). More commonly,
a Markov process could be assumed to simultaneously model
the priors for the number of change-points and their occur-
rence intervals or equivalently their locations [27]. For exam-
ple, a Poisson process could be used to model the occurrence
of change-points, where the intervals 6(*) between successive
change-points follow an i.i.d. exponential distribution, and the
last interval satisfies d(*T1) > 7T — ¢y In such case, the prior
density can be derived as

S R Y 0 R

= AFexp (—AT)

where f(-|A) is the probability density function of an exponen-
tial distribution, A is the Poisson rate, and 1" is the total num-
ber of observations. In a Bernoulli process, each time step has

the probability p to be a change-point and the intervals follow
an i.i.d. geometric distribution [28]-[30]. The joint density is

simply
k+1 ,
o (n o)) =t ae

where p is the parameter for the Bernoulli distribution. For
the changing parameters (8*),s = 1,...,k), i.i.d. Gaussian
distribution is often assigned.

The aforementioned renewal process is often applied in the
segmentation of time series data of a known and fixed length
and the priors specified are often noninformative, i.e., the phase
duration follows the same distribution. However, considering
the phase heterogeneity of the CM signals, the prior distribu-
tions for the phase durations should be different to make the
prior more informative for RUL prediction. Also, for a working
unit, the number of observations to be collected before it fails
is unknown. If a renewal process is applied to model the priors,
an unlimited number of change-points beyond the current time
has to be considered, which is unrealistic for informative prior
specifications and RUL prediction. To solve this problem, we
first place a prior distribution on the number of change-point k.
Conditioning on £, the distribution of the phase interval lengths
are modeled by a stochastic process where the first k interval
lengths {6(*)}* _ | follow independent and nonidentical dis-
tributions and the k + 1 model parameters {6(*)}* ', follow
independent and nonidentical distributions. Then the prior could
be factorized as

r (M) =7 ® [ @O #OPk). ©)

More specifically, we put a categorical distribution or gener-
alized Bernoulli distribution on &, with 7 (k = g) =p, and
Zg py = 1. For simplicity, we assume the phase durations

follow normal distributions, 6(*) |k ~ N (5" *), ¢2**)). For
the changing parameters, the commonly used normal and in-
verse Gamma are specified, i.e., 3% |k = (a®),b()|k) ~
N(p, 5%y and o) (") ol Since the
CM signal often increases rapidly when it is approaching the
failure threshold in the last phase, we assume a truncated normal
prior for the last segment to make the prior more informative:

BUED |k~ TN (D S pk 1) S 1) where 1, is
a posmve lower bound of the slope for k-change-point case.
Note that here we assume the model parameters are inde-
pendent across different phases to reduce both the computa-
tional complexity and the required number of historical CM
signals.

To specify informative priors, the hyperparameters of all these
priors, denoted as 10, need to be estimated based on the historical
data. One common way is to estimate 1) by maximizing the
marginal likelihood [17] of I historical CM signals:

k+1
s=1

’(ZY = argmngjzl /P (Y |IM;) m(M;yp) dM

Unfortunately, the marginal likelihood is very complex and
not tractable. An alternative approach is a two-stage process
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where the model parameters M, of each unit i are first ob-
tained through the maximum likelihood estimates (MLE) and
then the hyperparameters are estimated through the MLE by
treating these estimated models {/\;lz ;i = 1,...,I} as obser-
vations. In our case, however, MLE cannot be directly applied
to each CM signal since increasing k will also increase the fit-
ting accuracy, and thus, result in over-fitting. To address this
issue, we propose to use Bayesian information criterion (BIC)
[31] for model selection and parameter estimation of each CM
signal:

M = argn}&ln(—ﬂ(M\Y) +nlogT) (6)

where n. = 4k + 3 is the number of model parameters to esti-
mate (k change-points, k£ + 1 slopes, intercepts and noise vari-
ance), [(M]Y") is the log-likelihood given as

k+1

[MY) =Y H 519 Log (270

s=1

N ||y£,1+1:cs

—Xcs,1+1:(:‘,,6(s)||2 7
2070 @

where

T
AXcs,l-klzc‘5 = :l . (8)

Te, 1 T1Te, 1 +2-0 ¢

Given the number of change-points and their locations
{k,c1,...,cp}, the parameters {B3(*) 02(*) s = 1,... k+ 1}
that minimize the BIC are just the MLE of the Gaussian linear
models of each phase

6(5) = (XZ;71+1:C_GXcsflJrl:C-ﬂ)il

52(5) — ‘

T T
Xcsfl +1:cs ycﬁ—l +1:ics

N 2
yz:—l‘FliCs - X(3571+1105 ﬁ(q) H /6(9) : (9)

If £ and T are small, it is possible to try all combinations
{k,c1,...,c} to determine the optimal model. However, this
method is not realistic for large k£ and 7" due to the exponen-
tially increased computational cost. Instead we could use the
PELT method [32], which is computationally efficient with a
computational cost that is linear with 7.

Based on the above prior specification, the multiple change-
point model could be formulated to a nonstandard state-space
model with state vector ¢, = (8*!), 7, s;, k) and prior state
transition process

Lpy1
T, p:l—pt+1(wt) if sy <k+1
=<Ky, p:l lfo:k+]~
OVt s+ 1K) p=piia () if s <k+1
(10)
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Sep1 =S¢ +1
Tee1 =1
041~m(05*D k)

Fig. 2. Illustration of the formulated state-space model.

Here p;y1 (@) is the transition probability of the stochastic
process expressed by

prs1 (@) =p (6“’/> < LA41j6) > L)
R T R

1_ (I)(L|5(()k"s'),a'g(k"s'))

(1)

where L = t — 7; and ®(-) is the Gaussian cumulative distri-
bution function. Note that when a hidden state is continuous-
valued, the term state-space model is often used instead of
hidden Markov model. Here we refer to our model as a non-
standard state-space model in that its state vector contains both
discrete and continuous-valued components, and the state ;1
is not linearly correlated with z;, which is different from stan-
dard state-space model.

The formulated state-space model is illustrated in Fig. 2,
where the transition probability from x; to x;, 1 can be ex-
pressed as

)]1(st<k+1) _ (12)
If there are no change-points, the formulated state-space model
is a special linear state-space model with a constant state, which
can be easily inferred using Kalman filters. However, due to
the existence of unknown change-points, the formulated state-
space is highly nonlinear, which makes the inference very chal-
lenging. The particle filtering techniques are particularly ef-
fective for nonlinear state-space models and have been widely
applied in the prognosis area. Generally, the applications in the
prognosis area can be classified into three categories based on
the underlying state-space model: 1) Nonlinear state transition
model, linear observation model [33]; 2) linear state transition
model, nonlinear observation model [34], [35]; and 3) non-
linear state transition model and nonlinear observation model
[36], [37]. The formulated state-space model in this paper falls
into the third category. However, it is fundamentally different
from the existing ones due to its special characteristics, i.e.,
high dimensionality, containing both discrete and continuous
states, some states being constant (linear transition) across all
life cycle while some states being constant between two suc-
cessive change-points but changing once a new change-point
occurs (nonlinear transition). To our best knowledge, none of
the existing algorithms work well on our model. In the following

Peiit = [1 — Per1 (x4
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section, a novel SPF algorithm with partial Gibbs sampling strat-
egy will be developed for sequential model updating and RUL
prediction.

IV. PARTICLE FILTERING ALGORITHM FOR ONLINE MODEL
UPDATING AND RUL PREDICTION

Particle filters (PF) are effective sequential Monte Carlo meth-
ods to solve the filtering problems. It is particularly useful for
sequential Bayesian inference of linear/nonlinear Gaussian/non-
Gaussian state-space models [38]. In this section, a customized
particle filtering algorithm is developed for sequential model es-
timation and RUL prediction of a working unit. For the sake of
completeness, the basic theory of PF algorithm is first presented.

A. Review of Particle Filtering Algorithm

The basic idea of the PF technique is the sequential impor-
tance sampling (SIS). Consider a state-space model described
as

yi| o ~ g (yt|ze)
(13)
where f(-) is the prior for the first state and f(-|) is the prior
state transition probability density associated with state chang-
ing from x;_; to ;, and g(+|-) is the density function of y,
conditioning on ;. The observations y;.7 are assumed to be
conditionally independent given z;.7. According to Bayes’
theorem, the posterior density satisfies the following recursion:

z ~ f (93), Tt |115t71 ~f ($t|wt71)7

[ (xe|mi1) gyl )
p (ytlylztfl)

p (mlzf,\yu) = p($1:t—1|y1;t—1) (14)

where

p (Z/t |y1;t—1)

- / D@ lyres) f (@ileer) g (il deere (15)

In the filtering problem, p(a;|y;.+) is of interest and can be
obtained by integrating out «;.;_; or directly based on Bayes’
theorem

p(xt|yre—1) 9(ye|x:)
P (Yelyr:e-1)

P (Te|yi) = (16)

where
p (mt|y1:t—1) = /p(mtflwlzf,fl) f(mt|mt71)d-73t71- (17)

Equation (17) is known as the prediction step and (16) is called
as the updating step. However, (15) and (17) are often intractable
analytically, and SIS is often used for posterior approximation.
If we select an important distribution that can be sequentially
sampled with the following structure:

g (@) =a (@) ][ _ (18)

qi (wL |w1;,;,1)

Algorithm 1: Generic Particle Filtering Algorithm.
Attimet = 1:
1. Sample mgw ~q(x) fori = 1,...,N

2. Compute welghts wi (mg )) and normalized weights

W = (x} >/zz o).

3. Resample {W1 ml } according to their weights
to obtain IV equally weighted part1cles {+. :ci )}
andset{I/V”a:1 }<—{N, }

Attime t > 2:

1. Sample mﬁ“ ~ g (z \azﬁfl), set

wgli — (wgl;ifl,wi”) fori = 1,...,N
. Compute wy (a:ﬁi) and normalized weights th

3. Resample {W,

particles {+-, :cl f} and set {W

a:l t} to obtain N equally Welghted

wlt}*{\w lt}

then the unnormalized weight function can be expressed by

P(T1:t, Y1

o) = LI

_ S Ty feilai) Ty g(vil2i)

q (1) [Tizy @i (@il@ri1)
= @) [, w (19)
where
wi (@1) = [ (@1) g(y1|@1)/q1 (1)
w; = g (yilzi) f(xilzi-1) /gi(@i|@1i-1). (20)

Equation (19) shows that the weight function can be calculated
recursively, so that the posterior could be sequentially updated
once a new observation is measured. The expectation of any
function (@.;) with respect to the posterior p(x1..|y1.¢) can
be estimated by

o (=)

where Wt(l) is the normalized weight. In the PF algorithm,
a resampling step based their updated weights is often added
to obtain equally weighted particles which are approximately
distributed as p(@1.¢|y1.+). It is a “Darwinian” procedure that
can remove particles with low weights and carry on particles
with high weights. The generic particle filtering algorithm with
a resampling step is given in Algorithm 1.

E(<P L1t |ylt 21

an

B. SPF Algorithm for Model Updating

In the development of PF algorithm, the importance function
needs to be specified. The optimal importance function should
be the one that minimizes the variances of the importance weight
of sampled particles [38]. It can reduce the particle degeneracy
issue, i.e., the weights concentrate on only a few particles and
most particles have negligible weights. However, the optimal
importance function is often not obtainable in practice. Instead,
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we propose to use the prior transition density as the importance
density function

qt (wt|w1:t—1) = f(mt|wtfl)~ (22)

Selecting the prior transition density is the most common and
convenient way in practical applications. According to (20),
with the resampling step implemented, the weight is simply

Wi (931:t) = g(yt\wt) (23)

at each step, which greatly simplifies the computation.

Another important issue commonly faced in PF techniques is
the particle impoverishment problem [28], where the number of
unique particles or unique components of particles becomes less
and less along iterations due to the resampling step. In our state-
space model, each line segment between successive change-
points is a special linear state-space model with a constant state,
which makes the particle impoverishment problem even worse.
Besides, the dimension of the state vector is relatively high,
which may require a significantly large number of particles to
guarantee the approximation accuracy, and thus, result in high
computational cost. However, for online model updating and
RUL prediction, a low computational cost is often critically im-
portant. In this paper, we propose a Gibbs resample-move step
to address both these issues. The resample-move strategy was
first proposed by Gilks [39], where a “move” step is added after
the resampling step to generate new particles through MCMC
kernels with the posterior distribution as the invariant distribu-
tions. It can not only diversify the particles to reduce the particle
impoverishment issue, but can also generate more particles with
significant weights, thus, reducing the particle degeneracy issue
and reducing the required number of particles. In our algorithm,
we propose a one-step partial Gibbs sampler to “move” the three
continuous components (3;, 07 ) through their conditional pos-
terior distributions. The conditional posterior distributions are
obtained based Lemma 1 as follows (the proof is included in the
Appendix).

Lemma 1: Suppose Bk = (a®), b |k) ~ N(ul*),
S5 for s =1,.. .k, BEFD |k ~ TN (i Bl
b > 1) and o2 |k ~ IG(aﬁk’s),aék”s)) for s=1,...,
k + 1, then

(ﬁz\ylzt,@?ﬁm St = Svk) ~
) ) lfsgkr

TN () DRI S0 )i s = k1
(24)

N (Nl(sk,s) Egk,s)

(Jf,2|yllt7/6t77ta St = S7k) ~

1G (a(lk“’”) 4 [ i? alk®) 4 HyTTfH:t - XT,+1:fﬂt||2>

2 772 2
(25)
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where
-1
(k,s) XZ:Jrl:tXTHrlit Efl(k,s) X£+1:ty7j';+1:t
ey = 2 + 24 2
O O

n 251“‘*5)“(‘)’“)} Cs=1,...,k+1 (26)

2
0j

-1
zgkﬁs) _ [X£+1:tXT/+1:t i 201(k75)‘| cs=1,....k+1.
(27

The Gibbs “move” step could effectively diversify particles
and generate more particles with significant weights. However,
the introduction could result in extra computational cost as well
as break the balance of the computational load at each time
step. Based on Lemma 1, all the observations from the latest
change-point to the current time are used for Gibbs move. It
is intuitive that the longer the phase duration, the higher the
computational cost the Gibbs move will take. To control the
computational cost, we adopt the “partial move” strategy [40],
where randomly drawn particles among the resampled particles
are moved until the sum of their durations ¢ — Ttm
a controlling constant C.

Although the Gibbs move step has solved the particle im-
poverishment issue for the continuous components (3;, 07 ),
it could not handle the same problem with the discrete
component k. Indeed, the discrete component k of each par-
ticle is generated at the first time step and kept constant across
all the following time steps. That means the impoverishment
issue is much worse than the other components of the state
vector. As we observed, after only several iterations, there may
be only one unique value for k£ among all particles, which will
result in a totally failed PF algorithm. To solve this problem,
we propose to use a stratified approach. Specifically, for each
category k = g in the categorical distribution, the developed
particle filtering algorithm with the same number of particles NV
is applied individually. In the posterior approximation, the extra

) is applied to each category g or

is larger than

group weight coefficient 1,7

all particles of each group. The group weight coefficient Wt(g )
can be calculated as

Y wi (m§gtz)>
dim (k) <~ N 4
Eg: 1( ) Die1 Wt <:B<1?tz))
This strategy can effectively avoid the disappearing of certain k
in the resampling process. We call this approach the SPF.

In summary, the developed SPF algorithm for sequential
model updating is given in Algorithm 2.

wy = (28)

C. RUL Prediction

After the degradation model of the working unit is updated
using the observations up to the current time, the next step
is to predict the future degradation magnitude and RUL for
preventive maintenance. Due to the multiple change-point that
may occur in future, the exact Bayesian inference is intractable,
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Algorithm 2: SPF Algorithm for Sequential Model

Updating.
Attimet = 1:
For g = 1: dim{k}

1. Setk9?!) =k, , Sample
) k(zm), k(tﬂ)_]
B ~ N(u Y B,

al((” ~ IG(« k(q")’w,a;k(g“’l)).Set
790 =0, s = 1, and set

mgg&) _ (,ng’l),a?(g’l),rl(g’”,sgg’z), k(g,i))
fori = 1: N

2. Compute Weights wl (ac(lq‘i)) and normalized weights

Wi = @) N wi (2! 7) based on (23)
fori = 1I: N

3. Resample {Wl(“ :cl‘“ li = 1,.
their weights W ) to obtain N equally weighted
partlcles {+ N , scl } and set
R S S

End
4. Calculate the group weight Wl(g ) based on (28)

, N'} according to

: ()
5. Set W) =ML forg = 1:dim{k} and
i = 1N
Attimet > 2:
For g = 1: dim{k}
1. Calculate the probability pi‘gt’i)l based on (12)
2. Sample u'9") ~ U(0,1)
. i (9.9)
If u(9:7) <p‘t 1>
i Setr ") =t -1, s = § Vo,
. g.i) a i) 1.(g.i s(fm)
ii. Sample ﬁgg’” ~ N(u(k( ),Eé}”( b >)

if sgg’i) < k(@9 otherwise, sample

; kD g9 ki) gD
g ()

@9 l;

iii. Sample
20 ]G(agmﬂ-'hsi-"")),agww'hsi-‘“')))
iv. Set m§9~“ - (,ng‘j’),Uf(g‘i),Tt(g’i),sgg‘i),k(9=i>)
« Otherwise, set 2!/ — !?"7)

3. Compute w; (:cg

based on (23).

4. Resample {7
weighted particles {+, a_ch‘i } and set
{ng wtéﬂ }<_ {N’ —(97)}

5. Gibbs move: select a subset S of {z9!)]i = 1: N}
such that > (t — 799)) < C

jes
+ Sample ,Big /) based on (24)
* Sample o’f (9:7) based on (25)
End
6. Calculate the group weight Wt(g ) based on (28)

. )
7. Set W9 =% forg = 1:dim{k} and
, = 1: N

)) and normalized weights W

, wg’ft’i)} to obtain N equally

TABLE I
HYPERPARAMETER SPECIFICATION FOR NUMERICAL SIMULATION

Variables Two-phase model Three-phase model
5 5%11):: 400, op "t =225 6" =500, 0" = 100
57 =200, g >t =100 6% =400, oy > =100
2,3) 2(2,3)
%" =500, 73 = 100
) = [<10;0.0005]
(s) (1,1) _ 1 qe. (2,1) _ 1 0.15 0.00014
B o' = [~15;0.008] =" = [0.00014 6.0009
(1,1) _ 710.015 0.0014 (2,2) )
=" = [0.0014 0.00046] By T = [-18;0.02]
(1.2) (22) [ 0.024 —0.0007
By = [=30;0.3] =0 = [6.0007 0.000048
(1,2) 1 0.024 -0.0007 (2,3) _ 1 _&p.
=0 = [Co0007 0.0057] Mo =1-50;0.08]
5@ [ 0.075  —0.00008
o = [-0.00008 0.00025
o2(s) oM =14, oMY =25 o) =364, ol =2
a?? =06, o> =05
agl‘” =2, aél’z) =4 a(12’d) 3.6, aéZ‘d) =5

even if the current model is known. However, through the PF
algorithm, the RUL prediction is proven to be very convenient.

Suppose the failure time is defined as the first time the true
degradation signal hits the predefined failure threshold T, i.e.,
inf{¢ : gy > I'}. Denote R; as the RUL at the current time ?.
Then the distribution of R; can be expressed by

PR, > Lly1.) =
< P‘yl:t)

P(gtJrl < Fagt+2 < F7 e 7gt+L

= /P(§t+1 <T,.. ..+ <Tlxir1:4+1)

f(‘Bz:HL |y1:t)dﬂ3t:t+L

J L Py < Tlew) flaelacs -

f(@ielyre)dzresr (29)
The above equation is not tractable analytically. How-
ever, we can conveniently generate samples from the
distribution  f(@x¢.;11|y1+) based on the particles at
the current time and the prior state transition process.
Given the particles and their weights at the current time
{ng’i),:ngg'i),g = 1:dim(k),i = 1: N} which approx-
imately follow f(x¢|y;.;), the samples of the future states
{mii)l:HL,i = 1,...,N} can be generated through the
prior state transition function f(z, j|@;4;-1) given in (10).
Based on the generated samples, the RUL distribution can be
approximated by
P(R; > Lly14)

=Py <D, 0 <Tlyi)

dim (k) N

~ Z WJi/' ZHL P(Qt+,j<r|$§i’;)).
=1

(30)
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Conditioning that there are k + 1 line segments or phases for
a working unit, the failure will not occur before the (k + 1)th
phase. Therefore, the probability P(;1; < I’|w§i’;>) can be
calculated by

P (yt+j < F|$§i;))

- {Mai‘i’é) UL ) <)l =

<T), s
1, sf;‘“' < klg:1)

(€20)
where 1(-) is the indicator function.

V. CASE STUDIES

In this section, the proposed method is evaluated through
numerical simulations and real vibration data of rotational bear-
ings. For all of case studies, we choose 50%, 70%, and 90% of
actual failure time as our starting points of RUL prediction.

A. Simulation Study

In this section, we evaluate the performance of the proposed
method through simulated piecewise linear signals. For simplic-
ity we assume that there are only two categories of degradation
signals: Two-phase and three-phase cases. The categorical dis-
tribution is given by

b — 1, with probability p = 0.3
~ 12, with probability p = 0.7.

We assume the unit will fail once the observation reaches the
threshold I' = 20. The slope lower bound of last phase is set
tobe l; =1, = 0.003, The hyperparameters of 6(%:*)  3(k.s)
and o2("*) are specified in Table 1.

In total, 200 CM signals are simulated, among which 69 are
two-phase signals and 131 are three-phase signals. The BIC
based model selection method can accurately obtain the right
number of change-points and their locations for each simulated
signal. Due to page limitation, the estimated hyperparameters
are not listed here. In the SPF algorithm, the number of particles
foreach category issettobe N = 5000. Fig. 3 shows the online
monitoring of degradation signals with one and two change-
points. From the top two panels we can see that the estimated
signals (mean value) are very close to the true values. The second
row of these panels shows the mean value of the current phase
length. As we can see, the algorithm can rapidly detect the
phase change. The bottom four panels show the probability mass
function of the discrete components (s, k) of the state vector.
As we can see, the algorithm can accurately detect the number
of phases the degradation signal will have and the current phase
the degradation signal is at.

Fig. 4 shows the comparison of the SPF algorithm to three
other PF algorithms without either partial Gibbs move or strat-
ified strategy. The number of particles here is set to be 500.
Clearly, without the stratified strategy [(a) and (c¢)], all the parti-
cles with discrete component £ = 2 gradually diminish along
iterations, which results in an inaccurate model with only two
phases (k = 1). Without the partial Gibbs move [(b) and (¢)],
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move; (b) stratification, no Gibbs move; (¢) no stratification, no Gibbs move; and (d) proposed SPF with both particle Gibbs move and stratified approach.
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Fig. 6.  Comparison of the pdf of the RUL. (a)—(c) two-phase signal and (d)—(f) three-phase signal.
the degeneracy of the continuous components occurs, which TABLE II
significantly influence the model accuracy. The proposed SPF COMPARISON OF THE RMSD AT SIX PREDICTION TIMES
algorithm has effectively overcome the particle degeneracy and
impoverishment issues and works quite well with only 500 Method RMSD
samples. 40% 50% 60% 70% 80% 90%
To evaluate the prediction performance, 200 new degradation
signals are randomly generated as a testing dataset using the Chen 39346494 6967 5487 1886 386
gna ! ye g - using SPF 2221 1946 1338 744 234 219
specified priors. We compare the SPF algorithm with Chen’s
two-phase model [17], where only one change-point is consid-
ered. For Chen’s method, all the 200 training dataset with both
two-phase and three-phase signals are used to estimate the pri- TABLE 111

ors of the two-phase model. Fig. 5 shows the comparison of the
prediction intervals of seven simulated two-phase signals and
seven three-phase signals predicted at 50%, 70%, and 90% of
actual failure time. Fig. 6 shows the detailed RUL prediction
of the 5th and the 2nd unit of the seven signals of each cat-
egory in Fig. 5. From Fig. 5, we can see that our prediction
accuracy is much better than Chen’s method in almost all the
14 cases. For two-phase signals, both methods work well. How-
ever, our method is slightly better at 70% and 90% of the failure
time while much better at 50% of the failure time than Chen’s
method, which can also be seen from Fig. 6(a)—(c). The main
reason is that in Chen’s method, the priors are estimated using
all two-phase and three-phase signals, which will result in less
accurate priors. At the 50% failure time, the prediction accu-
racy is mainly determined by the prior knowledge, while at the
70% and 90% of the failure time, the observations dominate the
posterior distributions. Therefore at the early stage, our method
with more accurate priors is much better than Chen’s method
while at the late stage, the performances of both methods are
comparable. For three-phase signals, our method is much better
than Chen’s method at all the three prediction times, as shown
in Figs. 5(d)—(f) and 6(d)—(f). It is expected since the two-phase
model is inadequate to model signals with three phases.

COMPARISON OF THE COMPUTATIONAL COST (UNIT: SECONDS)

Method  Updating Prediction

300 25 50 75 100 125
Chen 0.024 2.1 74 161 288 457
SPF 179.4 62 117 169 220 270

To evaluate the overall performance, we use the root mean
square deviation (RMSD), which is defined as RMSD =

\/E(R — Rtrue>2 , where R and Ry, are the predicted and
true RUL, respectively. Since the proposed method is a Monte
Carlo based method, there exists inevitable randomness (though
very small). So for each signal the SPF algorithm is repeated ten
times. Table II shows the RMSD of the proposed method and
Chen’s method using the 200 testing signals. As we can see, the
proposed method is much more accurate than Chen’s method,
with the RMSD reduced by more than 70% at almost all six
prediction times. As the prediction time approaches to the true
failure time, the RMSD of the proposed method monotonically
decreases. This is highly desirable since it becomes more and
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TABLE IV
ESTIMATED HYPERPARAMETERS OF THE PRIOR DISTRIBUTIONS

s=1 s=2 s=3
s 6" = 246, o't = 1632 57 = 199,001 = 1232 5% =232, op®) = 1232
B ) = [=7.14,0.00027] pi? = [-6.42,0.0028] ui? = -6.8,0.005]
S 015  —0.0003 | s 205 —0.009 ] = - [3‘89 ~0.008 ]
0~ 1-0.0003 1.30 x 10~° 0 = 1-0.009 7.36 x 107° 0 7 1-0.008 2.52x107°
1=0.005
o2 ol =265, o) = 0.01 al? = 0.54, al?) = 0.004 al¥ = 1.28, ¥ = 0.03

180014 | | Prediction at 50% failure time | e
T a
o 1200 4 i s " %
= B *E 8 g 2 s o
RN FE IR PELE I,
® a0 4 A s 2
VT ) ——— o ﬁ?& i 4 % § &
2 SPF | | : . ; :
5 10 15 20 25
Bearing index
L o Prediction at 70% failure time f“
@ 1200 : " ° i °
= ° 2 A
9300~§**51§ Y %%%*’H ¥k 1#*&
5 o %?E g A4 85 % ﬂ: E . %
L 400 [ £ = i + ol o
0 L 1 1 1 1
5 10 15 20 25
Bearing index
16007 4 Prediction at 90% failure time 4 ; -
|
@ 1200 F I I
E ¢ st 8
Esoo-&%*ﬁy (o %!HAﬁA %k N
3 a® 1, R e, B g
‘© F 3 o i* 2 A &
L. 400 §* = 4= %
0 1 1 1 1 1
5 10 15 20 25

Bearing index

Fig. 7.  Prediction intervals of the 25 bearing signals.

more important to get an accurate prediction when the RUL
approaches zero. However, for Chen’s method, RMSD first in-
creases and then decreases. That means the prediction error at
the second phase is even worse than making prediction at the
first phase. The reason is that for three-phase signals, the sec-
ond phase with a relative small degradation rate is detected as
the final phase in Chen’s method. The more observations in the
second-phase, the flatter the final phase of the updated model
and thus the worse the prediction.

The computational costs of the SPF and Chen’s method using
MATLAB running on an i7-6560U 2.21 GHz Intel processor
are shown in Table III. For the SPF method, the total number of
particles is set 5000. In the model updating stage, we compare

the computational costs of these two methods running 300 time
steps. For the prediction stage, the costs of running different
time steps are evaluated, since the cost of prediction in Chen’s
method nonlinearly increases with time steps. As we can see, the
SPF method is much more expensive in the model updating stage
than Chen’s method. However, in the prediction stage, the cost of
Chen’s method exponentially increases with the time steps, due
to the CDF computation of a multivariate ¢ distribution with an
increasing dimension. For the SPF method, the computational
cost of the prediction linearly increases with the time steps. Note
that the selection of 5000 particles is quite conservative. From
Fig. 4 we can see that the model updating is quite accurate with
only 500 particles.
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B. Degradation Monitoring of the Rotational Bearings

In this section, the proposed method is applied to the real
degradation signals of rotational bearings [6], [12], [17]. They
are vibrational signals (log-transformed) of a set of identical
thrust ball bearings captured by an accelerometer in the ac-
celerated aging testing. There are in total 25 complete bearing
signals available. The data sampling interval is 2 min for each
signal. When the vibration magnitude exceeds the threshold
I' =1log(0.03), which was computed from published industrial
standards, the bearing is considered failed [6].

In the offline modeling and prior estimation process, we set
the maximum number of phases for all 25 signals to be 3 to
control the model complexity. It is found that all bearing signals
with three phases have the minimum BIC. The estimated hy-
perparameters of the prior distributions are shown in Table IV.
It is observable that the slope is quite small at the first phase, in-
dicating a stable operation process. The slopes of the following
phases are larger than the former ones. It indicates that when
a new change-point occurs, the degradation rate of bearings
increases.

Fig. 7 shows the prediction intervals at 50%, 70%, and 90%
of failure time against the actual failure time. We can see that
the prediction intervals at 90% failure time are much narrower
than that of 70% failure time and 50% failure time. As the pre-
diction time is closer to actual failure time, the intervals become
smaller. It is obvious that the more observed data, the more ac-
curate the prediction. Fig. 8 shows the RMSD of the 25 bearing
signals. Compared with Chen’s method, the predictive accu-
racy of the proposed method is significantly improved. Table V
shows the comparison of the SPF method with Chen’s method,
the GLLR method [6] and an extension of SPF method with three
change-points (SPF-CP3) or four phases in terms of RMSD at
the three time steps. In the GLLR method, the first phase with
normal working condition is manually truncated first, and the

TABLE V
COMPARISON OF THE SPF METHOD WITH OTHER METHODS

Method RMSD

50% 70% 90%
GLLR 356.5 2342 2278
Chen 3184 1569 169.4
SPF 1764  110.8  56.9
SPF-CP3 186 1125 524

remaining data are fitted using Bayesian simple linear regres-
sion. Clearly, our method outperforms Chen’s method and the
GLLR method at all three prediction times. The GLLR method
has the largest prediction error on this dataset. Comparing SPF
and SPF-CP3, we find that adding one more phase will reduce
the prediction performance at the early prediction stage (50%
and 70% prediction time) while slightly improve the accuracy at
90% prediction time. The reason is that the addition of another
phase could introduce extra uncertainty in change-point predic-
tion at early stages, while at the late stage, the model of the last
segment of the four-phase model is more accurate in modeling
the degradation signal.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose a multiple-phase modeling of degra-
dation signals for health CM and RUL prediction. To integrate
the historical data with in situ observations of each new unit
in the RUL prediction, the multiple change-point model is for-
mulated under the Bayesian framework and a novel stochastic
process is proposed as priors of the formulated model. To fa-
cilitate the online monitoring and RUL prediction, the multiple
change-point model is first represented by a novel nonstandard



WEN et al.: MULTIPLE-PHASE MODELING OF DEGRADATION SIGNAL FOR CONDITION MONITORING AND RUL PREDICTION 937

state-space model and then a new particle filtering algorithm
is developed for online model updating and RUL prediction. A
stratified sampling approach and a partial Gibbs resample-move
strategy are developed to overcome the particle impoverishment
problem and reduce the computational burden. The advantages
of the proposed method have been demonstrated through exten-
sive numerical studies and real case studies.

Nevertheless, there still exist several open issues that need
to be investigated. First, in the proposed method, all phases
are assumed independent in the prior specification. However, in
practice all phases are often connected and highly correlated.
Incorporating the phase correlation may improve the prior infor-
mativeness and thus improve the prediction accuracy. Second,
the computational cost of SPF algorithm may be higher than
most of other existing methods, which may prohibit its appli-
cations where rapid prediction is required. These issues will be
left to our future work.

APPENDIX
Proof of Lemma 1: For the sake of simplicity, we ignore all
the superscripts (k and s) in the proof.
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