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Abstract 

This paper develops a series of statistical approaches to inferring size distribution, volume number 

density and volume fraction of 3D ellipsoidal particles based on 2D cross-sectional images. 

Specifically, this paper first establishes an explicit linkage between the size of ellipsoidal particles 

and the size of cross-sectional elliptical contours. Then an efficient Quasi-Monte Carlo EM 

algorithm is developed to overcome the challenge of 3D size distribution estimation based on the 

established complex linkage. The relationship between the 3D and 2D particle number densities is 

also identified to estimate the volume number density and volume fraction. The effectiveness of 

the proposed method is demonstrated through simulation and case studies. 

KEY WORDS: Ellipsoid Intersection; Quasi-Monte Carlo; Expectation Maximization; Additive 

manufacturing; Porosity. 

1. INTRODUCTION 

This paper develops a novel inspection method to infer the three-dimensional (3D) size distribution, 

volume number density (number per unit volume), and volume fraction (volume percentage) of 

ellipsoidal particles in materials based on 2D cross-sectional microscopic images. Although recent 

development of measurement technology makes the direct measurement of 3D particles possible, 

indirect measurement from lower dimension are still widely used for practical reasons. One 

motivating application example is the measurement of void (considered as a special type of particle) 

defects in the metal-based additive manufacturing. The porosity is one of the most common and 

critical quality issues in metal-based additive manufacturing, especially in structural or load-

bearing applications [1-4]. It refers to the presence of defects in the form of void or simply a lack 
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of solid material, as shown in Figure 1 (bottom panel) [3-6]. The formed pores or voids could serve 

as crack nucleation and propagation source, and thus reduce material stiffness, bending strength, 

hardness, and fatigue life [7-9]. Therefore the void size distribution and porosity (volume fraction 

of voids) need to be inspected for quality control and process optimization. Another example is 

the examination of the dispersion of reinforcing nanoparticles in composite manufacturing process 

[10-13]. One critical quality issue in the composite manufacturing is that due to high surface energy 

and poor wettability in molten metal, nanoparticles tend to agglomerate and form big clusters 

(Figure 1, top panel), which greatly limits their effectiveness in mechanical property enhancement. 

Therefore it is important to measure the size distribution, volume number density and volume 

percentage of nanoparticle clusters to characterize the product quality. Directly measuring the 3D 

size and volume percentage of particles is often very difficult, if not impossible. Microscopic 

images have been naturally used for examining microstructures and quality inspection. However, 

microscopic images only provide two-dimensional (2D) cross sections of materials, and are not 

always sufficient to characterize the material properties without knowing the three-dimensional 

information. Therefore, extracting 3D size distribution and volume percentage based on 2D cross-

sectional measurement is highly desirable.  

 

Figure 1. Microscopic images for metal matrix nanocomposites showing big particle clusters (top) 

[11] and metal-based AM products showing pores or voids (bottom) [3, 5, 6]. 

Revealing 3D particle information through cross-sectional images has been studied in image 

processing [14] and microstructural analysis, e.g., metal matrix nanocomposites [15-17]. However, 
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all of these studies assume the shape of particles to be spherical, which is too restricted and may 

not be realistic in many applications. For example, in the metal-based additive manufacturing, 

most voids within cross-sectional images show elliptical contours [4]. In this paper, we use a more 

general and flexible geometric shape — ellipsoid to represent the shape of particles. Compared 

with spherical case, inferring the size and volume number density of ellipsoids in 3D space based 

on only 2D cross-sectional images is much more complicated. Four fundamental questions need 

to be addressed: (1) what is the geometric size linkage between 3D ellipsoids and 2D cross-

sectioned particles? (2) how to infer the size distribution of ellipsoidal particles from observed 2D 

particle sizes? (3) how to estimate the total volume fraction? and (4) how large cross-sectional 

images or how many cross-sectioned particles are needed to reach a certain estimation accuracy? 

This paper develops a series of approaches to address these questions. More specifically, an 

explicit geometry and size linkage between 3D ellipsoids and 2D cross-sectioned contours is 

established, which is a prerequisite for subsequent inferences. Then, a Quasi-Monte Carlo 

Expectation Maximization (QMC-EM) algorithm is developed to infer 3D size distribution based 

on observed 2D particles. The relationship between 3D and 2D particle number density is 

established through a nonhomogeneous Poisson Process, which being combined with the size 

distribution estimation, is used to infer the total volume fraction of particles in products. We also 

provide a theoretical foundation for the commonly used area fraction method for volume fraction 

estimation by proving that the area fraction of the cross-sectional ellipses is actually an unbiased 

estimator of the mean volume fraction.  

The rest of this paper is organized as follows. Section 2 presents the detailed problem 

formulation and assumptions. The linkage on geometry and size between 3D ellipsoids and 2D 

particles, and the size estimation are provided in Section 3. In Section 4, a statistical approach is 

developed to estimate the volume number density and volume fraction. The simulation study and 

real case study in metallic additive manufacturing are provided in Section 5 and 6 respectively to 

evaluate the effectiveness of the proposed method. Section 7 is the conclusion and discussion.  

2. PROBLEM FORMULATION AND ASSUMPTIONS 

In microstructural analysis, specimens are first sectioned and then the cutting surfaces are polished 

to get microscopic images. Therefore a 2D microscopic image can be modelled as a cross-section 

resulted when a cutting plane intersects the specimen. As illustrated in Figure 2, if a particle 
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intersects with the image plane, it will display on the image; otherwise, it will not be captured by 

the image. Figure 3 shows particles scattered in 3D space and three randomly sampled microscopic 

images with intersected 2D particle contours. With this inspection scheme, the problem facing us 

is that based on the size and number of observed particles in 2D images, how we can infer the 3D 

particle information, including size distribution, particle volume number density and volume 

fraction.  

 

Figure 2. A particle shown (left) and not shown (right) on the image.  

 

Figure 3. 3D distribution of particles and three cross-sectional images showing 2D particle 

contours 

The above problem is intractable in general and certain assumptions need to be made. In this paper, 

we adopt one widely used assumption in spatial point pattern analysis and add another two 

assumptions specific to our problem as follows: 

(i) The ellipsoidal particles are uniformly distributed in the 3D space of specimens with 

complete spatial randomness (CSR), where all particles follow a homogeneous Poisson 
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distribution and are independent of each other. CSR has been widely used to model spatial 

uniformity in point pattern analysis [16, 18]. It is the most fundamental assumption in the 

stereological analysis [14], without which the statistical inference of 3D particles based on 2D 

sections is almost impossible. 

(ii) All the particles are in ellipsoidal shape with semi-principal axes of length 𝑟1, 𝑟2 and 𝑟3 

where 𝑟1, 𝑟2 and 𝑟3 are continuous random variables and 𝑟1 ≤ 𝑟2 ≤ 𝑟3. This assumption is more 

general than spherical shapes, where the latter is just a special case of the former with equal semi-

principal axes. This assumption is also more realistic, as in nanocomposites or additive 

manufacturing, perfectly spherical particles or pores are rare. The circularity and elongation of the 

intersected contours [4] indicate that ellipsoid is more accurate in approximating the shape of 

particles.  

(iii) The orientations of three principal axes of ellipsoidal particles are uniformly distributed in 

3D space. This assumption indicates that if a particle is intersected, it could be cut by the image 

plane at any location and orientation with equal possibility.   

With these assumptions, the following sections will introduce our statistical approaches to 

inferring the size distribution, volume number density and volume fraction of particles based on 

cross-sectional images.  

3. INFERRING THE SIZE DISTRIBUTION OF 3D ELLIPSODIAL PARTICLES 

3.1 Intersection of an Ellipsoid with an Arbitrary Plane 

To infer the size distribution of ellipsoids, it is essential to link the 2D sizes of the cross-sectioned 

contours with 3D sizes of ellipsoids. For a spherical particle, circle equation of the intersection can 

be obtained intuitively. However, the analytical equation for the intersection of an ellipsoid by an 

arbitrary plane is very complicated. Note that the problem of cutting a standard ellipsoid (principal 

axes overlapping with X, Y and Z axis) by an arbitrary plane is equivalent to cutting an arbitrarily 

oriented ellipsoid with a horizontal plane. We derived the analytical equation to establish that 

linkage in Theorem 1 as follows.  

Theorem 1: Suppose an ellipsoid is centered at the origin of the Cartesian coordinate system with 

semi-principal axes 𝒓𝒊  of length 𝑟𝑖, 𝑖 = 1,2,3  where 𝑟1 ≤ 𝑟2 ≤ 𝑟3 , as shown in Figure 4. The 
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orientation of each axis is represented by two angles 𝑝𝑖 ∈ (−
𝜋

2
,
𝜋

2
] and 𝜃𝑖 ∈ (−𝜋, 𝜋], where 𝑝𝑖 is 

the angle between the i-th axis and XY plane (horizontal plane), and 𝜃𝑖 is the angle between the 

projection of the i-th axis in the XY plane and the x-axis (𝑖 = 1, 2,3). The ellipsoid is cut by a 

horizontal cutting plane 𝑃𝑐 of distance 𝑧𝑐 (𝑧𝑐 ≥ 0) to the XY plane. Then  

(1) The cross section is an ellipse;  

(2) The major and minor diameters 𝑑2and 𝑑1 (𝑑1 ≤ 𝑑2) of the ellipse are  

𝑑1,2
2 =

8(1 −
𝑧𝑐
2

𝑟1
2 sin2 𝑝1 + 𝑟2

2 sin2 𝑝2 + 𝑟3
2 sin2 𝑝3

)

(
cos2 𝑝1
𝑟1
2 +

cos2 𝑝2
𝑟2
2 +

cos2 𝑝3
𝑟3
2 ) ± √(

cos2 𝑝1
𝑟1
2 +

cos2 𝑝2
𝑟2
2 +

cos2 𝑝3
𝑟3
2 )

2

− 4(
sin2 𝑝1
𝑟2
2𝑟3

2 +
sin2 𝑝2
𝑟1
2𝑟3

2 +
sin2 𝑝3
𝑟1
2𝑟2

2 )

 
(1) 

(3) The distance 𝑧𝑐 satisfies the following constraint 

 
𝑧𝑐 ≤ 𝑧𝑢 = √𝑟1

2 sin2 𝑝1 + 𝑟2
2 sin2 𝑝2 + 𝑟3

2 sin2 𝑝3 (2) 

 

Figure 4. Illustration of an ellipsoid with three principal axes and intersected by an image plane 

parallel with XY plane.  

The proof is given in Appendix A. It is well known that the cross section of an ellipsoid 

intersected by an arbitrary plane is an ellipse. However, the explicit size relationship between the 

intersectional ellipse and the corresponding ellipsoid in the general case is very difficult to derive. 

Hence, the size of the elliptical intersection is often calculated numerically. Klein [19] derived 

explicit formulas for the size relationship in the case of cutting a standard ellipsoid with an 

arbitrarily oriented plane. In this paper, however, we establish the linkage using a totally different 
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perspective for the case where an arbitrarily oriented ellipsoid is cut by a horizontal plane. The 

advantage of our notation and configuration lies in the convenience of direct statistical modeling 

of the orientation parameters and cutting process. From Equation (1) we can see that the size of 

the cross-sectional ellipse is independent of 𝜃𝑖, which is straightforward since rotating the ellipsoid 

along the z-axis will not change the size of the intersection by a plane parallel with XY plane. 

Besides, if the ellipsoid is degenerated to a sphere of radius 𝑟, the ellipse is degenerated to a circle 

with diameter  𝑑 = 2√𝑟2 − 𝑧𝑐2 , which can be easily obtained based on Equation (1) and the 

constraint  ∑ sin2 𝑝𝑖
3
𝑖=1 = 1  (see Appendix A). Equation (2) gives the semi-height 𝑧𝑢  of the 

ellipsoid or the maximum distance for the cutting plane to intersect with the ellipse centered at the 

origin. Based on this linkage, we can perform statistical inference on the size distribution of 3D 

ellipsoids given observed intersectional ellipses. The detail will be presented in the following 

subsections.  

3.2 Size Inference and Parameter Estimation 

Define 𝜽  as the distribution parameters of the size (𝑟1, 𝑟2, 𝑟3)  of the ellipsoid, {𝑑𝑖1, 𝑑𝑖2, 𝑖 =

1, … , 𝑛} as the observed diameters of 𝑛 intersectional ellipses, and let 𝐼𝑖 denote a binary variable 

with 𝐼𝑖 = 1 indicating that ellipsoid 𝑖 is intersected by the image, then the problem is formulated 

as the estimation of 𝜽 based on the observations {𝑑𝑖1, 𝑑𝑖2, 𝑖 = 1,… , 𝑛}. The distribution parameters 

are commonly estimated though maximum likelihood estimation (MLE). The likelihood function 

can be expressed as 

 
𝐿(𝜽|{𝑑𝑖1, 𝑑𝑖2, 𝑖 = 1, … , 𝑛}) = ∏ 𝑓

𝑛

𝑖=1
(𝑑𝑖1, 𝑑𝑖2|𝜽, 𝐼𝑖 = 1) (3) 

Due to the unobservable variables (𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3, 𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, 𝑧𝑖𝑐), Equation (3) involves multiple 

integrations and is not analytically tractable. The expectation-maximization (EM) algorithm [20] 

is particularly effective in maximizing the likelihood function when the model depends on 

unobserved latent variables. In our model, there are 7 latent variables, out of which only 4 can be 

independent. If any four of them are known, the other three can be calculated using Equation (1) 

and (A. 6). Denote the hidden variable 𝒉 = (𝑟1, 𝑟2, 𝑟3, 𝑝3), then  

 
𝑓(𝑑𝑖1, 𝑑𝑖2|𝜽, 𝐼𝑖 = 1) = ∫𝑓(𝑑𝑖1, 𝑑𝑖2|𝒉𝑖 , 𝐼𝑖 = 1) 𝑓(𝒉𝑖|𝜽, 𝐼𝑖 = 1)𝑑𝒉𝑖 (4) 
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However, due to the highly nonlinear relationship among 𝒉, observations and other latent 

variables, the conditional expectation of the log-likelihood function is intractable, which makes 

the EM algorithm difficult to develop. In this article we first derived the complex complete-data 

likelihood function, and then proposed a Quasi-Monte Carlo based EM method (RQMC-EM) to 

estimate the size distribution parameters. The following subsections present the technical details.  

3.2.1 Derivation of the Complete-data Likelihood Function 

The complete-data likelihood function 𝐿(𝜽|𝒉, 𝑑1, 𝑑2, 𝐼 = 1) is essential in the development of the 

EM algorithm. It can be explicitly expressed as 

𝑓(𝒉, 𝑑1, 𝑑2|𝜽, 𝐼 = 1) = 𝑓(𝒉|𝜃, 𝐼 = 1)𝑓(𝑑1, 𝑑2|𝒉, 𝐼 = 1) (5) 

where  

𝑓(𝒉|𝜃, 𝐼 = 1) = 𝑓(𝑝3)𝑓(𝑟1, 𝑟2, 𝑟3|𝜽)
𝑃(𝐼 = 1|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝜽)

𝑃(𝐼 = 1|𝜽)
  (6) 

Suppose the upper bound of 𝑧𝑢 is 𝑟𝑚𝑎𝑥, which is also the upper bound of 𝑟3 and can be infinite, 

then  

𝑃(𝐼 = 1|𝜽) = ∫
𝑧𝑢
𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥

0

𝑓(𝑧𝑢|𝜽)𝑑𝑧𝑢 =
𝐸(𝑧𝑢|𝜽)

𝑟𝑚𝑎𝑥
 

𝑃(𝐼 = 1|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝜽) = ∫
𝑧𝑢
𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥

0

𝑓(𝑧𝑢|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝜽)𝑑𝑧𝑢 =
𝐸(𝑧𝑢|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝜽)

𝑟𝑚𝑎𝑥
 

(7) 

Therefore  

𝑓(𝒉|𝜃, 𝐼 = 1) = 𝑓(𝑝3)𝑓(𝑟1, 𝑟2, 𝑟3|𝜽)
𝐸(𝑧𝑢|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝜽)

𝐸(𝑧𝑢|𝜽)
 (8) 

From Equation (6) and (8) we can see that the image cutting process is a biased sampling 

process where ellipsoids with larger height are more likely to be intersected by the image plane. 

Without considering such bias, the size would be overestimated. In Equation (8), 𝑓(𝑟1, 𝑟2, 𝑟3|𝜽) is 

given when the distribution of (𝑟1, 𝑟2, 𝑟3) is known. It is not intuitive to select an appropriate 

statistical distribution to model (𝑟1, 𝑟2, 𝑟3)  with constraint  (𝑟1 ≤ 𝑟2 ≤ 𝑟3 ) . Without loss of 

generality, we assume a lognormal model for 𝑟3 and beta distribution for the two aspect ratios. 
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More specifically, we assume that 𝑟3~lognormal(𝜇, 𝜎2), 
𝑟1

𝑟2
~𝐵𝑒𝑡𝑎(𝛼1, 𝛽1) and 

𝑟2

𝑟3
~𝐵𝑒𝑡𝑎(𝛼2, 𝛽2), 

where 𝑟3,
𝑟2

𝑟3
 and 

𝑟1

𝑟2
 are independent and 𝜽 = (𝜇, 𝜎2, 𝛼1, 𝛽1, 𝛼2, 𝛽2)  are the size distributional 

parameters to be estimated. The lognormal distribution is the most commonly used distribution in 

modeling particle sizes in geology, environmental science, material science, atmospheric sciences 

and aerobiology [21-23]. The beta distribution is very flexible in modeling distributions of 

different shapes defined on the interval [0,1]. For example, when 𝛼 = 𝛽 = 1, the beta distribution 

degenerates to uniform distribution. If the two parameters are not equal, the distribution is either 

positively skewed or negatively skewed. The density function 𝑓(𝑟1, 𝑟2, 𝑟3|𝜽) can be obtained based 

on the variable transformation as  

𝑓(𝑟1, 𝑟2, 𝑟3|𝜽) = logN(𝑟3; 𝜇, 𝜎
2) ∏ (

𝑟𝑖

𝑟𝑖+1
)
𝛼𝑖−1

(1 −
𝑟𝑖

𝑟𝑖+1
)
𝛽𝑖 1

𝑟𝑖+1𝐵(𝛼𝑖,𝛽𝑖)

2
𝑖=1   (9) 

As for the orientation angles 𝑝𝑖, we redefine 𝑝𝑖 as the absolute value of the angle between the 

i-th semi-principal axis and XY plane for the sake of convenience, i.e, 𝑝𝑖 ∈ [0,
𝜋

2
]. The analytical 

form of 𝑓(𝑝3) and 𝑓(𝑝1|𝑝3) can be obtained based on Theorem 2 (see Appendix B for the proof).  

Theorem 2: Under the Assumption (iii) in Section 2, the distribution of {𝑝𝑖, 𝑖 = 1,2,3} has the 

following density functions: 

 𝑓(𝑝𝑖) = cos 𝑝𝑖 , 𝑝𝑖 ∈ [0,
𝜋

2
] , 𝑖 = 1,2,3 (10) 

 
𝑓(𝑝𝑖|𝑝𝑗) =

2

𝜋

cos 𝑝𝑖
sin 𝑝𝑘

, (𝑖, 𝑗, 𝑘) ∈ Perm(1,2,3) (11) 

where Perm (1,2,3)  is the set of all permutations of indices {1,2,3} and sin 𝑝𝑘 =

√1 − sin2 𝑝𝑖 − sin2 𝑝𝑗.  

The direct computation of the density function 𝑓(𝑑1, 𝑑2|𝒉, 𝐼 = 1) is not applicable since the 

distribution of 𝑑1 and 𝑑2 is not available. However, the density function 𝑓(𝑧𝑐, 𝑝1|𝒉, 𝐼 = 1) could 

be directly calculated as 

𝑓(𝑝1, 𝑧𝑐|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝐼 = 1) = 𝑓(𝑝1|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝐼 = 1)𝑓( 𝑧𝑐|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝1, 𝐼 = 1) (12) 

where  
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𝑓(𝑝1|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝐼 = 1) = 𝑓(𝑝1|𝑝3)
𝑧𝑢

𝐸(𝑧𝑢|𝑟1, 𝑟2, 𝑟3, 𝑝3)
 (13) 

Under Assumption (i) in Section 2, given that an ellipsoid of semi-height 𝑧𝑢 is intersected by an 

image plane, the center of that ellipsoid will be uniformly distributed in the proximity of the cutting 

plane of maximum distance 𝑧𝑢. Therefore the distance between the cutting plane and the center of 

the ellipsoid follows a uniform distribution with density function 

 

𝑓( 𝑧𝑐|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝1, 𝐼 = 1) = {

1

𝑧𝑢 
, 0 ≤ 𝑧𝑐 ≤ 𝑧𝑢

0, otherwise

 (14) 

The density function 𝑓(𝑑1, 𝑑2|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝐼 = 1) can be computed based on the transformation of 

random variables 

𝑓(𝑑1, 𝑑2|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝐼 = 1) = 𝑓(𝑝1(𝑑1, 𝑑2), 𝑧𝑐(𝑑1, 𝑑2)|𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝐼 = 1)|𝐽|−1 (15) 

Here 𝑝1 and 𝑧𝑐 are functions of 𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑑1 and 𝑑2, which can be computed based on Equation 

(1), and 𝐽 is the Jacobian 𝐽 = |
𝜕(𝑑1,𝑑2)

𝜕(𝑝1,𝑧𝑐)
| calculated as 

 
𝐽 =

2𝑑1𝑑2𝑟1
2𝑟2

2𝑟3
2𝑧𝑐

(𝑑2
2 − 𝑑1

2)𝐶1
3

[2𝐶1𝐶2
′ − 𝐶2𝐶1

′] (16) 

where 𝐶1 = ∑ 𝑟𝑖
2 sin2 𝑝𝑖

3
𝑖=1 , 𝐶2 = ∑

cos2 𝑝𝑖

𝑟𝑖
2

3
𝑖=1 , 𝐶1

′ = (𝑟1
2 − 𝑟2

2) sin 2𝑝1 and 𝐶2
′ = (

1

𝑟2
2 −

1

𝑟1
2) sin 2𝑝1.  

The computation of 𝑝1 and 𝑧𝑐  is given in Appendix C and the computation of 𝐽  is given in 

Appendix D. Therefore, the complete-data likelihood function can be obtained by combining 

Equation (5-16) as 

 
𝑓(𝒉, 𝑑1, 𝑑2|𝜽, 𝐼 = 1) =

2

𝜋

cos 𝑝1 cos 𝑝3
sin 𝑝2 𝐸(𝑧𝑢|𝜽)

|𝐽|−1𝑓(𝑟1, 𝑟2, 𝑟3|𝜽) (17) 

 

3.2.2 Quasi-Monte Carlo based EM Algorithm for Parameter Estimation 

The EM algorithm is an iterative method to find the maximum of the likelihood function. There 
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are two steps in each iteration, namely, the expectation (E) step and the maximization (M) step. 

The E-step computes the expectation of the log-likelihood with respect to the conditional 

predictive density using the current estimate for the parameters. The M-step computes the 

parameters maximizing the expected log-likelihood obtained in the E-step. Denote 𝑹 =

(𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3, 𝑖 = 1,… , 𝑛), 𝑷3 = {𝑝𝑖3, 𝑖 = 1,… , 𝑛}, and 𝑫 = (𝑑𝑖1, 𝑑𝑖2, 𝑖 = 1,… , 𝑛). The E-step and 

M-step can be mathematically formulated as 

 E-step: 𝑄(𝜽, �̂�(𝑘)) = 𝐸𝑹,𝑷3|�̂�
(𝑘),𝑫(log 𝐿(𝜽|𝑫, 𝑹, 𝑷3)) (18) 

 M-step: �̂�(𝑘+1) = argmax
𝜽

{𝑄(𝜽, �̂�(𝑘))} (19) 

where �̂�(𝑘)  is the estimated parameters at iteration 𝑘 . The likelihood 𝐿(𝜽|𝑫, 𝑹, 𝑷3)  and the 

predictive density function 𝑓(𝑹,𝑷3|�̂�
(𝑘), 𝑫) can be expressed as 

 
𝐿(𝜽|𝑫, 𝑹,𝑷3) = ∏ 𝑓(𝑝𝑖3, 𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3, 𝑑𝑖1, 𝑑𝑖2|𝜽, 𝐼𝑖 = 1)

𝑛

𝑖=1
 (20) 

 
𝑓(𝑹,𝑷3|�̂�

(𝑘), 𝑫) ∝ ∏ 𝑓(𝑝𝑖3, 𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3, 𝑑𝑖1, 𝑑𝑖2|�̂�
(𝑘), 𝐼𝑖 = 1)

𝑛

𝑖=1
 (21) 

where 𝑓(𝑝𝑖3, 𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3, 𝑑𝑖1, 𝑑𝑖2|𝜽, 𝐼𝑖 = 1) is given in Equation (5) and (17).  

However, in the E-step, the analytical form of the expectation 𝑄(𝜽, �̂�(𝑘)) is not tractable due to 

intractable predictive density function and high dimensional integrals. Monte Carlo sampling 

approach to approximate the expectation 𝑄(𝜽, �̂�(𝑘))is a natural way when the analytical form of 

the expectation is not tractable [24]. Specifically, at each iteration  𝑘 , 𝑆 samples 𝒉𝑖
(𝑘,𝑠)

=

(𝑟𝑖1
(𝑘,𝑠), 𝑟𝑖2

(𝑘,𝑠), 𝑟𝑖3
(𝑘,𝑠), 𝑝𝑖3

(𝑘,𝑠)), 𝑠 = 1,2, … 𝑆 can be sampled using the conditional predictive density 

𝑓(ℎ𝑖|�̂�
(𝑘), 𝑑𝑖1, 𝑑𝑖2, 𝐼i = 1) for ellipsoids 𝑖 = 1,2, … , 𝑛. To draw random samples, one might use 

the importance sampling or use the Markov Chain Monte Carlo (MCMC) approach such as the 

Metropolis-Hastings (MH) algorithm. For the importance sampling, the importance function can 

be simply selected as 

 𝑔(ℎ𝑖|�̂�
(𝑘)) = 𝑓(𝑝𝑖3)𝑓(𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3|�̂�

(𝑘)) (22) 
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The unnormalized weight of each sample 𝒉𝑖
(𝑘,𝑠)

 among 𝑆  samples for the ellipsoid 𝑖  is easily 

calculated based on Equation (17) as 

 
𝑤𝑖

∗(𝑘,𝑠) =
2

𝜋

cos 𝑝𝑖1
(𝑘,𝑠)

sin 𝑝𝑖2
(𝑘,𝑠)

|𝐽(𝑘,𝑠)|
−1
  (23) 

However, as observed in our research, both the importance sampling and the MH sampling based 

EM algorithms either fail to converge or result in inaccurate estimates, even if the sample size is 

significantly large. One main reason is that most of the generated samples are non-conforming, 

which means given the observed 𝑑1 and 𝑑2, there do not exist 𝑝1 and 𝑧𝑐 satisfying Equation (1) 

for many generated samples. A conforming sample (𝑟1, 𝑟2, 𝑟3, 𝑝3) should satisfy the following 

constraints (see Appendix E for the derivation):  

 

{
 
 
 

 
 
 

𝑟3 ≥ 𝑟2 ≥ 𝑟1

𝑟3 ≥
𝑑2
2

𝑟2 ≥ max {
𝑑1
2
, sin 𝑝3 /√4/𝑑2

2 − cos2 𝑝3 /𝑟3
2} 

𝑟1 ≥ sin 𝑝3 /√4/𝑑1
2  − cos2 𝑝3 /𝑟3

2 

 (24) 

A simple solution to avoid non-conforming samples and thus increase sampling efficiency is to 

sample 𝑝3  from prior 𝑓(𝑝3) = cos 𝑝3  and sample (𝑟1, 𝑟2, 𝑟3)  uniformly from space 
𝑑2

2
≤ 𝑟3 ≤

𝑟𝑚𝑎𝑥,
𝑑1

2
≤ 𝑟2 ≤ 𝑟3, 0 ≤ 𝑟1 ≤ 𝑟2  or sample (𝑟3,

𝑟2

𝑟3
,
𝑟1

𝑟2
) uniformly from space 𝑟3 ∈ [

𝑑2

2
, 𝑟𝑚𝑎𝑥] ,

𝑟2

𝑟3
∈

(0,1],
𝑟1

𝑟2
∈ (0,1] where 𝑟𝑚𝑎𝑥 is a pre-selected sufficiently large upper bound for 𝑟3. However, in 

this method, the purely random draws do not explore the sample space well. Samples tend to form 

clusters, which may result in unexplored regions with no samples sitting in. As observed in our 

research, the EM algorithm tends to converge to inaccurate estimates of size parameters due to the 

persistent Monte Carlo errors.  

To resolve this issue, we propose to use a Quasi-Monte Carlo (QMC) method [25]. QMC 

method produces a deterministic low-discrepancy sequence of points that are more uniformly 

distributed and can significantly improve the accuracy of Monte Carlo approximations of high-

dimensional integrals over purely random sampling. The discrepancy measures the distribution 

deviation from uniformity for a sequence of points. There are a variety of low-discrepancy 
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sequences, including the Halton sequence [26], the Sobol sequence [27] etc. In this article, we 

select the Sobol sequence to sample (
𝑟3

𝑟𝑚𝑎𝑥
,
𝑟2

𝑟3
,
𝑟1

𝑟2
). For 𝑝3 , we directly sample from its prior 

distribution. To reduce the computational load, a fixed set of samples with nonzero weight 

coefficients calculated by Equation (23) can be generated for each ellipsoid before the iteration of 

EM algorithm starts. The unnormalized weight of each sample 𝒉𝑖
(𝑠)

= (𝑟𝑖1
(𝑠), 𝑟𝑖2

(𝑠), 𝑟𝑖3
(𝑠), 𝑝𝑖3

(𝑠)) at 

iteration 𝑘 can be calculated as  

 𝑤𝑖
(𝑘,𝑠) = 𝑤𝑖

∗(𝑠)𝑓 (
𝑟𝑖1
(𝑠)

𝑟𝑖2
(𝑠) ,

𝑟𝑖2
(𝑠)

𝑟𝑖3
(𝑠) , 𝑟𝑖3

(𝑠)|�̂�(𝑘))  (25) 

where 𝑤𝑖
∗(𝑠)

 is the pre-calculated weight by Equation (23). Therefore at each iteration 𝑘  the 

weights only need to be updated by multiplying 𝑤𝑖
∗(𝑠) with 𝑓(𝑟𝑖1

(𝑠)/𝑟𝑖2
(𝑠), 𝑟𝑖2

(𝑠)/𝑟𝑖3
(𝑠), 𝑟𝑖3

(𝑠)|�̂�(𝑘)) . 

Based on the weighted samples, the Q function 𝑄(𝜽, �̂�(𝑘)) is calculated as 

𝑄(𝜽|�̂�(𝑘)) = ∑∑𝑊𝑖
(𝑘,𝑠) log 𝑓(𝑟𝑖1

(𝑠), 𝑟𝑖2
(𝑠), 𝑟𝑖3

(𝑠)|𝜽)

𝑆

𝑠=1

𝑛

𝑖=1

− 𝑛 log𝐸(𝑧𝑢|𝜃) + 𝐶 (26) 

where 𝐶 is a constant independent of 𝜽, and 𝑊𝑖
(𝑘,𝑠)

 is the normalized weight calculated by 

 
𝑊𝑖

(𝑘,𝑠) =
𝑤𝑖

(𝑘,𝑠)

∑ 𝑤𝑖
(𝑘,𝑠)𝑆

𝑠=1

 (27) 

In the M-step, Equation (26) needs to be maximized with respect to 𝜽 to obtain �̂�(𝑘+1) in the 

next iteration. However, due to the existence of the intractable term log 𝐸(𝑧𝑢|𝜽), the analytical 

solution is not tractable for all parameters. To address this issue, we propose to use the particle 

swarm optimization algorithm [28], where log 𝐸(𝑧𝑢|𝜽)  is calculated through Monte Carlo 

simulation. Since 

log𝐸(𝑧𝑢|𝜽) = (𝜇 +
𝜎2

2
) + log𝐸 (√sin2 𝑝3 + (

𝑟2
𝑟3
)
2

sin2 𝑝2 + (
𝑟1
𝑟2
)
2

(
𝑟2
𝑟3
)
2

(1 − sin2 𝑝3 − sin2 𝑝2)), 

we only need to sample 𝑝3, 𝑝2,
𝑟1

𝑟2
,
𝑟2

𝑟3
 to approximate log 𝐸(𝑧𝑢|𝜽). In summary, the proposed QMC 

based EM algorithm (QMC-EM) is given in Algorithm 1, where a stopping criterion 
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max
𝑖

|(𝜃𝑖
(𝑘) − 𝜃𝑖

(𝑘−1))/𝜃𝑖
(𝑘−1)| < 𝛿 is used to terminate the iterative algorithm. 

Algorithm 1: QMC-EM Algorithm for Size Parameter Estimation 

Initialize 

Generate Sobol samples 

For 𝑖 = 1: 𝑛 

 Generate Sobol samples 𝒉𝑖
(𝑠)

 until obtain 𝑆 samples with nonzero weights 𝑤𝑖
∗(𝑠)

 

End 

EM parameters: number of EM iteration maxIter 

Size parameters: �̂�(0) 

End 

For 𝑘 = 1:maxIter 

E-step 

For 𝑖 = 1: 𝑛 

 Calculate 𝑤𝑖
(𝑘,𝑠)

 and 𝑊𝑖
(𝑘,𝑠)

using Equation (25) and (27).  

End 

M-step 

Calculate �̂�(𝑘) using the particle swarm optimization algorithm. 

If max
𝑖

|
�̂�𝑖
(𝑘)

−�̂�𝑖
(𝑘−1)

�̂�𝑖
(𝑘−1) | < 𝛿, stop 

End 

4. INFERRING THE DENSITY AND VOLUME FRACTION OF ELLIPSOID 

In this section, we present the details of how to estimate the volume number density and volume 

fraction of ellipsoids. The linkage between the number density of particles in 2D and 3D space is 

established in Theorem 3 as follows.   

Theorem 3: Under the Assumptions (i)-(iii) in Section 2, the particles shown on an image plane 

with area 𝐴 can be modeled as an inhomogeneous Poisson process, and the number of particles on 

the image follows a Poisson distribution with parameter  

 𝜆 = 2𝐴 𝑧𝑢̅̅ ̅𝜆0 (28) 

where 𝜆0  is the density of particles in 3D space, 𝑧𝑢̅̅ ̅  is the mean of 𝑧𝑢  expressed as 𝑧𝑢̅̅ ̅ =

∫ 𝑟𝑓𝑧𝑢(𝑟)𝑑𝑟
𝑟𝑚𝑎𝑥

0
. 

The detailed proof of Theorem 3 is given in Appendix F. We can see that the particles shown on 

the image follows the same Poisson distribution as the number of particles within the space swept 
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out by 𝐴 along its normal vector delimited by ±𝑧�̅�. Actually, the number of particles shown on the 

cutting image is just thinning a Poisson process. If we assume a sufficiently large upper bound 

𝑟𝑚𝑎𝑥 for the ellipsoid size 𝑟3, then the number of particles within the swept-out space delimited by 

±𝑟𝑚𝑎𝑥 follows the Poisson distribution with parameter 2𝐴𝑟𝑚𝑎𝑥𝜆0. Denote this space as 𝑆(𝑟𝑚𝑎𝑥). 

Since each particle is shown on the image with probability Pr (𝑧𝑢 ≥ 𝑧𝑐), based on the thinning 

process, the number of particles shown on the image follows a Poisson distribution with parameter 

𝜆 = 2𝐴𝑟𝑚𝑎𝑥𝜆0 Pr(𝑧𝑢 ≥ 𝑧𝑐) = 2𝐴𝑟𝑚𝑎𝑥𝜆0∫
1

𝑟𝑚𝑎𝑥
Pr(𝑧𝑢 ≥ 𝑟) 𝑑𝑟 =

𝑟𝑚𝑎𝑥

0

2𝐴 𝑧𝑢̅̅ ̅𝜆0 

Also, it can be easily shown that the particles not shown on the image within the space 𝑆(𝑟𝑚𝑎𝑥) 

follows an independent Poisson distribution with parameter  

 𝜆′ = 2𝐴(𝑟𝑚𝑎𝑥 − 𝑧𝑢̅̅ ̅)𝜆0 (29) 

The proof can be found in Resnick [29]. Note that in this paper we do not specify the upper bound 

for 𝑟3  to reduce the number of parameters to estimate. Considering the micro-scaled size of 

particles (or images) and the macro-scaled specimen, the space on two sides of the cutting image 

can be modelled as an infinite space (thickness ≫ 𝑟). In the Sobol sample generation, however, 

we can select a sufficiently large value 𝑟𝑚𝑎𝑥  as the upper bound which satisfies  𝑟𝑚𝑎𝑥 >

max{𝑑𝑖2/2}.  

Based on Equation (28), the particle density can be estimated using the observed number of 

particles 𝑛 as  

 �̂�0 =
𝑛

2𝐴𝑧𝑢̅̅ ̅
 (30) 

Given the 𝑛 observed 2D ellipses on the intersectional image, the total number of ellipsoid in the 

space 𝑆(𝑟𝑚𝑎𝑥) is 𝑛 + 𝑁′  where 𝑁′~Poisson(𝜆′). Define 𝜌 as the volume fraction of particles, 

then in the space 𝑆(𝑟𝑚𝑎𝑥), 𝜌 can be calculated as 

𝜌 =
∑ 𝑉𝑖
𝑛
𝑖=1 + ∑ 𝑉𝑗

′𝑁′

𝑗=1

2𝐴𝑟𝑚𝑎𝑥
 

where 𝑉𝑖 is the volume of the ith ellipsoid intersected by the cutting image and 𝑉𝑗
′ is the volume of 

uncross-sectioned particles. If the truncation upper bound 𝑟𝑚𝑎𝑥 is sufficiently large or we consider 

the entire specimen which is significantly larger than 𝑆(𝑟𝑚𝑎𝑥), then the observed number of 
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ellipses is negligible in the calculation of the distribution of total number of ellipsoids. In this 

article, we select the whole specimen as the 3D space to simplify the calculation. The mean and 

variance of 𝜌 can be obtained through Theorem 4 as follows. 

Theorem 4: Suppose the size of the ellipsoidal particles follows the distribution given in Equation 

(9). Under the Assumptions (i)-(iii) and given the particle density 𝜆0, the mean and variance of 𝜌 

are 

 𝐸(𝜌) = 𝜆0𝐸(𝑉𝑒) 

𝑉𝑎𝑟(𝜌) =
𝜆0𝐸(𝑉𝑒

2)

𝑉
 

(31) 

where 𝑉 is the volume of the specimen, 𝑉𝑒 is the volume of an ellipsoid with 𝐸(𝑉𝑒) and 𝐸(𝑉𝑒
2) 

calculated as 

𝐸(𝑉𝑒) =
4𝜋

3

𝛼1
𝛼1 + 𝛽1

𝛼2𝛽2 + 𝛼2
2(𝛼2 + 𝛽2 + 1)

(𝛼2 + 𝛽2)2(𝛼2 + 𝛽2 + 1)
 exp(3𝜇 +

9

2
𝜎2) 

𝐸(𝑉𝑒
2) =

32𝜋2

3

𝛼1𝛽1 + 𝛼1
2(𝛼1 + 𝛽1 + 1)

(𝛼1 + 𝛽1)
2(𝛼1 + 𝛽1 + 1)

 
[𝛼2

3 + 𝛼2
2(1 − 2𝛽2) + 𝛽2

2(1 + 𝛽2) − 2𝛼2𝛽2(2 + 𝛽2)]

𝛼2𝛽2(𝛼2 + 𝛽2 + 2)(𝛼2 + 𝛽2 + 3)
exp(6𝜇 + 18𝜎2) 

The proof of this theorem can be found in Appendix G. Equation (31) indicates that to obtain an 

accurate estimate of the mean and variance of 𝜌, it is essential to get an accurate inference of λ0 

based on Equation (30). Since �̂�0 is an unbiased estimator of 𝜆0, the variance of �̂�0 should be 

sufficiently small to achieve a desired estimation accuracy. Based on Equation (28) and (30), the 

estimation variance of the normalized parameter �̂�0/𝜆0 can be calculated as  

 

𝑉𝑎𝑟 (
�̂�0
𝜆0
) =

1

𝜆0
2

𝜆

(2𝐴𝑧𝑢̅̅ ̅)2
=

1

2𝐴𝜆0𝑧𝑢̅̅ ̅
=
1

𝜆
 (32) 

From the above equation we can see that the percentage error of the estimation mainly depends on 

𝜆, i.e., the Poisson parameter of the particles shown on cross-sectional images. Therefore in 

applications, the estimation accuracy of both size parameters and particle density only depend on 

the total number of observed particles. In other words, if the particle density is large, a relatively 

small number of images or an image with small area is sufficient. While if the observed 2D density 

is very small, a large image is required. As for the volume fraction 𝜌, since the volume of the 
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specimen is often significantly larger than 𝜆0𝐸(𝑉𝑒
2), i.e., 𝑉 ≫ 𝜆0𝐸(𝑉𝑒

2), 𝜌 can be approximately 

treated as a deterministic quantity.  

In practice, the volume fraction is often alternatively estimated using the area fraction of ellipses 

in the cross-sectional images [4]. Here we provide a justification of this method by proving that 

the expectation of the volume fraction is actually identical to that of the area fraction, which is 

given in Theorem 5.  

Theorem 5: Let 𝐴𝑣 denote the total cross-sectional area of the intersected ellipsoids on the cutting 

image of area 𝐴. Under Assumptions (i) and (ii), we have  

 
𝐸(𝜌) = 𝐸 (

𝐴𝑣

𝐴
) (33) 

The proof is given in Appendix H. Theorem 5 indicates that the mean volume fraction can be 

unbiasedly estimated by simply calculating the area fraction of ellipses. From Appendix H we can 

see that the ellipsoids do not need to be uniformly oriented. Besides, we can easily prove that 

Equation (33) is still true for spherical particles. Therefore, to estimate the mean volume fraction, 

Equation (33) is simpler and much more flexible than Equation (31).  

5. SIMULATION STUDY 

In this section we use the Monte Carlo simulations to verify the theoretical results and evaluate the 

effectiveness of the established approach. In Section 5.1 we investigate the estimation of size 

parameters with different numbers of cross-sectional ellipses. In Section 5.2 we study the joint 

estimation of the size distribution, particle number density and volume fraction.  

5.1 Size Parameter Estimation 

In the simulation study, the size distribution parameters are set to be 𝜇 = −3.5, 𝜎2 = 0.5, 𝛼1 =

15, 𝛽1 = 3, 𝛼2 = 20, 𝛽2 = 6. To simulate the elliptical cross sections of a fixed sample size 𝑛, 

the following steps are employed: (1) simulate a large number of samples from the distribution 

𝑓(𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝2|𝜽); (2) calculate the weight 𝑧𝑢 of each sample; (3) draw 𝑛 samples from the 

generated samples through weighted sampling with 𝑧𝑢 as the weight; (4) simulate 𝑧𝑐  based on 

Equation (14) for the 𝑛 selected samples. The procedure to simulate the orientation angles 𝑝𝑖 in 

the first step is provided in Appendix I. In the QMC-EM algorithm, the QMC sample size is set to 
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𝑆 = 1 × 106. The stopping criterion threshold is set to δ = 0.015. To reduce the total number of 

iterations for convergence, the initial values are set as follows: 𝜇 and 𝜎2 are obtained by fitting a 

lognormal distribution using the 𝑛  observed 𝑑2 ; 𝛼2  and 𝛽2  are obtained by fitting a beta 

distribution using the observed 𝑑1/𝑑2; 𝛼1 and 𝛽1 are arbitrarily set as 1.  

 

Figure 5. Convergence of the QMC-EM algorithm for one run with 𝑛 = 600. The horizontal 

dashed lines denote the true values. 

 

Figure 6. The estimation variance of the normalized parameters with different sample sizes 𝑛 

Figure 5 illustrates the convergence of the QMC-EM algorithm for one simulation run with 𝑛 =

600. As we can see, with only about 13 iterations, all the parameters converge rapidly from the 

initial values to those very close to the true ones. The computational time of each iteration of the 

EM algorithm for 𝑛 = 600 ellipses is about 20 minutes using MATLAB running on a Windows 
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Server 2012 with Intel Xeon Processor E5-2650 and 20 cores. Figure 6 shows the estimation 

variance of the normalized parameters with different sample sizes. As expected, the estimation 

variance decreases as 𝑛 increases. Note that due to the inherent Monte Carlo errors at both the E-

step and M-step, the estimation variance will eventually converge to a nonzero value as 𝑛 

continues to increase.  

5.2 Joint Estimation of Size Distribution, Number Density and Volume Fraction 

In this section, we simulate multiple microscopic images of different sizes to jointly estimate the 

size distribution, number density and volume fraction. The size distributional parameters are set 

the same as used in Sec. 5.1. The particles follow a Poisson distribution with density parameter 

𝜆0 = 6.3492/mm3. The Poisson parameter for the intersected particles is 𝜆 = 0.4𝐴. Three image 

sizes are selected: 𝐴 = 300, 600 and 900 mm2 . For each simulation setting, the simulation is 

replicated 20 times. The QMC-EM algorithm parameters are the same as in Section 5.1.  

Table 1. Summary of the size distribution, number density and volume fraction estimation 

𝐴 𝑛 �̂� 𝜎 2̂ �̂�1 �̂�1 �̂�2 �̂�2 𝑧�̂̅� 𝑉�̅�
̂ (10−4) �̂�0 𝐶𝐼 �̂� (%) 

𝐴𝑣

𝐴
(%) 

300 

104 -3.46 0.520 12.6 2.91 15.0 4.78 0.0328 6.454 5.29 [4.27, 6.30] 0.341 0.292 

117 -3.72 0.637 11.3 2.04 13.1 3.81 0.0271 5.293 7.20 [5.90, 8.50] 0.381 0.416 

118 -3.49 0.492 15.5 2.77 20.6 6.05 0.0319 5.581 6.16 [5.05, 7.27] 0.344 0.386 

128 -3.38 0.411 15.2 2.85 17.9 5.32 0.0340 5.287 6.27 [5.19, 7.36] 0.332 0.320 

121 -3.59 0.492 12.2 2.52 19.4 5.64 0.0289 4.105 6.98 [5.74, 8.22] 0.287 0.287 

600 

246 -3.65 0.646 15.7 3.34 20.8 6.36 0.0291 6.658 7.03 [6.15, 7.91] 0.468 0.463 

223 -3.57 0.516 16.7 3.49 23.8 7.16 0.0296 4.731 6.28 [5.45, 7.10] 0.297 0.282 

238 -3.46 0.459 15.6 3.07 21.3 6.45 0.0321 5.100 6.18 [5.39, 6.96] 0.315 0.320 

268 -3.55 0.497 15.5 3.18 22.7 6.82 0.0298 4.565 7.49 [6.59, 8.39] 0.342 0.333 

231 -3.45 0.498 16.9 3.62 20.8 6.32 0.0330 6.231 5.82 [5.07, 6.58] 0.363 0.350 

900 

360 -3.51 0.518 15.4 3.02 19.1 5.65 0.0317 5.876 6.31 [5.66, 6.96] 0.371 0.360 

338 -3.54 0.526 15.5 3.39 19.86 6.14 0.0304 5.261 6.19 [5.52, 6.83] 0.325 0.343 

348 -3.47 0.493 16.29 3.36 21.3 6.29 0.0322 5.705 6.00 [5.37, 6.63] 0.342 0.375 

363 -3.55 0.557 15.3 3.03 20.6 6.14 0.0307 5.996 6.57 [5.89, 7.25] 0.394 0.344 

367 -3.45 0.483 14.3 3.20 20.8 5.69 0.0331 6.012 6.16 [5.53, 6.79] 0.370 0.371 

True -3.5 0.5 15 3 20 6 0.0315 5.456 6.35  0.346 0.346 

Table 1 shows the detailed estimation results of the first 5 replications for each image size 𝐴, where 

𝑛 is the number of particles shown on the image, 𝑧�̂̅� and 𝑉�̅�
̂  are the estimated mean of 𝑧𝑢 and 𝑉𝑒 
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respectively, 𝐶𝐼 is the 95% confidence interval of the estimator  �̂�0, �̂� and 𝐴𝑣/𝐴 are the estimated 

volume fractions using Equation (31) and (33) respectively. The bottom row provides the true 

values of the parameters. Table 2 shows the standard error of the estimation of the normalized 

parameters, i.e., √
1

𝑟
∑ (

𝑝𝑖−𝑝

𝑝
)
2

𝑟
𝑖=1  where 𝑟 = 20  is the number of replications and 𝑝  is the 

parameter to estimate. Clearly, the estimation accuracy of all these parameters increases as the 

image size increases. Among these six distribution parameters, the mean parameter 𝜇  has the 

lowest estimation error. It may be explained in terms of MLE bias and information inequality. It 

can be easily shown that the MLE of 𝜇 is unbiased while the MLEs of the other five parameters 

are biased. Besides, based on the Cramer-Rao inequality [30], the estimation variance of 𝜇 has 

lower bound than other parameters, which is consistent with the results in Figure 6 that the 

estimation variance of 𝜇 is much smaller than other parameters. Comparing these two volume 

fraction estimation methods, we see that the estimated volume fractions in each run are very close 

to each other. Consequently, the overall estimation accuracies for these two methods are 

comparable, as shown in Table 2. For 𝐴 = 300 and 600, the first method is slightly more accurate 

than the area fraction method. When the image size increases to 900, however, the area fraction 

method turns out to be more accurate, though the difference is not significant. The reason may be 

that for small sample sizes, the first method utilizes more information for volume fraction inference, 

and thus provide a more accurate estimation; while for large sample sizes, the estimation accuracy 

for the first method is limited or influenced by the inherent error of QMC-EM algorithm.   

Table 2. Standard estimation error of the normalized parameters 

𝐴 �̂� 𝜎2̂ �̂�1 �̂�1 �̂�2 �̂�2 𝑧�̂̅� 𝑉�̅�
̂  �̂�0 �̂� 𝐴𝑣/𝐴 

300 0.033 0.183 0.185 0.148 0.154 0.141 0.073 0.142 0.14 0.223 0.245 

600 0.026 0.123 0.141 0.146 0.111 0.104 0.069 0.146 0.124 0.168 0.187 

900 0.019 0.076 0.086 0.080 0.042 0.047 0.057 0.121 0.088 0.120 0.118 

 

We also compared the proposed method with the one assuming all particles are spherical. In the 

sphere model, the observed radii are approximated by the geometric mean of the semi-major and 

semi-minor axes, i.e., √𝑑1𝑑2/2 . A log-normal distribution is also assumed for the radius of 

spherical particles. Table 3 shows the mean of the estimated parameters in 20 replications with 𝐴 =
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900. Clearly, the semi-major axes have been significantly underestimated under the spherical-

particle assumption, which consequently leads to an underestimated mean semi-height 𝑧�̅�  and 

mean particle volume 𝑉�̅�. The number density 𝜆0 is significantly overestimated, which is what we 

expect based on Equation (30). The volume fraction 𝜌 which is estimated by 𝜆0𝑉�̅� is overestimated 

due to the dominant influence of the number density 𝜆0. Note that in this case study the means of 

the ratios 𝑟2/𝑟3 and 𝑟1/𝑟2 are about 0.77 and 0.83 respectively, which are close to 1. If we reduce 

these ratios, the inaccuracy of parameter estimation using spherical-model will become more 

significant.  

Table 3. Comparison of parameter estimation using ellipsoid and sphere model 

Model �̂� 𝜎2̂ 𝑧�̂̅� 𝑉�̅�
̂(10−4) �̂�0 �̂�(%) 

Ellipsoid -3.51 0.51 0.0308 5.382 6.40 0.344 

Sphere -3.80 0.54 0.0294 5.308 6.87 0.365 

True Value  -3.50 0.50 0.0315 5.456 6.35 0.346 

 

6. Application to Porosity Inference in Additive Manufacturing 

In this section, the proposed method is applied to estimate the size distribution, volume number 

density and porosity in the metal additive manufacturing based on cross-sectional images. Metal-

based additive manufacturing, such as Selective Laser Melting (SLM) and Electron Beam Melting 

(EBM), utilizes high energy density electron or laser beam as the energy source in the fabrication 

process. Porosity is one of the most severe quality issues that poses a significant challenge for wide 

adoption of metal-based AM process. The formation mechanisms of pores in metallic AM 

processes have been intensively studied through both experiment and simulation [31-35]. It has 

been widely agreed that the pore formation is related to the global energy density 𝐸 = 𝑃/(𝑣𝑠𝛿𝑙ℎ𝑑), 

where 𝑃 is the beam power, 𝑣𝑠 is the scanning velocity, ℎ𝑑 is the hatch distance and 𝛿𝑙 is the layer 

thickness. At the region 𝐸 < 𝐸𝑜𝑝𝑡 where 𝐸𝑜𝑝𝑡 is the optimal energy density, porosity decreases as 

we increase 𝐸. In this region, the porosity is mainly due to the lack of fusion of powder particles 

caused by incomplete melting of the raw powders, balling effect and hillocks [33]. In these cases, 

formed pores are of complex, elongated shapes with sharp and concave boundaries. On the other 

hand, excessive energy density, i.e., 𝐸 > 𝐸𝑜𝑝𝑡 , causes vaporization of the material，  thus 
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producing spherical or near-spherical pores due to gas bubble formation. Increasing the energy 

density in this region will cause higher porosity.  

Porosity is greatly affected by process parameters. Therefore, it is important to characterize it 

for quality inspection and process optimization. Currently, the most commonly used inspection 

methods include (1) the measurement of volume and mass with known full-dense density [1]; (2) 

the Archimedes method [1]; (3) wave speed measurement [36] and (4) X-ray computed 

tomography (X-Ray CT) [4, 37]. However, the first three methods only provide the overall volume 

fraction of defects in the final product. The void morphology, size and volume density, which are 

critical to the mechanical properties of the final product, are not available. X-Ray CT is capable of 

reconstructing 3D voids based on X-ray cross-sectional images or slices. However, this technique 

is seriously limited by its resolution [38]. It is not able to detect voids within an order of 

micrometers. Consequently, it is desirable to develop microscopic image based porosity inference 

technique.  

 

Figure 7. The cross-sectional images of SLM-produced Ti-6Al-4V specimens with laser power 

120W and scan speed: (a-b) 360mm/s, (c-d) 480mm/s and (e-f) 600mm/s. 

In this case study, we only consider the second AM process condition 𝐸 > 𝐸𝑜𝑝𝑡, where the 

pores are caused by gas bubbles with spherical or ellipsoidal shapes and uniform distribution in 

the specimen. The formed pores in the first case, i.e., 𝐸 < 𝐸𝑜𝑝𝑡  do not satisfy our model 

assumptions and thus are not considered. Figure 7 shows the cross-sectional images of three SLM-

produced Ti-6Al-4V specimens with laser power 120 W and scan speed of 360, 480 and 600 mm/s 

0.5mm 0.5mm0.5mm

0.5mm 0.5mm 0.5mm

(b)

(a) (c)

(d)

(e)

(f)



23 
 

respectively [4]. For each specimen, microscopic images of size 3.6 mm × 2.7 mm (1920 pixel ×

2560 pixel) are obtained at different locations. We can clearly see that increasing the scan speed 

decreases porosity within the speed range [360mm/s, 600mm/s] due to the reduction of global 

energy density. Besides, the circularity and elongation distribution of these voids indicate that most 

defects have an elliptical contour [4]. To analyze the porous defects, raw images are first converted 

to binary images, and then the boundaries or contours of defects are extracted, as shown in Figure 

8. The boundaries of voids are then fitted to ellipses using nonlinear least square method, i.e., 

minimizing the sum of squared distances from the extracted data points to the ellipse boundary.  

 
Figure 8. The segmentation and ellipsoidal fitting of porous defects from cross-sectional images 

 

Figure 9. Histogram of aspect ratios 𝑑1/𝑑2 for three specimens: (a) 360mm/s; (b) 480mm/s and (c) 

600 mm/s. The vertical dashed lines denote the mean values.  

For the first specimen, one cross-sectional image (Figure 7a) is used for porosity inference. For 

(b) Extracted boundaries(a) Raw image for 120W 360mm/s

(c) Fitted ellipses plotted along voids (d) Zoomed voids and ellipses 
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the other two specimens, two and four cross-sectional images are used respectively due to low 

void densities. Figure 9 shows the aspect ratios 𝑑1/𝑑2 of the fitted ellipses with mean values of 

0.77, 0.69, and 0.72 respectively for the three specimens. Clearly, the deviation of the aspect ratio 

from utility indicates that ellipse is better than circle to capture the boundaries of void cross-

sections. To validate the assumption of complete spatial randomness (CSR), we utilize Ripley’s K 

function [39], which is defined as  

𝐾(𝑡) = 𝐸(num of voids within distance 𝑡 of a randomly chosen void)/𝜆 

Under CSR, 𝐾(𝑡) = 𝜋𝑡2 . Therefore, we can test the difference between the theoretically 

calculated 𝐾(𝑡) curve under CSR and the estimated �̂� based on the observations. In practice, it is 

better to use the L function 𝐿(𝑡) = √𝐾(𝑡)/𝜋  since the estimated �̂�(𝑡)  has an approximately 

constant variance. Under CSR, 𝐿(𝑡) = 𝑡 . To test if 𝐿(𝑡) = 𝑡 , we use the test statistic �̂�𝑠 =

∑ |�̂�(𝑡) − 𝑡|𝑡 . The p-values for the hypothesis testing are obtained through Monte Carlo 

simulations. Figure 10 shows the theoretical K function under CSR, the estimated �̂� , the 

histograms of the simulated �̂�𝑠 and observed test statistics for the three specimens. We can clearly 

see that the estimated �̂� function is very close to the theoretical 𝐾 function. The p-values of the 

hypothesis testing are 0.466, 0.757 and 0.596 respectively for the three specimens, all of which are 

not significant. Therefore, it is reasonable to assume all the voids are uniformly distributed.  

 
Figure 10. CSR test using Ripley’s K function. (a, b, c): the estimated and theoretical K functions 

for the three specimens; (d, e, f): histograms of the Monte Carlo simulated �̂�𝑠 and observed �̂�𝑠 

(a) (b) (c)

(d) (e) (f)
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statistic denoted by vertical dashed lines. (a, d): 360mm/s, (b, e): 480mm/s and (c, f): 600m/s. 

Table 4 shows the estimated size distribution parameters and volume number densities for the three 

specimens using the developed QMC-EM algorithm. As we can see, increasing the scanning speed 

or consequently decreasing the energy density  𝐸 , both the size and volume number density 

decrease, which is consistent with the pore formation mechanism that decreasing the energy 

density 𝐸 in the region 𝐸 > 𝐸𝑜𝑝𝑡 will reduce the porosity due to reduction of the vaporization.  

Table 4. The distribution size and volume number density estimation 

S 𝐴𝑖(mm2) 𝑛 �̂� 𝜎 2̂ �̂�1 �̂�1 �̂�2 �̂�2 𝑧𝑢̅̅ ̅̂ 𝑉�̅�
̂(10−5) �̂�0 𝐶𝐼(95%) 

1 9.72 379 -3.697 0.121 6.31 1.65 9.39 2.10 0.022 5.93 889.6 [800.1, 979.2] 

2 19.44 445 -3.700 0.053 4.63 2.14 10.43 2.99 0.020 3.38 572.9 [519.7, 626.1] 

3 38.88 241 -3.899 0.070 2.41 0.90 10.68 2.75 0.017 2.24 182.8 [159.7, 205.9] 

Table 5 shows the comparison of the size parameter estimation using ellipsoid and sphere models. 

Similar to the simulation study, the sphere model underestimated the semi-height 𝑧�̅�  and 

overestimated the volume number density 𝜆0 for all three specimens compared with the ellipsoid 

model. However, the estimated mean volume �̅�𝑒 by the sphere model is larger than that of the 

ellipsoid model.  

Table 5. Comparison of size parameter estimation using ellipsoid and sphere models 

S 
�̂� 𝜎 2̂ �̂�0 𝑧𝑢̅̅ ̅̂ 𝑉�̅�

̂ (10−5) 

Sphere Ellipsoid Sphere Ellipsoid Sphere Ellipsoid Sphere Ellipsoid Sphere Ellipsoid 

1 -3.943 -3.697 0.171 0.121 923.3 889.6 0.021 0.022 6.58 5.93 

2 -4.060 -3.700 0.102 0.053 635.0 572.6 0.018 0.020 3.40 3.38 

3 -4.245 -3.899 0.089 0.070 207.7 182.8 0.015 0.017 1.84 2.24 

Table 6 shows the porosity (volume fraction) estimation using the proposed method and other four 

methods, e.g., the sphere model based method, area fraction of 2D voids, the Archimedes method, 

and the X-Ray CT method. The Archimedes method directly determines the density of the 

specimens by measuring the mass in air and water. Therefore it can be considered as a benchmark 

to evaluate the accuracy of other methods. The X-Ray CT method estimates the porosity by 

calculating the area fraction of voids on X-Ray slices. Clearly, the X-Ray CT method has the 

lowest accuracy for all three specimens than all other methods. It significantly underestimates the 
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porosity, especially for the second and third specimens with small pores, due to its incapability of 

detecting small voids. The area fraction method has higher accuracy on the first and third 

specimens while lower on the second specimen than the proposed ellipsoid model and sphere 

model based methods. Comparing the ellipsoid model with the sphere model, the former is better 

on the second and third specimen while worse on the first specimen than the latter. The reason 

may be that the second and third specimens have smaller aspect ratios 𝑑1/𝑑2 (0.69 and 0.72) than 

the first specimen (0.77). The smaller the aspect ratio, the better the ellipsoid model than the sphere 

model.  

Table 6. Comparison of porosity estimation using different methods 

Specimen Ellipsoid Sphere Area Fraction X-Ray CT Archimedes 

1 5.27% 6.08% 6.01% 6.63% 5.85% 

2 1.93% 2.16% 1.34% 1.03% 1.99% 

3 0.41% 0.38% 0.47% 0.22% 0.46% 

 

7. CONCLUSION AND DISCUSSION 

In this paper, we proposed a series of statistical approaches to inferring 3D ellipsoidal particles 

based on cross-sectional images, including the size distribution, particle volume number density 

and volume fraction. The particles are modelled as ellipsoids, and the linkage between 3D 

ellipsoids and 2D cross-sectional contours on size and geometry is established. The likelihood 

function is derived and an efficient Quasi-Monte Carlo EM algorithm is developed to estimate the 

size distribution of ellipsoidal particles in specimens. The linkage between 3D and 2D particle 

number density is also established for density estimation. Specifically, we proved that particles 

shown on cross-sectional images can be modelled by a nonhomogeneous Poisson process. The 

volume fraction of 3D particles can be estimated based on the size and density estimations. We 

also provided a theoretical foundation for the area fraction estimation method by proving that the 

area fraction is an unbiased estimation of the mean of the porosity. Both the simulation and case 

studies show that the proposed method can effectively infer 3D ellipsoidal particles based on 2D 

cross-sectional images. It is worth noting that the proposed method is destructive in that the 

specimen needs to be cut for SEM image preparation. Its main application is in the fabrication 

process design and optimization stage, not the in-line quality inspection stage.  
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There are still some open issues worth of investigation in 3D particle inference. First of all, in 

the proposed method, orientations of ellipsoids are assumed to be uniformly distributed. However, 

this might not always be the case in practice. Due to many known or unknown factors, the 

orientation or the longest principal axis may favor certain directions. In such situation, inferring 

size distribution, particle density, orientation and volume fraction is very challenging. In addition, 

the assumption of uniform distribution is an ideal case where the fabrication process is perfectly 

stable. In practice, however, there may exist spatial clustering where the particles/pores may be 

denser in certain region than others due to unstable process conditions. The third issue that needs 

to be investigated is the selection of appropriate distributions for sizes of ellipsoids. Although 

lognormal and beta distributions are very flexible in characterizing size distributions, they may not 

be the best option. These open issues are left for our future work.  
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APPENDIX A: PROOF OF THEOREM 1 

(1) The ellipsoid defined by {𝑟𝑖, 𝜃𝑖 , 𝑝𝑖, 𝑖 = 1,2,3}  can be obtained by rotating a standard 

ellipsoid centered at the origin with three semi-principal axes 𝑟1, 𝑟2 and 𝑟3 aligned with 𝑥, 𝑦 and 𝑧 

axes, respectively. It is straightforward to obtain the rotation transformation matrix 𝑅 as  

 

𝑅 = [
cos 𝜃1 cos 𝑝1 cos 𝜃2 cos 𝑝2 cos 𝜃3 cos 𝑝3
sin 𝜃1 cos 𝑝1 sin 𝜃2 cos 𝑝2 sin 𝜃3 cos 𝑝3

sin 𝑝1 sin 𝑝2 sin 𝑝3

] (A. 1) 

The analytical equation for the ellipsoid can be expressed as  

(𝑥, 𝑦, 𝑧)𝑅𝐷𝑅′(𝑥, 𝑦, 𝑧)′ = 1 

where D = diag(
1

𝑟1
2 ,

1

𝑟2
2 ,

1

𝑟3
2). Define 𝐴, 𝐴11, 𝐴21, 𝐴12 and 𝐴22 as  

 

𝐴 = 𝑅𝐷𝑅′ = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] = [
𝐴11 𝐴12

𝐴21 𝐴22
] (A. 2) 

where 𝐴11 = [
𝑎11 𝑎12
𝑎21 𝑎22

], 𝐴21 = 𝐴12
′ = (𝑎31, 𝑎32) and 𝐴22 = 𝑎33.  

Suppose the ellipsoid is cut with a horizontal plane at the location 𝑧 = 𝑧𝑐. Then the cross section 

can be expressed by 

(𝑥, 𝑦, 𝑧𝑐)𝑅𝐷𝑅
′(𝑥, 𝑦, 𝑧𝑐)

′ = 1 

 
[(
𝑥
𝑦) + 𝑧𝑐𝐴11

−1𝐴12]
′

𝐴11 [(
𝑥
𝑦) + 𝑧𝑐𝐴11

−1𝐴12] = 1 − 𝑧𝑐
2(𝐴22 − 𝐴21𝐴11

−1𝐴12) (A. 3) 

Since 𝐴 is a symmetric and positive definite matrix, 𝐴11 is also a symmetric and positive definite 

matrix. Therefore (A. 3) is the equation of an ellipse. In other words, the intersection is an ellipse. 

The center is located at (𝑥0, 𝑦0)
′ = −𝑧𝑐𝐴11

−1𝐴12.  

(2) The size of the ellipse is derived as follows.  

Based on Eq. (A. 1) and (A. 2), 𝐴11 can be calculated as 

𝑎11 =
(cos 𝜃1 cos 𝑝1)

2

𝑟1
2 +

(cos 𝜃2 cos 𝑝2)
2

𝑟2
2 +

(cos 𝜃3 cos 𝑝3)
2

𝑟3
3  

𝑎21 = 𝑎12 =
sin 𝜃1 cos 𝜃1 (cos 𝑝1)

2

𝑟1
2 +

sin 𝜃2 cos 𝜃2 (cos 𝑝2)
2

𝑟2
2 +

sin 𝜃3 cos 𝜃3 (cos 𝑝3)
2

𝑟3
2  
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𝑎22 =
(sin 𝜃1 cos 𝑝1)

2

𝑟1
2 +

(sin𝜃2 cos 𝑝2)
2

𝑟2
2 +

(sin 𝜃3 cos 𝑝3)
2

𝑟3
2  

Since 𝑅 is an orthogonal matrix and three semi-principal axes follow right-hand rule, then  

 sin𝑝𝑖 sin𝑝𝑗

cos𝑝𝑖 cos𝑝𝑗
+ cos(𝜃𝑗 − 𝜃𝑖) = 0 for any 𝑖 ≠ 𝑗 (Orthogonal) (A. 4) 

 

{

sin 𝑝1 =cos 𝑝2 cos 𝑝3 sin(𝜃3 − 𝜃2)
sin 𝑝2 =cos 𝑝3 cos 𝑝1 sin(𝜃1 − 𝜃3)
sin 𝑝3 =cos 𝑝1 cos 𝑝2 sin(𝜃2 − 𝜃1)

 (right-hand rule) (A. 5) 

 sin2 𝑝1 + sin2 𝑝2 + sin2 𝑝3 = 1 (unit row vector) (A. 6) 

 

Based on (A. 4), (A. 5) and (A. 6) we can calculate the determinant |A11| as 

 

|A11| =
sin2 𝑝3

𝑟1
2𝑟2

2 +
sin2 𝑝2

𝑟1
2𝑟3

2 +
sin2 𝑝1

𝑟2
2𝑟3

2  (A. 7) 

𝐴21 and 𝐴22 are calculated as 

𝐴21(1) = 𝑎31 =
cos 𝜃1 sin 𝑝1 cos 𝑝1

𝑟1
2 +

cos 𝜃2 sin 𝑝2 cos 𝑝2

𝑟2
2 +

cos 𝜃3 sin 𝑝3 cos 𝑝3

𝑟3
2  

𝐴21(2) = 𝑎32 =
sin 𝜃1 sin 𝑝1 cos 𝑝1

𝑟1
2 +

sin 𝜃2 sin 𝑝2 cos 𝑝2

𝑟2
2 +

sin 𝜃3 sin 𝑝3 cos 𝑝3

𝑟3
2  

𝐴22 = 𝑎33 =
sin2 𝑝1

𝑟1
2 +

sin2 𝑝2

𝑟2
2 +

sin2 𝑝3

𝑟3
2  

|𝐴11|𝐴21𝐴11
−1𝐴12 is calculated as 

|𝐴11|𝐴21𝐴11
−1𝐴12

=
𝑟1
2 sin2 𝑝2 sin

2 𝑝3 + 𝑟2
2 sin2 𝑝1 sin

2 𝑝3

𝑟1
4𝑟2

4 +
𝑟1
2 sin2 𝑝2 sin

2 𝑝3 + 𝑟3
2 sin2 𝑝1 sin

2 𝑝2

𝑟1
4𝑟3

4

+
𝑟2
2 sin2 𝑝1 sin

2 𝑝3 + 𝑟3
2 sin2 𝑝1 sin

2 𝑝2

𝑟2
4𝑟3

4

− 2 [
sin2 𝑝1 sin

2 𝑝2 + sin2 𝑝1 sin
2 𝑝3 + sin2 𝑝2 sin

2 𝑝3

𝑟1
2𝑟2

2𝑟3
2 ] 



30 
 

Define 𝐼 = {(1,2,3), (2,3,1), (3,1,2)}, then  

1 − 𝑧𝑐
2(𝐴22 − 𝐴21𝐴11

−1𝐴12) = 

= 1 − 𝑧𝑐
2

(

 
 
∑

sin2 𝑝𝑖

𝑟𝑖
2

3

𝑖=1

−
1

∑
sin2 𝑝𝑘
𝑟𝑖
2𝑟𝑗

2(𝑖,𝑗,𝑘)∈𝐼

[∑
sin2 𝑝𝑘 (𝑟𝑖

2 sin2 𝑝𝑗 + 𝑟𝑗
2 sin2 𝑝𝑖)

𝑟𝑖
4𝑟𝑗

4
(𝑖,𝑗,𝑘)∈𝐼

− 2
∑ sin2 𝑝𝑖 sin

2 𝑝𝑗(𝑖,𝑗,𝑘)∈𝐼

𝑟1
2𝑟2

2𝑟3
2 ]

)

 
 

 

= 1 −
𝑧𝑐
2

𝑟1
2 sin2 𝑝1 + 𝑟2

2 sin2 𝑝2 + 𝑟3
2 sin2 𝑝3

 

Therefore  

[(
𝑥
𝑦) + 𝑧𝑐𝐴11

−1𝐴12]
′

Σ [(
𝑥
𝑦) + 𝑧𝑐𝐴11

−1𝐴12] = 1 (A. 8) 

where  

Σ =
𝐴11

1 −
𝑧𝑐2

𝑟1
2 sin2 𝑝1 + 𝑟2

2 sin2 𝑝2 + 𝑟3
2 sin2 𝑝3

 

The inverse of the square root of the eigenvalues of Σ are the corresponding radii of the ellipse. 

Therefore the diameters can be obtained as 

𝑑1,2
2 =

8 (1 −
𝑧𝑐
2

𝑟1
2 sin2 𝑝1 + 𝑟2

2 sin2 𝑝2 + 𝑟3
2 sin2 𝑝3

)

(
cos2 𝑝1
𝑟1
2 +

cos2 𝑝2
𝑟2
2 +

cos2 𝑝3
𝑟3
2 ) ± √(

cos2 𝑝1
𝑟1
2 +

cos2 𝑝2
𝑟2
2 +

cos2 𝑝3
𝑟3
2 )

2

− 4(
sin2 𝑝1
𝑟2
2𝑟3

2 +
sin2 𝑝2
𝑟1
2𝑟3

2 +
sin2 𝑝3
𝑟1
2𝑟2

2 )

 

(3) Based on the above equation we can conclude that 𝑧𝑐 satisfies the following condition 

when the cutting plane intersects the ellipsoid.  

|𝑧𝑐| ≤ √𝑟1
2 sin2 𝑝1 + 𝑟2

2 sin2 𝑝2 + 𝑟3
2 sin2 𝑝3  
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APPENDIX B: PROOF OF THEOREM 2 

Under Assumption (iii), 𝑝𝑖  and 𝑝𝑗  are a sequence of exchangeable random variables. 

Therefore 𝑓(𝑝𝑖) and 𝑓(𝑝𝑖|𝑝𝑗) have the unchanged forms for any permutation of indices 1, 2 and 3. 

For convenience, we only need to derive 𝑓(𝑝3), 𝑓(𝑝2|𝑝3) and 𝑓(𝑝1|𝑝3). Note that here 𝑝1, 𝑝2 and 

𝑝3 satisfy the constraint of (A. 6).  

(1) Derivation of 𝑓(𝑝3). 

For a uniform orientation, the endpoint of the semi-principal axis 𝒓𝟑 uniformly distributed on 

the surface of the semi-sphere (𝑧 ≥ 0 or 0 ≤ 𝑝3 ≤ 𝜋/2 ) of radius  𝑟3 . Therefore the density 

function at each point of the surface is 
1

𝐴
 where 𝐴 = 2𝜋𝑟3

2  is the surface area. Based on the 

geometry, we get  

𝑓(𝑝3)𝑑𝑝3 =
𝑑𝐴

𝐴
=
(2𝜋𝑟 cos 𝑝3)(𝑟𝑑𝑝3)

2𝜋𝑟3
2 = cos 𝑝3 𝑑𝑝3 (B. 1) 

Therefore 𝑓(𝑝3) = cos 𝑝3 , 𝑝3 ∈ [0, 𝜋/2]. Alternatively, this density can be easily obtained based 

on the fact that 𝑓(𝑝3) is proportional to the perimeter of the latitude 𝑝3, i.e., 2𝜋𝑟3 cos 𝑝3.  

(2) Derivation of 𝑓(𝑝2|𝑝3). 

Since the rotation of the ellipsoid along the   axis does not change the angles 𝑝𝑖, 𝑖 = 1,2,3 

and their relationship, for the sake of simplicity, we assume that 𝒓𝟑 is in the XZ plane, i.e., 𝜃3 = 0, 

as shown in Figure B1. Then the 𝒚 axis is on the plane containing 𝒓1 and 𝒓2. 

 

Figure B1 Illustration of an ellipsoid with 𝜽𝟑 = 𝟎 
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Define 𝛼 as the angle between 𝒓2 and 𝒚 axis. Based on the assumption of uniformly distributed 

orientation,  

𝛼~Uniform[0, 𝜋] (B. 2) 

The endpoint of 𝒓𝟐 can be obtained by rotating the point (0, 𝑟2, 0) along the axis 𝒓3 by angle 𝛼. 

Using coordinates transformation, 𝒓𝟐 can be easily obtained as  

𝒓2 = (−𝑟2 sin 𝑝3 sin 𝛼 , 𝑟2 cos 𝛼 , 𝑟2 cos 𝑝3 sin 𝛼) 

Therefore  

sin 𝛼 =
sin 𝑝2
cos 𝑝3

 (B. 3) 

Note that for a general case where 𝜃3 ≠ 0, 𝛼 is the angle between 𝒓2 and the intersection of 

𝒓1-𝒓2 plane and XY plane. The angle between 𝒓1-𝒓2 plane and XY plane can be obtained as 
𝜋

2
−

𝑝3. Based on this angle, we can also obtain the same result. Based on Equation (B. 3), (B. 3) and 

variable transformation, the density function 𝑓(𝑝2|𝑝3) can be calculated as  

𝑓(𝑝2|𝑝3) =
2

π

1

√1 −
sin2 𝑝2
cos2 𝑝3

cos 𝑝2
cos 𝑝3

=
2

𝜋

cos 𝑝2
sin 𝑝1

 

(B. 4) 

Since 𝑝1 = arcsin√1 − sin2 𝑝2 − sin2 𝑝3, using variable transformation, we can get  

𝑓(𝑝1|𝑝3) =
2

𝜋

cos 𝑝1
sin 𝑝2

 (B. 5) 
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APPENDIX C: CALCULATION OF 𝑝1 AND 𝑧𝑐 

Denote  

𝐶1 = ∑ 𝑟𝑖
2 sin2 𝑝𝑖

3

𝑖=1
= (𝑟1

2 − 𝑟2
2) sin2 𝑝1 + (𝑟3

2 − 𝑟2
2) sin2 𝑝3 + 𝑟2

2 (C. 1) 

and  

𝐶2 = ∑
𝑐𝑜𝑠2 𝑝𝑖

𝑟𝑖
2

3

𝑖=1
= (

1

𝑟2
2 −

1

𝑟1
2) sin

2 𝑝1 + (
1

𝑟2
2 −

1

𝑟3
2) sin

2 𝑝3 + (
1

𝑟1
2 +

1

𝑟3
2) (C. 2) 

Based on Equation (1),  

𝐶1

𝐶2
2 =

𝑑1
2𝑑2

2𝑟1
2𝑟2

2𝑟3
2

(𝑑1
2 + 𝑑2

2)2
 (C. 3) 

Combing Equation (C. 1), (C. 2) and (C. 3) we can get 

𝐶2
2
𝑑1
2𝑑2

2𝑟1
2𝑟2

2𝑟3
4

(𝑑1
2 + 𝑑2

2)2
− 𝐶2𝑟1

2𝑟2
2𝑟3

2 + sin2 𝑝3 [(𝑟3
2 − 𝑟1

2)(𝑟2
2 − 𝑟3

2)] + 𝑟1
2𝑟2

2 = 0 (C. 4) 

Therefore 𝐶2  is one of the roots of Equation (C. 4). Since there are two roots, 𝐶2  is the one 

satisfying the following constraints based on Equation (C. 2) 

1

𝑟2
2 +

1

𝑟3
2 ≤ 𝐶2 ≤

1

𝑟1
2 +

1

𝑟2
2 

𝐶1 and 𝑝1 can be calculated once 𝐶2 is obtained. For 𝑧𝑐, based on Equation (1), we can derive that 

𝑑1
2𝑑2

2 =
64(1−

𝑧𝑐
2

𝐶1
)
2

4𝐶1/𝑟1
2𝑟2

2𝑟3
2. 

Therefore  

𝑧𝑐 = √(1 −
√𝐶1𝑑1𝑑2
4𝑟1𝑟2𝑟3

)𝐶1 
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APPENDIX D: CALCULATION OF THE DETERMINANT OF JACOBIAN MATRIX 𝐽 

Let 𝐶3 = 𝐶2 +√𝐶2
2 −

4𝐶1

𝑟1
2𝑟2

2𝑟3
2 , 𝐶4 = 𝐶2 −√𝐶2

2 −
4𝐶1

𝑟1
2𝑟2

2𝑟3
2  where 𝐶1  and 𝐶2  are defined in 

Equation (C. 1) and (C. 2). 𝐶1
′ = (𝑟1

2 − 𝑟2
2) sin 2𝑝1, 𝐶2

′ = (
1

𝑟2
2 −

1

𝑟1
2) sin 2𝑝1, and  

𝐶3
′ = 𝐶2

′ +
2𝐶2𝐶2

′ − 4𝐶1
′/𝑟1

2𝑟2
2𝑟3

2

2√𝐶2
2 − 4𝐶1/𝑟1

2𝑟2
2𝑟3

2
, 𝐶4

′ = 𝐶2
′ −

2𝐶2𝐶2
′ − 4𝐶1

′/𝑟1
2𝑟2

2𝑟3
2

2√𝐶2
2 − 4𝐶1/𝑟1

2𝑟2
2𝑟3

2
 

Denote 
𝜕(𝑑1,𝑑2)

𝜕(𝑝1,𝑧𝑐)
= [

𝑗11 𝑗12
𝑗21 𝑗22

], then  

𝑗11 =
𝜕𝑑1
𝜕𝑝1

=
1

2𝑑1𝐶3
2 [8 (

𝑧𝑐
2𝐶1

′

𝐶1
2 )𝐶3 − 8(1 −

𝑧𝑐
2

𝐶1
)𝐶3

′] 

𝑗21 =
𝜕𝑑2
𝜕𝑝1

=
1

2𝑑2𝐶4
2 [8 (

𝑧𝑐
2𝐶1

′

𝐶1
2 )𝐶4 − 8(1 −

𝑧𝑐
2

𝐶1
)𝐶4

′] 

𝑗12 =
𝜕𝑑1
𝜕𝑧𝑐

=
−16𝑧𝑐/𝐶1
2𝑑1𝐶3

, 𝑗22 =
𝜕𝑑2
𝜕𝑧𝑐

=
−16𝑧𝑐
2𝑑2𝐶1𝐶4

 

𝐽 = |
𝑗11 𝑗12
𝑗21 𝑗22

| =
4𝑧𝑐

𝑑1𝑑2𝐶1𝐶3𝐶4
[𝑑1

2𝐶3
′ − 𝑑2

2𝐶4
′]  

=
4𝑧𝑐

𝑑1𝑑2𝐶1𝐶3𝐶4
[
 
 
 

𝐶2
′(𝑑1

2 − 𝑑2
2) +

(2𝐶2𝐶2
′ −

4𝐶1
′

𝑟1
2𝑟2

2𝑟3
2) (𝑑1

2 + 𝑑2
2)

𝐶3 − 𝐶4 
]
 
 
 

 

Plug in 
𝐶1

𝐶2
2 =

𝑑1
2𝑑2

2𝑟1
2𝑟2

2𝑟3
2

(𝑑1
2+𝑑2

2)
2  and 𝐶3 − 𝐶4 = 2𝐶2

𝑑2
2−𝑑1

2

𝑑1
2+𝑑2

2 we can get  

𝐽 =
4𝑧𝑐

𝑑1𝑑2𝐶1𝐶3𝐶4
[
 
 
 
 

𝐶2
′(𝑑1

2 − 𝑑2
2) +

2𝐶2𝐶2
′(𝑑1

2 + 𝑑2
2)

2𝐶2
𝑑2
2 − 𝑑1

2

𝑑1
2 + 𝑑2

2

−

4𝐶1
′

𝑟1
2𝑟2

2𝑟3
2 (𝑑1

2 + 𝑑2
2)

2𝐶2
𝑑2
2 − 𝑑1

2

𝑑1
2 + 𝑑2

2 ]
 
 
 
 

 

=
2𝑑1𝑑2𝑟1

2𝑟2
2𝑟3

2𝑧𝑐
(𝑑2

2 − 𝑑1
2)𝐶1

3
[2𝐶1𝐶2

′ − 𝐶2𝐶1
′] 
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APPENDIX E: PROOF OF INEQUILITIES (24) 

Based on Equation (1), it is easy to show that (i) 𝑑1 and 𝑑2 reaches the maximum for any given 

{𝑟𝑖, 𝑝𝑖, 𝑖 = 1,2,3} when 𝑧𝑐 = 0; (ii) when 𝑧𝑐 = 0, for any given 𝑝3, 𝑑1 reaches the maximum while 

𝑑2  reaches the minimum at 𝑝2 = 0. Similarly, when 𝑧𝑐 = 0, for any given 𝑝3 , 𝑑2  reaches the 

maximum while 𝑑1 reaches the minimum at 𝑝2 =
𝜋

2
− 𝑝3. Therefore  

𝑑1
2 ≤

8

𝐶1
𝑟1
2𝑟3

2 +
1
𝑟2
2 + |

𝐶1
𝑟1
2𝑟3

2 −
1
𝑟2
2|

 
(E. 1) 

𝑑2
2 ≤

8

𝐶2
𝑟2
2𝑟3

2 +
1
𝑟1
2 − |

𝐶2
𝑟2
2𝑟3

2 −
1
𝑟1
2|

 
(E. 2) 

where 𝐶1 = (𝑟3
2 − 𝑟1

2) sin2 𝑝3 + 𝑟1
2  and 𝐶2 = (𝑟3

2 − 𝑟2
2) sin2 𝑝3 + 𝑟2

2 . Since sin2 𝑝3 ≤ 1 ≤

𝑟2
2(𝑟3

2−𝑟1
2)

𝑟1
2(𝑟3

2−𝑟2
2)

, 
𝐶2

𝑟2
2𝑟3

3 ≤
1

𝑟1
2. Based on (E. 2) we can get 

𝑑2 ≤
2

√(
1
𝑟2
2 −

1
𝑟3
2) 𝑠𝑖𝑛

2 𝑝3 +
1
𝑟3
2

≤ 2𝑟3  
(E. 3) 

From (E. 3) we can get  

𝑟3 ≥
𝑑2
2
, 𝑟2 ≥

sin 𝑝3

√(
4

𝑑2
2 −

cos2 𝑝3
𝑟3
2 )

  
(E. 4) 

Similarly, if sin2 𝑝3 ≥
𝑟1
2(𝑟3

2−𝑟2
2)

𝑟2
2(𝑟3

2−𝑟1
2)

 or equivalently 𝑟1 ≤
𝑟2𝑟3 sin𝑝3

√𝑟3
2−𝑟2

2 cos2 𝑝3

≤ 𝑟2, based on (E. 1) 

𝑑1 ≤
2

√(
1
𝑟1
2 −

1
𝑟3
2) sin

2 𝑝3 +
1
𝑟3
2

≤ 2𝑟2  
(E. 5) 

Otherwise, i.e., sin2 𝑝3 <
𝑟1
2(𝑟3

2−𝑟2
2)

𝑟2
2(𝑟3

2−𝑟1
2)

 

𝑑1 < 2𝑟2  (E. 6) 
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Therefore  

𝑟2 ≥
𝑑1
2
, 𝑟1 ≥

sin 𝑝3

√(
4

𝑑1
2 −

cos2 𝑝3
𝑟3
2 )

  
(E. 7) 

Base on (E. 4) and (E. 7) we can get the inequalities (26).  

APPENDIX F: PROOF OF THEOREM 3 

Since the ellipsoidal particles are uniformly distributed on both sides of the image plane, we could 

limit the analysis to one side, as shown in Figure F1. Divide the specimen on the right side of the 

image into equally spaced cells with a sufficiently small thickness 𝛿. Suppose the upper bound of 

the ellipsoid size 𝑟3 is 𝑟𝑚𝑎𝑥, which can be infinite if no upper bound is specified. So we only need 

to focus the right side of largest distance 𝑟𝑚𝑎𝑥 to the image plane. Particles with distance larger 

than 𝑟𝑚𝑎𝑥 to the image plane will not be shown.    

 

Figure F1. Modeling the ellipsoidal particles on an image as an inhomogeneous Poisson process 

Denote the number of particles that are on the image and whose distance is within 𝑑𝑖 by 𝑁(𝑑𝑖), 

and denote the number of particles shown on the image coming from the ith cell by 𝑁𝑖 = 𝑁(𝑑𝑖) −

𝑁(𝑑𝑖−1) with 𝑁0 = 𝑑0 = 0. Then we have  

(1) 𝑁(0) = 0 by definition 

(2) 𝑁1, 𝑁2, … are independent under the assumption of CSR 

(3) 𝑁𝑖, 𝑖 = 1,… have the Poisson distribution with rate 𝐴𝛿𝜆0𝑃𝑟(𝑧𝑢 ≥ 𝑧𝑐) where 𝐴 is the area 

of the image plane, 𝜆0 is the particle density in the 3D space.  

(4) For 𝛿 → 0, the Poisson rate for 𝑁𝑖, 𝑖 ≥ 1 is 𝐴𝛿𝜆0𝑃𝑟(𝑧𝑢 ≥ 𝑑𝑖), therefore  

lim
𝛿→0

Pr(𝑁𝑖 = 1)

𝛿
 = 𝐴𝜆0𝑃𝑟(𝑧𝑢 ≥ 𝑑𝑖), lim

𝛿→0

Pr(𝑁𝑖 > 1)

𝛿
 = 0 

Im
ag

e 
P

la
n
e

𝑧𝑐

particle

𝑧𝑢

𝑑𝑖

𝑑𝑖+1

𝛿
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Based on (1-4) we know the particles shown on the image from the right size is an inhomogeneous 

Poisson process with rate function 𝜆(𝑑) = 𝐴𝜆0𝑃𝑟(𝑧𝑢 ≥ 𝑑). 

𝜆(𝑑) = 𝐴𝜆0 ∫ 𝑓𝑧𝑢(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥

𝑑

 

The total number of particles shown on the intersectional image follows a Poisson distribution 

with Poisson parameter 

𝜆 = 2∫ 𝜆(𝑥)

𝑟𝑚

0

𝑑𝑥 = 2𝐴𝜆0 ∫ ∫ 𝑓𝑧𝑢(𝑟)

𝑟𝑚𝑎𝑥

𝑥

𝑑𝑟

𝑟𝑚𝑎𝑥

0

𝑑𝑥 = 2𝐴𝜆0 ∫ ∫𝑓𝑧𝑢(𝑟)

𝑟

0

𝑑𝑥

𝑟𝑚𝑎𝑥

0

𝑑𝑟

= 2𝐴𝜆0 ∫ 𝑟𝑓𝑧𝑢(𝑟)

𝑟𝑚𝑎𝑥

0

𝑑𝑟 = 2𝐴𝜆0𝑧𝑢̅̅ ̅ 

Note that 𝑟𝑚𝑎𝑥 can be set to infinite if no upper bound is specified.  

 

APPENDIX G: PROOF OF THEOREM 4 

The volume fraction is 𝜌 =
∑ 𝑉𝑖
𝑁
𝑖=1

𝑉
 where 𝑉𝑖 is the volume of ith ellipsoid, 𝑁 is the total number of 

ellipsoids and 𝑁~Poisson(𝜆0𝑉). Therefore ∑ 𝑉𝑖
𝑁
𝑖=1  follows a compound Poisson distribution. The 

mean and variance can be calculated based on the compound Poisson distribution as 

𝐸(𝜌) =
𝐸(𝑁)𝐸(𝑉𝑒)

𝑉
= 𝜆0𝐸(𝑉𝑒) 

𝑉𝑎𝑟(𝜌) =
𝐸(𝑁)𝐸(𝑉𝑒

2)

𝑉2
=
𝜆0𝐸(𝑉𝑒

2)

𝑉
 

Based on the lognormal and beta distribution,  

𝐸(𝑉𝑒) =
4𝜋

3
𝐸(𝑟3

3 ∗ 𝑟𝑎2
2 ∗ 𝑟𝑎1) =

4𝜋

3
𝐸(𝑟3

3)𝐸(𝑟𝑎2
2 )𝐸(𝑟𝑎1)

=
4𝜋

3

𝛼1
𝛼1 + 𝛽1

𝛼2𝛽2 + 𝛼2
2(𝛼2 + 𝛽2 + 1)

(𝛼2 + 𝛽2)2(𝛼2 + 𝛽2 + 1)
 exp(3𝜇 +

9

2
𝜎2) 

where 𝑟𝑎1 = 𝑟1/𝑟2 and 𝑟𝑎2 = 𝑟2/𝑟3 
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𝐸(𝑉𝑒
2) =

16𝜋2

9
𝐸(𝑟3

6)𝐸(𝑟𝑎2
4 )𝐸(𝑟𝑎1

2 )

=
32𝜋2

3

𝛼1𝛽1 + 𝛼1
2(𝛼1 + 𝛽1 + 1)

(𝛼1 + 𝛽1)2(𝛼1 + 𝛽1 + 1)
 
[𝛼2

3 + 𝛼2
2(1 − 2𝛽2) + 𝛽2

2(1 + 𝛽2) − 2𝛼2𝛽2(2 + 𝛽2)]

𝛼2𝛽2(𝛼2 + 𝛽2 + 2)(𝛼2 + 𝛽2 + 3)
exp(6𝜇

+ 18𝜎2) 

 

APPENDIX H: PROOF OF THEOREM 5 

Let 𝑆 and 𝑉𝑒 denote the cross-section area and volume of an ellipsoid with the cutting plane. Then  

𝐸(𝑆) = 𝐸(𝑆|𝐼 = 1, 𝜽)𝑃(𝐼 = 1|𝜽) + 𝐸(𝑆|𝐼 = 0, 𝜽)𝑃(𝐼 = 0|𝜽) 

= 𝐸(
𝜋 (1 −

𝑧𝑐
2

𝑧𝑢
2) 𝑟1𝑟2𝑟3

𝑧𝑢
|𝐼 = 1,𝜽 )𝑃(𝐼 = 1|𝜽) = 𝜋𝐸(1 −

𝑧𝑐
2

𝑧𝑢
2
)𝐸 (

𝑟1𝑟2𝑟3
𝑧𝑢

|𝐼 = 1,𝜽)𝑃(𝐼 = 1|𝜽) 

= 𝐸 (
𝑉𝑒
2𝑧𝑢

|𝐼 = 1, 𝜽) 𝑃(𝐼 = 1|𝜽)

= ∫
𝑉𝑒
2𝑧𝑢

𝑓(𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝2|𝐼 = 1, 𝜽)𝑑(𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝2)𝑃(𝐼 = 1|𝜽) 

= ∫
𝑉𝑒
2𝑧𝑢

𝑓(𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝2|𝜽)
𝑧𝑢
𝑟𝑚𝑎𝑥

𝑃(𝐼 = 1|𝜽)
𝑑(𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝2)𝑃(𝐼 = 1|𝜽) 

= ∫
𝑉𝑒

2𝑟𝑚𝑎𝑥

𝑓(𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝2|𝜽) 𝑑(𝑟1, 𝑟2, 𝑟3, 𝑝3, 𝑝2) =
𝐸(𝑉𝑒|𝜽)

2𝑟𝑚𝑎𝑥
 

Therefore  

𝐸(𝑆) =
𝐸(𝑉𝑒|𝜽)

2𝑟𝑚𝑎𝑥
 

𝐸(𝜌) = 𝐸 (
∑ 𝑉𝑖
𝑁
𝑖=1

2𝐴𝑟𝑚𝑎𝑥
) = 𝐸 (

∑ 𝑆𝑖
𝑁
𝑖=1

𝐴
) =

𝐴𝑣

𝐴
 

where 𝑉𝑖 and 𝑆𝑖 are the volume and cross-sectional area of ellipsoid 𝑖, respectively, and 𝑁 is the 

total number of ellipsoids in the two sides of the cutting plane of maximum distance 𝑟𝑚𝑎𝑥.  
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APPENDIX I: SAMPLING THE ORIENTATION ANGLES 𝑝1, 𝑝2AND 𝑝3 

The inverse transform sampling can be used to sample 𝑝1, 𝑝2 and 𝑝3 . The orientation angles 

𝑝1, 𝑝2 and 𝑝3 have the following distributions according to Theorem 2: 

𝑓(𝑝𝑖) = cos 𝑝𝑖 , 𝑓(𝑝𝑖|𝑝𝑗) =
2

𝜋

cos 𝑝𝑖
sin 𝑝𝑘

, (𝑖, 𝑗, 𝑘) ∈ Perm(1,2,3) 

where sin2 𝑝1 + sin2 𝑝2 + sin2 𝑝3 = 1 . The cumulative distribution function (CDF) of 𝑝3  is 

sin 𝑝3. The CDF of 𝑝1 given 𝑝3 is calculated as follows. 

Pr(𝑝2 ≤ 𝑥|𝑝3) = ∫
2

𝜋

cos 𝑝2
sin 𝑝1

𝑑𝑝2

𝑥

0

= ∫
2

𝜋

cos 𝑝2
sin 𝑝1

𝑑𝑝2

𝑥

0

= ∫
2

𝜋

𝑑𝑡

√cos2 𝑝3 − 𝑡2

sin𝑥

0

 

=
2

𝜋
arcsin

sin 𝑥

cos 𝑝3
 for 𝑥 ∈ [0, 𝜋/2 − 𝑝3] 

Therefore (𝑝1, 𝑝2, 𝑝3) can be sampled as follows: 

 Sample 𝑦1~𝑈[0,1] and set 𝑝3 = asin 𝑦1 

 Sample 𝑦2~𝑈[0,1] and set 𝑝2 = asin (cos 𝑝3 sin
𝜋𝑦2

2
) 

 Calculate 𝑝1 = asin√1 − sin2 𝑝2 − sin2 𝑝3 
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