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ABSTRACT
The detection of steady-state operation is critical in system/process performance assessment, optimization,
fault detection, and process automation and control. In this article, we propose a new robust and compu-
tationally efficient online steady-state detection method using multiple change-point models and exact
Bayesian inference. An average run length approximation is derived that can provide insight and guidance
in the application of the proposed algorithm. An extensive numerical analysis shows that the proposed
method is much more accurate and robust than currently available methods.

1. Introduction

The problem of detecting whether a noisy signal or time series
data is steady (true process value and noise variance stay
unchanged) arises in various application areas, such as pro-
cess performance assessment and optimization (Ricker and Lee,
1995; Mhamdi et al., 1999; Hoad et al. 2009; Marchetti et al.
2014), data reconciliation (Bhat and Saraf, 2004; Schladt andHu,
2007), fault detection and diagnosis (Chen and Howell, 2001;
Kim et al., 2008), and process automation and control (Mahuli
et al., 1992; Cao and Rhinehart, 1995; Yao et al., 2009; Wu et al.,
2013). In these application areas, a steady state of the system is
one of themost important requirements to evaluate ormodel the
process or to trigger the next action in the process control. For
example, in a discrete-event simulation, there are biases in the
initial outputs of the simulation. In order to accurately assess the
process performance, the steady state of the outputs needs to be
identified (Kelton and Law, 1983; Cash et al., 1992; White, 1997;
Spratt, 1998; Robinson, 2002; Hoad et al., 2009). In the chemi-
cal industry, process modeling, control, and optimization need
to be performed under steady-state operation conditions (e.g.,
temperature, flow rate, pressure, pH value; Cao and Rhinehart
(1995)). Most of the fault detection and diagnosis methodolo-
gies on cooling systems are based on the assumption of steady-
state operation (Li, 2004; Kim et al., 2008). In process indus-
tries (Aguado et al., 2008; Yao et al., 2009), batch operations are
not stable in the start-up period due to non-stabilized incom-
ing materials or machine conditions, which cannot guarantee
product quality. Therefore, the steady state needs to be identi-
fied to avoid expensive quality inspection and scrap costs. The
detection of a steady-state condition can also be used as a stop-
ping criterion in iterative numerical methods, such as nonlinear
regression, optimization, and neural network training (Natara-
jan and Rhinehart, 1997). The procedure is stopped when the
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objective function (e.g., sum of squared error) reaches a steady
state.

During the past several decades, over 40 offline steady-
state detection algorithms have been developed, most of which
are used to remove initial bias in discrete-event simulations
(Franklin, 2009). These methods are classified into five cate-
gories by Robinson and Davies (Hoad et al., 2009):
• graphical methods, including time-series inspection
(Gordon, 1977), CUSUM plots (Nelson, 1992), etc.;
• heuristic approaches, such as the Marginal Standard Error
Rules (White, 1997; White, et al., 2000);
• statistical methods;
• initialization bias tests (e.g., batchmeans-based tests (Cash
et al., 1992));
• hybrid methods.
Thesemethods can be used to identify the steady-state period

when the full signal is available; however, they are not suitable
for real-time detection; i.e., process control and real-time opti-
mization (Mhamdi et al., 1999; Marchetti et al., 2014), which
is based only on the observations up to the current time and
requires high timeliness.

To our best knowledge, there are only several online steady-
state detection algorithms currently in existence; they can be
summarized as follows.

1. A linear regression is performed over amoving data win-
dow and the fitted slope is monitored. When the fitted
line is sufficiently “flat” or the absolute value of the slope
is below a threshold, the process signal is considered
steady (Holly et al., 1989; Bethea and Rhinehart, 1991;
Wu et al., 2013).

2. A t-test is performed to compare the means of two
recently adjacent moving data windows with pooled
standard deviations. The signal is considered steady if

Copyright ©  “IIE”
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there is no significant difference (Narasimhan et al.,
1987).

3. The standard deviation of amoving datawindow ismon-
itored, and the steady state is detected if the standard
deviation is below a threshold (Kim et al., 2008).

4. An F-test is performed on the ratio of two variances cal-
culated using two methods, the mean squared deviation
and the mean of squared differences of successive data.
In the transient state the ratio is very large and when it
is below a threshold close to one, the process is consid-
ered to be steady (Crow et al., 1960; Cao and Rhinehart,
1995).

Although these methods may perform well on certain types
of signals, they are not sufficiently flexible to allow them to be
applied to various signals with different characteristics using
only one set of detection parameters (e.g., window size, thresh-
old). For example, all of these methods use a moving data win-
dow for detection. A long data window may delay the detection
of signals that have small noise amplitudes or a large changing
rate before the steady state, whereas a short windowmight result
in a high false alarm rate for a noisy signal or a signal with a
small changing rate. Therefore, it is highly desirable to develop
a more robust and flexible method that can handle various
situations.

Recently, Wu et al. (2015) developed a more robust steady-
state detection algorithm based on multiple change-point mod-
els and particle filtering techniques. Compared with the above-
mentioned methods, their method is more robust in terms of
detection bias and false alarm rate. However, their method has a
relatively high computational cost, which may limit its applica-
tions in many cases that need rapid detection. Decreasing the
number of particles or samples could decrease the computa-
tional load; however, it will also decrease the detection stabil-
ity and accuracy. Therefore, a fast and also accurate method is
highly desirable. In this article, we develop a new online steady-
state detection algorithm by using piecewise linear functions
and exact Bayesian inference. The piecewise linearmodel is used
to approximate the noisy signals and the exact online Bayesian
inference is used to calculate the sequential posterior distribu-
tions of the latest change-point andmodel parameters. The exact
Bayesian inference is implemented with a recursive message-
passing algorithm (Adams and MacKay, 2007; Fearnhead and
Liu, 2007) to calculate the posterior distribution of the latest
change-point. The steady-state can be detected when the proba-
bility of the slope amplitude of the latest linear segment is below
a certain threshold.

The rest of this article is organized as follows. Section 2 intro-
duces the modeling of multiple change-points in process sig-
nals and the advantages of the proposed detection method for
steady-state conditions. In Section 3, the online exact Bayesian
inference of the change-points and other model parameters are
introduced, a detection probability index is proposed, and var-
ious computational issues and approximations are addressed.
The approximated formula for the average run length of the pro-
posedmethod for a steady-state time series is also derived in this
section. A numerical illustration, comparisons, and applications
are shown in Section 4. Section 5 presents our conclusions and
discussions.

2. Piecewise linear model for the detection of
steady-state conditions

In the proposed method, the target signal is sequentially fitted
using a multiple change-point model, or specifically a piecewise
linearmodel. The rationale is that any signal can be closely fitted
or approximated by a piecewise linearmodelwith an appropriate
number of change-points at appropriate locations. In Fig. 1, we
illustrate how a piecewise linear model can be used to approxi-
mate nonlinear signals, such as exponential and oscillating sinu-
soidal signals. In the detection of a steady-state condition, we
seek to use only the observations in the latest line segment to
test whether the signal is steady. When the latest line segment
meets the steady-state criterion (see Section 3.3), we claim that
the signal is steady.

The proposed method has one key advantage over mov-
ing window–based methods. For the moving window–based
methods, the window may contain both transient state and
steady-state observations ormay contain oscillating signals with
unchangingmeans, whichmay influence the effectiveness of the
testing procedure. For example, for oscillating signals, the slope
detection method or t-test method may totally fail, due to the
linear regression slope or the mean of the signals in the mov-
ing window being temporarily zero. The proposedmethod finds
the location of the latest change-point and then uses the obser-
vations in the latest line segment to test the level of stability.
Therefore, it is expected to be more robust than the moving
window-based methods.

In this method, the main challenge is how to sequentially
and efficiently estimate the latest change-point and the parame-
ters for the latest line segment (e.g., slope, intercept, noise vari-
ance). We propose to use the Bayesian inference approach, as
illustrated in Fig. 2, where the posterior distributions of the Lat-
est Change-Point (LCP) andmodel parameters for the latest line
segment are sequentially updated; i.e., re-estimated when a new
data point is obtained. For example, at time t1, the posterior
of an LCP is concentrated around the starting time t = 1 and
conditioning on this LCP, the posterior distribution of the other
model parameters (e.g., slope, noise variance) is estimated using
all observations between the LCP and t1. At time t2, with the
emergence of the new linear segment starting at t1, the center
of the posterior of the LCP jumps to the location around t1 and
the posterior is almost zero at the locations far before t1. There-
fore, the observations between t1 and t2 are mainly used for the
estimation of other parameters of the model. In the following
sections, the online inference of the LCP and model parame-
ters and steady-state detection algorithm will be introduced in
detail.

3. Online Bayesian inference and detection of
steady-state conditions

3.1 Bayesian formulation of themultiple change-point
model

Since the detection of steady-state conditions is mainly based on
the observations in the latest line segment, it is critically impor-
tant to obtain the posterior distribution of the LCP. To facilitate
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IIE TRANSACTIONS 601

Figure . Illustration of approximating the nonlinear signals using the piecewise linearmodel: (a) an exponential signal in the transient state and (b) a sinusoidal oscillating
signal in the transient state.

online updating, we first formulate it into a multiple-change-
point model in the Bayesian framework. Suppose the given time
series with n observations is {yt , t = 1, 2, . . . , n}, with yt being
the observation at time step t. The corresponding line segment
parameter at time t is defined as ξt = (at , bt , σ 2

t ) where at is
the slope of the line segment, bt is the intercept, and σ 2

t is the
variance of the signal noise. The multiple-change-point model
can be expressed as

ξt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ1 if 1 ≤ t < C1
θ2 if C1 ≤ t < C2
...

...
θm if Cm−1 ≤ t < Cm
θm+1 if Cm ≤ t ≤ n

, (1)

where θi ∈ R2 × R+, m and {Ci, i = 1, 2, . . . ,m} are the num-
ber and locations of the change-points. The parameters are
assumed to be independent across different segments. The
observation yt is modeled as

yt = att + bt + εt , (2)

where εt is the independent and identically distributed (i.i.d.)
Gaussian noise and εt ∼ N(0, σ 2

t ).

In the Bayesian formulation, the priors for the change-points
(numberm and locations {Ci, i = 1, . . . ,m}) and line segments
(slope, intercept, noise variance) need to be specified. For

the change-points, it is natural to directly select a joint prior
distribution P(m,C1, . . . ,Cm).Alternatively, we could specify a
prior for the duration of the line segment, which is equivalent to
placing a certain joint prior on the number and locations of the
change-points (Fearnhead and Liu, 2007). The second approach
has an advantage in formulating the model into a Markov
transition process, which is commonly used to facilitate online
Bayesian inference of multiple-change-point models (Chopin,
2007; Fearnhead and Liu, 2007). Let τt denote the LCP at time
t. Suppose the prior probability mass function and cumulative
distribution function for the length of the line segments is g(·)
and G(·), respectively. Then the prior transition probability of
the change-point can be expressed as

P
(
τt = j|τt−1 = i

) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − G (t − i)
1 − G (t − i − 1)

if j = i

1 − 1 − G (t − i)
1 − G (t − i − 1)

if j = t

0 otherwise

, (3)

where i ≤ t − 1.
The most popular and simplest prior for the change-point

is a geometric prior applied on the segmental duration, which
corresponds to a Markov transition process with a constant
prior transition probability p.Other common priors include the
Poisson distribution, gamma distribution, etc., which are often

Figure . Illustration of the linear model and Bayesian inference at times t1, t2, and t3 ; top: the observations and fitted line; middle: the posterior distribution of the LCP;
bottom: the posterior distribution of the latest slope.
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602 J. WU ET AL.

used in studies on speech segmentation (Wang, 1997). For sim-
plicity, we select the geometric distribution for the segmental
duration; i.e., we assume P(τt = t|τt−1 = i) ≡ p, i ≤ t − 1 in
this article. For the model parameter ξ, a conjugate prior is
used, which makes the posterior of both the LCP τ and model
parameter ξ analytically tractable, as shown in the following
subsection.

3.2 Exact calculation of the posterior distribution of the
LCP

Let ys:t = (ys, ys+1, . . . , yt )T . For j = 1, 2, . . . , t + 1, the pos-
terior for the LCP at time step t + 1 can be calculated recursively
as

P
(
τt+1 = j|y1:t+1

) ∝ P
(
τt+1 = j, yt+1|y1:t

)
= P

(
yt+1|τt+1 = j, y j:t

)
P
(
τt+1 = j|y1:t

)
, (4)

P
(
τt+1 = j|y1:t

) =
min( j,t)∑

i=1
P
(
τt+1 = j|τt = i

)
×P(τt = i|y1:t ), (5)

P
(
yt+1|τt+1 = j, y j:t

) =

⎧⎪⎨⎪⎩
P
(
y j:t+1|τt+1 = j

)
P
(
y j:t |τt+1 = j

) if j ≤ t

P
(
yt+1

)
if j = t + 1

. (6)

Note that the equality in Equation (4) is due to the
fact that for j ≤ t,(yt+1|τt+1 = j) is independent of y1: j−1
and so the distribution of (yt+1|τt+1 = j, y1:t ) is identical
to the distribution of (yt+1|τt+1 = j, y j:t ). Define P(s, t ) =
P(ys:t |ys:t is in the same linear segment) and substitute Equa-
tions (5) and (6) into Equation (4), then we obtain

P
(
τt+1 = j|y1:t+1

)
∝

⎧⎪⎪⎨⎪⎪⎩
P
(
j, t + 1

)
P
(
j, t

) P
(
τt+1 = j|τt = j

)
P(τt = j|y1:t ) if j ≤ t

P (t + 1, t + 1)
t∑

i=1
P
(
τt+1 = j|τt = i

)
P(τt = i|y1:t ) if j = t + 1

.

(7)

From Equation (7) we can see that the distribution of the
LCP at time t + 1 can be recursively calculated based on
the previously calculated distribution at time t. The terms
P( j, t + 1)/P( j, t ) and P(t + 1, t + 1) are the only terms that
incorporate information on the newest observation yt+1 into the
updating of the posterior distribution of the LCP. Therefore, they
play a decisive role in the detection of the change-point. For
example, if the latest true change-point is at time step t + 1 with
yt+1 significantly different from y1:t , then P( j, t + 1)/P( j, t )
is expected to be much smaller than P(t + 1, t + 1) and thus
more weight is put on time step t + 1 as the LCP. The calcula-
tion of P(s, t ) is the key part in the above recursion equation. By
using conjugate priors formodel parameters, it can be calculated
analytically and involves no complex numerical integrations. Let
β be the parameter of the linear segment thus, β = (a, b)T .
The joint prior distribution for β and noise variance σ 2 can be
assigned using Gaussian and inverse gamma distribution as

σ 2 ∼ IG
(v

2
,
γ

2

)
, β|σ 2 ∼ N

(
β0, σ

2�
)
, (8)

where γ ,β0, and � are known parameters. Define

X st =

⎡⎢⎢⎢⎣
s 1

s + 1 1
...

...
t 1

⎤⎥⎥⎥⎦ .
The term P(s, t ) in Equation (7) can then be calculated by

integrating out β and σ 2:

P (s, t ) = π−(t−s+1)/2
( |Mst |

|�|
) 1

2

× γ v/2

(Hst )
(t−s+1+v )/2

� ((t − s + 1 + v ) /2)
� (v/2)

, (9)

where

Mst = (
XT

stX st + �−1)−1
,Nst = (

�−1β0 + XT
st ys:t

)
,

Hst = yTs:t ys:t + γ + βT
0 �−1β0 − NT

stMstNst . (10)

The derivation of Equation (9) is shown in Appendix A.

3.3 Detection of steady-state conditions

In this article, the term “steady state” refers to the condition
where the true signal value and noise variance stay unchanged.
Let μ(t ) and σ 2(t ) denote the true signal value and noise vari-
ance, respectively.Mathematically, the signal y(t ) is steady in the
time period [t1, t2] if μ(t ) ≡ c1 and σ 2(t ) ≡ c2 for t ∈ [t1, t2],
where c1 and c2 are constants, and t1 < t2. It is natural to use
the “flatness” of the current line segment to decide whether the
signal is steady. Specifically, when the amplitude of the slope
|at | is sufficiently small, the signal can be claimed to be steady.
Note that here we do not need to consider the noise variance
in the evaluation of extent of stability, as the noise of the current
line segment is statistically steady (based on the definition of the
multiple-change-point model, the model parameters are steady
between two adjacent change-points).

Naturally, we can use the estimated slope amplitude of the
latest linear segment |ât | as the detection index. In this article,
we use a more flexible and stable detection index Pt , which is
defined as the probability of |at | being less than a slope threshold
s0 given observations y1:t :

Pt = Pr ( |at | < s0|y1:t ) =
t∑

i=1
P
(|at | < s0|τt = i, yi:t

)
× P

(
τt = i|y1:t

)
. (11)

Once Pt is greater than or equal to a probability index thresh-
old α, the signal is claimed to be steady. In the above equation,
the probability of the LCP P(τt = i|y1:t ) can be calculated using
Equation (7) and P(|at | < s0|τt = i, yi:t ) can be calculated based
on Lemma 1 as follows (see Appendix B for proof).
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Lemma 1. Suppose σ 2 ∼ IG(v/2, γ /2) and β|σ 2 ∼ N(β0,

σ 2�). Define:

X st =

⎡⎢⎢⎢⎣
s 1

s + 1 1
...

...
t 1

⎤⎥⎥⎥⎦ ,
then
1. (βt |τt = s, ys:t ) follows a bivariate t distribution with deg-

rees of freedom dst = t − s + v + 1, mean μst = MstNst
and covariance matrix (dst/(dst − 2)) �st (dst > 2)
where �st = HstMst/dst Mst , Nst and Hst are defined
in Equation (10). Denote it as (βt |τt = s, ys:t ) ∼
t2(dst , μst , �st ).

2. Suppose �st = K stRstKT
st where Rst is the correlation

matrix andK st is a diagonal matrix with positive diagonal
entries k(i,i)st , then(

K−1
st βt |τt = s, ys:t

) ∼ t2
(
dst , K−1

st μst , Rst
)
,

and(
at

k(1,1)st
|τt = s, ys:t

)
∼ t1

(
dst ,

(
K−1

st μst
)(1)
, 1

)
,

or ((at − μ
(1)
st )/k

(1,1)
st |τt = s, ys:t ) follows the standard t distribu-

tion with degrees of freedom dst .Here (K−1
st μst )

(i) andμ
(i)
st denote

the ith element of the vector K−1
st μst and μst , respectively.

Based on Lemma 1, the detection index Pt can be calculated
as

Pt =
t∑

i=1

[

dit

(
s0 − μ

(1)
it

k(1,1)it

)
−
dit

(
−s0 − μ

(1)
it

k(1,1)it

)]
×P

(
τt = i|y1:t

)
, (12)

where
dit (·) is the cumulative distribution function (CDF) of a
standard t distribution with degrees of freedom dit . The filtered
observation ŷt (used in Section 4 for the purpose of illustration)
at time t can be calculated as

ŷ =
t∑

i=1

(
μ
(1)
it t + μ

(2)
it

)
P
(
τt = i|y1:t

)
. (13)

In the development of a decision rule, we need to specify or
tune the thresholds for both the slope amplitude and the prob-
ability detection index. However, in the application, the prob-
ability index often increases rapidly at a certain time after the
signals enter into a steady-state condition (see Section 3.5 for
a detailed analytical explanation). In addition, the numerical
results in Section 4.2 show that although the average run length
of a steady-state time series is sensitive to the slope threshold s0,
it is not sensitive to the probability index thresholdα.Therefore,
to simplify the algorithm, we set α to be 0.9 and only tune the
slope threshold in application.

In Bayesian inference, informative priors are often prefer-
able if prior knowledge or historical data are available. How-
ever, when we know very little about the data and we just
want the data to “speak” for themselves, the non-informative
priors would then be a better choice. In the detection of

steady-state conditions, we often face nonlinear signals thatmay
needmultiple linear segments with both increasing and decreas-
ing trends for their approximation. Also, the amplitude of the
slopes and line durations may significantly vary between differ-
ent segments. In such cases a non-informative prior for β is
recommended. We can assign flat priors for β with zero mean
(β0 = 0) and large variance; i.e., large value for the diagonal
entries of � and to describe the uncertainty of the slope and
intercept. For the signal noise, typically we can select an infor-
mative prior. The noise amplitude for each signal in most cases
is fixed and we can roughly estimate it based on the historical
data or prior knowledge. For the prior transition probability p,
we found that it has very little influence on the detection results
in the range [0.05, 0.5], which will be shown in Section 4.2.
Therefore, we can arbitrarily select a value from [0.05, 0.5] in
application. The steady-state detection process is summarized in
Algorithm 1.

Algorithm 1. Steady-state detection algorithm using exact
calculation

1. Specify v, γ , β0, �, p, and s0.
2. Set P1 = 0 and P(τ1 = 1|y1) = 1.
3. For t = 2, 3, . . . , n.
• For i = 1, 2, . . . , t

Calculate the un-normalized P(τt = i|y1:t ) based
on Equation (7).

End
• Calculate the normalized P(τt |y1:t ):

P
(
τt = i|y1:t

) = P
(
τt = i|y1:t

)∑t
j=1 P

(
τt = j|y1:t

) .
• Calculate the probability index Pt based on

Equation (12).
• If Pt > 0.9, the signal is steady and stop.
End

After the posterior of the LCPs P(τt |y1:t ) is calculated for all
time steps t = 1, 2, . . . , n,we can easily backwards reconstruct
the trajectories of all change-points for the purpose of illustra-
tion using Algorithm 2.

Algorithm 2 Simulation of change-point trajectories in N
realizations

1. Count[i] = 0 for i = 1, 2, . . . , n.
2. For rep = 1 : N
• Simulate t1 from P(τn|y1:n). Set Count[t1] = Count

[t1]+1 and k = 1.
• While tk > 1

Simulate tk+1 from the support {1, 2, . . . , tk − 1}
with the discrete probability proportional to
P(τtk−1|y1:tk−1)p(τtk = tk|τtk−1). Set k = k + 1
and Count[tk] = Count[tk]+1.

End
End

3. Calculate the frequency fi = Count[i]/N for i =
1, 2, . . . , n.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
T

ex
as

 a
t E

l P
as

o]
 a

t 1
1:

00
 1

2 
M

ay
 2

01
6 



604 J. WU ET AL.

3.4 Computational issues and approximations

Algorithm 1 uses the exact calculation for the posterior distribu-
tion and is expected to be very accurate. However, there may be
various computational issues that may limit its applications. The
most important issue is that the computational cost and mem-
ory cost in the recursive calculation of P(τt |y1:t ) significantly
increase with time t. For example, at time t, we have to cal-
culate t discrete probabilities. The calculation of each probabil-
ity P(τt = t|y1:t ) also rapidly increases with j in the recursion.
A natural way to reduce the computational cost is to approx-
imate the calculated P(τt |y1:t ) using another probability mass
function with fixed size of support m < t. In practice when t is
large, P(τt |y1:t ) is almost equal to zero inmany locations. Setting
P(τt |y1:t ) to be zero at these locations can reduce the computa-
tional cost in the calculation of P(τt+1|y1:t+1) and Pt .

In this article, we use the following strategy: at each time step
t (t > m), we only calculate the probability P(τt |y1:t ) at m cer-
tain locations that are very likely to be the LCP. The specific steps
are as follows.

1. Select m − 1 locations from {1, 2, . . . , t − 1} using
weighted sampling without replacement (Wong and Eas-
ton, 1980). The weight for location i is P(τt−1 = i|y1:t−1).

2. Normalize the weights of the selected locations.
3. Calculate P(τt |y1:t ) at t and these m − 1 selected

locations.
4. Set P(τt |y1:t ) = 0 at other locations.
In other words, this method is to select location τt = t and

otherm − 1 locations from the support of P(τt−1|y1:t−1) of size
m to be the support for P(τt |y1:t ). In this strategy, the computa-
tion is almost balanced at large time step t.

Another computational issue is the calculation of
P( j, t + 1)/P( j, t ), which can be expressed as

P
(
j, t + 1

)
P
(
j, t

) = 1√
π

(∣∣Mj,t+1
∣∣∣∣Mj,t

∣∣
) 1

2 ( Hjt

Hj,t+1

) t− j+v−1
2

× 1√
Hj,t+1

�
((
t − j + v + 2

)
/2

)
�

(
(t − j + v + 1)/2

) . (14)

In the above equation, the calculation of
�((t − j + v + 1)/2) may be a problem as t − j increases to
a very large value. For example, in MATLAB, �(172) becomes
infinite due to the precision issue. One way to solve this issue is
to compute the difference of the natural logarithm of the gamma
function �((t − j + v + 2)/2) and �((t − j + v + 1)/2) and
then calculate the exponential function of this difference.
Another method that is more preferable in terms of the compu-
tational cost is to use Stirling’s series to approximate the ratio of
the gamma function (Tricomi and Erdélyi, 1951):

� (z + z1)
� (z + z2)

= zz1−z2
[
1 + (z1 − z2) (z1 + z2 − 1)

2z
+ O

(|z|−2)] .
The gamma ratio in Equation (14) can thus be approximated

as

�
(
(t − j + v + 2)/2

)
�

(
(t − j + v + 1)/2

) ≈
√
t − j + v + 1

2

×
[
1 − 1

4
(
t − j + v + 1

)] . (15)

This approximation has high accuracy and can be quickly
calculated.

The calculation of Pt in Equation (12) involves many CDFs

d(·) of the t distribution, which can also be approximated to
reduce the computational cost. The first method is to use a nor-
mal approximation. It is well known that the Student’s t distribu-
tion can be closely approximated by a normal distribution with
the same mean and variance when d ≥ 30 (Li and Moor, 1998).
Therefore, for d ≥ 30, 
d(x) ≈ �(x/

√
d/(d − 2)) where�(·)

is the CDF of the standard normal distribution.

3.5 Approximation of the average run length for a
steady-state time series

The Average Run Length (ARL) is an important performance
criterion used to evaluate a detection scheme, and it is com-
monly used in statistical process control charts. Here ARL is
defined as the average number of observations required for the
algorithm to claim a steady-state on multiple steady-state time
series (no initial transient state) with the same mean and noise
variance. It can also provide insight and guidance on under-
standing and tuning the algorithm in applications. In this sub-
section, we develop an approximation of the ARL for a steady-
state time series as follows. Suppose the detection probability
index is approximated using the normal CDF as

Pt ≈
t∑

i=1

[
�

(
s0 − μ

(1)
it

k(1,1)it

√
dit/ (dit − 2)

)

−�
(

−s0 − μ
(1)
it

k(1,1)it

√
dit/ (dit − 2)

)]
P
(
τt = i|y1:t

)
.

Assume y1, y2, . . . , yn is a steady-state time series and
yi ∼ i.i.d. N(0, σ 2). In the detection process, it is observed
that the posterior P(τt |y1:t ) is almost focused on t = 1 or
P(τt = 1|y1:t ) ≈ 1 for linear signals (see Section 4.1 for details).
Therefore,

Pt ≈
[
�

(
s0 − μ

(1)
1t

k(1,1)1t
√
d1t/ (d1t − 2)

)

−�
(

−s0 − μ
(1)
1t

k(1,1)1t
√
d1t/ (d1t − 2)

)]
.

When �(i,i) → ∞ and β0 = 0 (flat prior for β), μ1t ≈
(XT

1tX1t )
−1X1t y1:t , which is the ordinary least square estimator

for βt and therefore μ1t ≈ 0. Also, �1t ≈ [yT1:t (I − P)y1:t +
γ ](XT

1tX1t )
−1/d1t where P is the projection matrix P =

X1t (XT
1tX1t )

−1XT
1t . Therefore,

k(1,1)1t ≈
√[

yT1:t (I − P) y1:t + γ
] 12
t (t2 − 1) d1t

,

and

Pt ≈ 2�

(
s0

√
t (t2 − 1) (t − 2 + v )

12
[
yT1:t (I − P) y1:t + γ

]) − 1.
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IIE TRANSACTIONS 605

Figure . Illustration of the change of h(t ), χ2
t−2,0.99, χ

2
t−2,0.01, and E(χ

2
t−2)with

t ; the parameterswere set to s0 = 0.003, σ = 0.1, v = 20, γ = 0.2, andα = 0.9.

Suppose the detection is stopped when Pt ≥ α; that is,
yT1:t (I − P) y1:t

σ 2 ≤ s20t (t − 2 + v )
(
t2 − 1

)
12z2

(1+α)/2σ 2 − γ

σ 2 , (16)

where z(1+α)/2 is the quantile for a standard normal distribution
with�(z(1+α)/2) = (1 + α)/2. Denote:

Yt = yT1:t (I − P)y1:t
σ 2 and h(t ) = s20t(t − 2 + v )(t2 − 1)

12z2
(1+α)/2σ 2 − γ

σ 2 .

It is well known that Yt ∼ χ2
t−2. Based on Equation (16), it

is almost impossible to obtain the exact analytical form for the
ARL since it involves multiple integrals and conditional distri-
butions. For example, the ARL can be expressed as

ARL =
∞∑
t=1

t Pr(Yt ≤ h (t ) |Yi〉 h (i) for i < t ) ,

where the analytical form of the conditional probability Pr(Yt ≤
h(t )|Yi〉h(i)for i < t ) is hard to derive. Here we use an approx-
imation method as follows.

Suppose we select s0 = 0.003, σ = 0.1, v = 20, γ = 0.2,
and α = 0.9. Figure 3 shows the function h(t), the 0.99 and
0.01 quantiles of the χ2

t−2 distribution, and the mean of χ2
t−2.

From it we can see that h(t ) ≤ 0 for t ≤ t1 and then it increases
much more rapidly (polynomial of fourth order) than other
three curves. For t ≤ t1, Yt is always larger than h(t ) and a
steady-state will not be claimed. At t = t2, P(Yt ≤ h(t )) = 0.01
and in the interval [t1, t2), P(Yt ≤ h(t ))  0.01, due to a rapid
decrease in the probability density function of the χ2

t−2. Simi-
larly, at t = t4, P(Yt ≤ h(t )) = 0.99 and in the interval (t4, ∞),

P(Yt ≤ h(t )) � 0.99. Therefore, it is highly probable that the
stopping time will be in the time interval [t2, t4]. Since the width
of the interval is small, we use t4 as the ARL:

ARL ≈ argmin
t

{t|χ2
t−2,0.99 ≤ h (t )}. (17)

We found that this approximation is very close to the simu-
lated ARL under different values of s0, σ, v, γ , and α, which
will be shown in Section 4.2.

Let the Run Length (RL) denote the number of observations
required to claim a steady-state for a single run. From the above
analysis we see that t1 + 1 is approximately the lower bound
of the distribution for RL. Also, t1 only depends on the algo-
rithm parameters; i.e., hyper-parameters of the prior distribu-
tions and detection thresholds. It is independent of signal noise.
However, the distribution of RL is highly dependent on both the
signal noise and all other algorithm-related parameters, as seen
fromEquation (16). For example, the higher the signal noise, the
lower the rate of increase of h(t ) and thus the less probable it is
that Y (t ) ≤ h(t ) for a certain t > t1. In other words, we need
more steady-state observations to claim a steady-state when the
signal is noisier. On the other hand, the higher the slope thresh-
old, the larger the rate of increase of h(t ) and thus fewer obser-
vations are needed to claim a steady state.

4. Case studies for illustration, comparison,
and application

4.1 Illustration

Simulated signals are used to illustrate the detection process of
the steady-state algorithm and compare it with other existing
algorithms. They were generated using bias functions and noise,
where the bias functions consisted of an initial transient state
and a steady-state. A total of five bias functions are used in this
article: step function, linear function, quadratic function, expo-
nential function, and oscillating function, as shown in Table 1.
Note that the step function is not strictly a bias function, as
it contains a piecewise steady-state period. The final four bias
functions are often used to test the offline heuristic truncation
algorithms used in discrete-event simulations (Cash et al., 1992;
Spratt, 1998;White et al., 2000; Hoad et al., 2009). For simplicity,
only the negative bias scenarios (i.e., increasing before steady-
state) are considered for the linear, quadratic, and exponential
functions.

The step function and oscillating functions are used to illus-
trate the detection process for signals with fixed noise ampli-
tudes. For the step function, h1 = 0, h2 = 0.5, h3 = 1, T1 =
200, and T2 = 400. For the oscillating function, h = 1, T0 =
400, and f = 30 (a total of 10 peaks and troughs). For both sig-
nals, the number of observations n = 600 and noise σy = 0.14.
The priors for the steady-state detection algorithmwere set to be
β0 = 0, � = 1 × 104I, v = 20, γ = 0.2, and p = 0.2, where I
is the 2 × 2 identity matrix. The size of the support m for the
posterior P(τt |y1:t ) was set to 50 and the slope threshold s0 was
set to 0.003.

Figure 4 shows the steady-state detection process for the step
signal and oscillating signal. Figures 4(a) and 4(e) show the
observations and estimated signals, where the estimated val-
ues are very close to the true values. In addition, the estima-
tions become increasingly smooth as the length of the linear seg-
ments grows. Figures 4(b) and 4(f) show the sequentially esti-
mated durations of the latest linear segments, and Figs. 4(c) and
4(g) show the simulated frequencies of all change-points using
Algorithm 2. They are used to capture the jump of the center of

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
T

ex
as

 a
t E

l P
as

o]
 a

t 1
1:

00
 1

2 
M

ay
 2

01
6 



606 J. WU ET AL.

Table . Five bias functions and their shapes

Signal Function Shape

Step y(t ) =
⎧⎨⎩
h1, t = 1, . . . , T1
h2, t = T1 + 1, . . . , T2
h3, t = T2, . . . , n

Linear y(t ) =
{ t

T0
h, t = 1, . . . , T0

h, t = T0 + 1, . . . , n

Quadratic y(t ) =
⎧⎨⎩ h

[
1 − (t−T0 )

2

(T0−1)2

]
, t = 1, . . . , T0

h, t = T0 + 1, . . . , n

Exponential y(t ) =
⎧⎨⎩ h

[
1 − 10

1−t
T0−1

]
, t = 1, . . . , T0

y(T0), t = T0 + 1, . . . , n

Oscillating y(t ) =
⎧⎨⎩ h

T0−t
T0−1 sin

(
πt
f

)
, t = 1, . . . , T0

0, t = T0 + 1, . . . , n

Figure . Illustration of the steady-state detection using step function (a-d) and oscillating function (e-f ): (a) and (e): simulated y and estimated values ŷ using Equation ().
The dotted vertical lines indicate the starting point of the steady-state; (b) and (f ): the estimated duration of the latest linear segment; (c) and (g): simulated posterior
(frequencies) of change-points using Algorithm ; (d) and (h): the probability index Pt .
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IIE TRANSACTIONS 607

the posterior P(τt |y1:t ). For the step signal, there are immediate
jumps at the mean shift locations. The reason for this behav-
ior is that P(t, t ) in Equation (7) is significantly larger than
P( j, t )/P( j, t − 1) for a mean shift or jump change at time t,
and thus the change can be immediately detected. Also, the pos-
terior of the LCP is focused almost at the starting time of the
linear segment, which is the assumption in the approximation of
the ARL, and therefore the estimated duration of the latest linear
segment is almost equal to the true value. For the oscillating sig-
nal, there are nine jumps, which correspond to themovement of
the posterior at nine of the peaks and troughs of the oscillating
signal. The last trough has disappeared into the signal noise and
is difficult to detect. The probability detection indexes are shown
in Figs. 4(d) and 4(h), from which we can see that the detection
index rises sharply around the starting point of the steady-state
operation. This can be explained using Equation (16), with h(t )
being a fourth-order polynomial in t that rapidly increases with
t shortly after the transition to the steady-state condition.

In many applications, the signals have a decaying variance
while the mean remains unchanged. In such cases, the slope
detection method and t-test on the mean of two adjacent mov-
ing windowsmay totally fail. To see the effectiveness of our algo-
rithm, we use a signal with a zeromean and noise amplitude of

σ (t ) =
{
30(T0−t )/(T0−1)σ0 if t ≤ T0

σ0 if t > T0
,

where T0 = 300 and σ0 = 0.1. The detection results shown in
Fig. 5 illustrate that the steady-state can be effectively detected
with a small detection delay.

Figure 6 shows the computational cost of each time step using
three different values of the support: m = 50, 100, and 150. As
we can see, the computational cost per step linearly increases
with t when t < m. When t ≥ m, the computational cost per
step is fully controlled. Without setting a fixed value of m, the
total computational cost would increase in a quadratic manner.

Figure . The detection of the steady-state for a signal with a zero mean and an
exponentially decreasing variance.

In application, m may be set as low as 10 to further reduce the
execution time.

4.2 ARL

To see how accurate the ARL approximation is and how ARL
is influenced by the algorithm and the signal parameters, we
calculated the ARL using both Monte Carlo simulation and
approximation method. In the simulation, � = 1 × 104I, β0 =
0, where I is the identity matrix. The signals were generated
using a zero mean and Gaussian noise. The other signal param-
eters and detection parameters are were set to α = 0.9, s0 =
0.003, σ = 0.1, p = 0.2, v = 20, and γ = 0.2 for both simu-
lation and approximation except for the changing parameters.
The simulation was repeated 500 times for each parameter set-
ting.

Figure 7 shows the ARL as a function of different param-
eters calculated using both the simulation and approximation
methods. As we can see, the approximated ARL is almost iden-
tical to the simulated one in all cases. Themaximumapproxima-
tion errors for Figs. 7(a) to 7(f) are 6.48, 5.3, 5.0, 1.88, 3.57, and
3.85%, respectively. We also observe that the simulated ARL is
slightly higher than the calculated one inmost cases. The reason
for this behavior is that the posterior of the LCP is not completely
focused on t = 1—i.e., there is more than one support however,
in the approximation we assume that t = 1 is the only support.

The ARL is not very sensitive to α, as shown in Fig. 7(a);
therefore, α is not treated as a tuning parameter and we suggest
using α = 0.9 in actual applications. The transition prior prob-
ability p has almost no influence on the ARL in the range [0.05,
0.5], as shown in Fig. 7(d). Therefore, in practice, we could arbi-
trarily select a value within that range. The ARL is also insensi-
tive to the hyper-parameters v and γ of the noise prior. In the
application we can roughly predict the noise amplitude and then
select v and γ based on that value. The sole tuning parameter is
the slope threshold s0, which significantly influences the ARL.

Figure . Computational cost for each time step for support sizes
m = 50, 100, and 150.
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608 J. WU ET AL.

Figure . ARL calculated using Monte Carlo simulation and approximation Equation (). The parameters were set as α = 0.9, s0 = 0.003, σ = 0.1, p = 0.2, v = 20,
and γ = 0.2 for all calculations except the changing parameter.

Figure 7(c) shows that theARL increases almost linearlywith the
amplitude of the signal noise. This is an advantage of this algo-
rithm, as it can automatically adjust the ARL to reduce the false
alarm rate when the signal noise is large or reduce the detection
delay when the noise is small.

4.3 Evaluation and comparisonwith othermethods

For statistical monitoring schemes, the performance is typically
evaluated in terms of one of two criteria, the False Alarm Rate
(FAR) and the detection delay. Usually a required FAR (or detec-
tion delay) is specified and the corresponding detection delay (or
FAR) is used to evaluate or compare different detection schemes.
However, in the detection of a steady-state condition, the FAR
does not capture the closeness of the detected time to the true
value. In practice, the closeness in the false alarm is also impor-
tant since it determines the amount of initial bias. Therefore,
we develop another evaluationmetric, called theWeighted Stan-
dard Detection Error (WSDE), which is defined as

WSDE =
√√√√ 1

N

N∑
i=1

w
(
T̂i
) (

T̂i − T0
)2
, (18)

where T̂i is the detected time for the steady-state, N is the num-
ber of replications, and w(T̂i) is the penalty weight. The cost of
a false detection is often higher than that for the detection delay
and therefore the weight is selected as

w
(
T̂i
)

=
{

w ∈ (0, 1] if T̂i ≥ T0
1 if T̂i < T0

and w can be treated as the penalty ratio of the detection delay
over the FAR. If w = 1 for both FAR and detection delay, then
only the detection deviation is considered. A lower w denotes a
higher relative penalty for a false detection.

The proposedmethod (EB: Exact Bayesian inference) is com-
paredwith four other onlinemethods (see the Introduction): the
Particle Filter-based method (PF; Wu (2015)), the Slope Detec-
tion Method (SDM; Holly et al. (1989); Bethea and Rhinehart
(1991);Wu et al. (2013)), the Variance Ratio Test (VRT)method
(Crow et al., 1960; Cao and Rhinehart 1995), and the t-test
method (Narasimhan et al., 1987). Linear, quadratic, exponen-
tial, and oscillating signals were used to create opportunities for
comparisons. For each type of signal, two sets of signal param-
eters were used: either h = 1, T0 = 200, or h = 1, T0 = 300
to simulate different levels of severity in the initial bias. To test
the algorithm for both Gaussian/non-Gaussian noise, we used
three kinds of autoregressive noise: no auto-correlation (AR(0)),
first-order autoregressive correlation (AR(1)), and second-order
autoregressive correlation (AR(2)), as shown in Table 2. Three
noise amplitudes σt = 0.06, 0.1, 0.14 were used for AR(0) and
σt = 0.06 and 0.1 were used for AR(1) and AR(2) correlations.
In the simulation,N = 500 signals (replications) were generated
for each set of signal parameters. For each set of penalty weight
w and noise type, the detection parameters (window size and
threshold for SDM, VRT, and t-test, slope threshold s0 for PF
and EB) that minimized the overall WSDE of all generated sig-
nals were selected (e.g., 4 × 2 × 3 × 500 for AR(0)). The sup-
port size m = 10 for EB and the other algorithm parameters
were the same as in Section 4.1.

Figure 8 shows the WSDE and FAR as functions of w for
each noise autoregressive type. Here FAR is only used to pro-
vide extra detection information. Note that the WSDE and FAR

Table . Noise types and their parameters

Auto-correlation
type Equation Parameter

AR() ψ
(0)
t = εt εt ∼ N(0, σ 2

t )

AR() ψ
(1)
t = φ1ψ

(1)
t−1 + εt φ1 = 0.4

AR() ψ
(2)
t = φ2ψ

(2)
t−1 + φ3ψ

(2)
t−2 + εt φ2 = −0.25, φ3 = 0.5
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IIE TRANSACTIONS 609

Figure . The WSDE and FAR of the proposed method (EB), PF, SDM, VRT, and t-test as a function of penalty weightw for (a)-(b): AR(); (c)-(d): AR(); and (e)-(f ): AR().

are calculated over all signals for each penalty weight w. As
we can see, the proposed method EB and PF are more accu-
rate than SDM, VRT, and t-test in terms of the overall WSDE
at all penalty weights. EB is slightly better than the PF method
in terms of WSDE. The main advantage of EB compared with
the PF method is its computational cost. The computation time
(m = 10) for 500 observations is about 1.5 seconds usingMAT-
LAB running on a Q9550 2.83 GHz Intel processor, which is
much lower than the PF method (12 seconds for 500 observa-
tions with 1000 particles). The value of the FAR of the proposed
method is also lower than other methods in most cases.

Table 3 shows the detailed detection results for various bias
signals and noise amplitudes in the case of w = 1 and Gaussian
noise. The proposed method is much more robust than other
methods in terms of the overallWSDE in handling different bias
signals using only one set of detection parameters. The maxi-
mum WSDE among the different types of signal is also lower
than other methods. Note that in order to minimize the over-
all WSDE, the optimal slope threshold may not guarantee that
the proposed method outperforms other methods in all signals.
From the table we can also see that decreasing the rate of change
in the signal (e.g., changingT0 from 200 to 300 for linear signals)
or increasing the signal noise would result in a higher FAR. This
is intuitive, as the initial bias (deviation from steady state) will
be more easily drowned out by the noise and thus more difficult
to detect. That is, the main contributions to the FAR are made
by the quadratic and exponential signals.

4.4 Application in themicro/nanoparticle dispersion
process

In this section, we use Cavitation Noise Power (CNP) signals
obtained from a micro/nanoparticle dispersion process (Wu

et al., 2013) to illustrate a real application of the proposed
steady-state detection procedure. Micro/nanoparticles research
is currently an area of intense scientific interest, due to a wide
variety of potential applications in the biomedical, optical, and
electronics fields. In actual application, micro/nanoparticles
often cluster together due to a high surface energy and a large
surface-to-volume ratio, which may result in the loss of their
size-dependent properties. Therefore, they have to be dispersed
before use. Ultrasonic cavitation is an effective method to dis-
persemicro/nanoparticles. In the dispersion process, it has been
reported that the steady state of CNP signals corresponds to the
maximum extent of dispersion at that ultrasonic power level.
Therefore, the dispersion process can be monitored by detect-
ing the steady state of the CNP signals.

Figure 9 shows the detection of CNP signals in the dispersion
of 30 gAl2O3 particles under values of the ultrasonic power of 30
W (Fig. 9(a)) and 40 W (Fig. 9(b)). We used the same detection
parameters as used in the simulation except for the slope thresh-
old, which was set to 0.001. The offline method EWMA-MSER
(Wu et al., 2013) was used as a benchmark to evaluate the pro-
posed method. The offline method detected steady-state times
of 418 and 293 seconds for 30 and 40 W CNP signals, respec-
tively. In contrast, the detection results for the proposedmethod
are 434 and 329 seconds, or the detection delays are 16 and 35
seconds, respectively, both of which are satisfactory compared
with the typical results on WSDE values listed in Table 3.

5 Discussion and conclusion

In this article, we have developed a new online steady-state
detection method using the multiple-change-point model and
EB inference method. Signals were formulated as piecewise
linear models and the posterior of the LCP was recursively
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Table . Comparison of EB, PF, SDM, VRT, and t-test forw = 1 and noise type AR(). The detection parameters are (i) EB, s0 = 0.0020; (ii) PF, s0 = 0.0022; (ii) SDM, window
size L = 50, threshold=8 × 10−5 ; (iii) VRT, L = 98, threshold= .; () t-test, L = 28, threshold= .

WSDE FAR

Signal σy EB PF SDM VRT t-test EB PF SDM VRT t-test

Linear T =  . . . . . .     
. . . . . .     
. . . . . .     .

T =  . . . . . .     
. . . . . .    . .
. . . . . . . . . . .

Quad. T =  . . . . . .  .   .
. . . . . . . . . . .
. . . . . .  . . . .

T =  . . . . . .   . . .
. . . . . . . . . . .
. . . . . . . . . . .

Exp. T =  . . . . . . . .   .
. . . . . . . . . . .
. . . . . . . . . . .

T =  . . . . . .   . . .
. . . . . . . . . . .
. . . . . . . . . . .

Osc. T =  . . . . . .  .   
. . . . . .  . .  .
. . . . . .  .   .

T =  . . .  . .  .   
. . .  . .  . .  .
. . .  . . . .   .

Overall . . . . . . . . . .

calculated using a recursive message-passing algorithm. The
slope and intercept of the current linear segment conditioning
on the LCP and observations were proved to follow nonstandard
bivariate Student t distribution. Based on this finding, a proba-
bility index was developed to detect the steady state.

A fixed support size strategy for the posterior of the LCP was
proposed using weighted sampling without replacement to con-
trol and balance the computational cost of each time step. Other
approximation strategies for the gamma ratio and probability
index were also proposed for further reduction of the compu-
tational cost. The computational cost of the proposed method is
significantly lower than the PFmethod. An accurate approxima-
tion formula for the ARL on the steady-state observations was
derived to provide insight and guidance on understanding and
tuning the proposed method.

The performance of the proposed method was evaluated
based on the WSDE. The simulation results demonstrated that
the proposedmethod is muchmore robust in detecting bias sig-
nals under various noise levels/types and bias severity. It func-
tions like an adaptive SDM, using adaptive window sizes based
on the bias shape and noise amplitude and mainly using the
observations, as the LCP for steady-state testing. In this article,
only the non-informative priors are used for the parameters of
the change-pointmodel. In practice, however, wemay have prior
knowledge about the signals (e.g., bias shapes, steady-state tran-
sition point interval, etc.), and thus informative priors could be
applied for further improve the detection accuracy. Note that for
the purpose of exact calculation, hierarchal prior specifications
are not implemented in the current algorithm, which may be
one disadvantage of the proposed method. We will leave this to
future work to improve its robustness.

Figure . Steady-state detection of CNP signals in the dispersion of  g AlO for (a) ultrasonic power  W and (b) ultrasonic power  W. The dash-dotted line denotes
the detected time using the proposed method and the dashed line denotes the EWMA-MSER (off-line) (Wu et al., ) detected time.
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Appendices

Appendix A: Calculation of P(s, t)

P(s, t ) =
∫

P
(
ys:t |σ 2,β

)
p
(
σ 2) p (

β|σ 2) dσ 2dβ

=
∫ [ (

γ

2
) v

2

�
(

v
2
) (σ 2)

− v
2 −1e−

γ

2σ2

][
(2π)−1∣∣σ 2�

∣∣− 1
2 e−

(β−β0 ) T�−1(β−β0)
2σ2

] [
(2π)−

t−s+1
2

(
σ 2)− t−s+1

2 e−
ys:t−Xst β2

2σ2

]
dσ 2dβ

=
∫
(γ /2)

v
2

� (v/2)
(2π)−

t−s+3
2

(
σ 2)− t−s+v+5

2 |�|− 1
2 exp

[
− Hst

2σ 2

]
exp

[
−

(
β − μst

)T (
XT

stX st + �−1) (β − μst
)

2σ 2

]
dσ 2dβ

=
∫
(γ /2)

v
2

� (v/2)
(2π)−

t−s+1
2

(
σ 2)− t−s+v+3

2 |�|− 1
2 exp

[
− Hst

2σ 2

] ∣∣XT
stX st + �−1∣∣− 1

2 dσ 2

= π−(t−s+1)/2
( |Mst |

|�|
) 1

2 γ
v
2

(Hst )
(t−s+1+v )/2

�((t − s + 1 + v )/2)
� (v/2)

where

Mst = (
XT

stX st + �−1)−1
,

Nst = (
�−1β0 + XT

st ys:t
)
,

μst = MstNst ,

Hst = yTs:t ys:t + γ + βT
0 �−1β0 − NT

stMstNst .

Appendix B: Proof of Lemma 1

1. For simplicity, we use β and σ 2 instead of βt and σ 2
t in the following derivation:

P
(
β|τt = s, ys:t

) =
∫

P
(
β, σ 2|τt = s, ys:t

)
dσ 2 =

∫ P
(
β, σ 2

t

)
P
(
ys:t |β, σ 2, τt = s

)
P (s, t )

dσ 2

= 1
P (s, t )

∫ [ (
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2
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2

) (σ 2)
− v

2 −1e−
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2σ2
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∣∣− 1
2 e−
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Therefore, (
βt|τt = s, ys:t

) ∼ t2
(
t − s + v + 1, μst , �st

)
.

2. Suppose �st = K stRstKT
st , where

Kst =
[
k(1,1)st 0
0 k(2,2)st

]
and Rst is the correlation matrix. Let β∗ = K−1

st βt , then

P
(
β∗|τt = s, ys:t
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1 + 1

t − s + v + 1
(
β∗ − K−1

st μst
)TR−1

st
(
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st μst
)]− t−s+3+v

2

.

Therefore, (
β∗|τt = s, ys:t

) ∼ t2
(
t − s + v + 1, K−1

st μst , Rst
)
.

According to Kotz and Nadarajah (2004), the marginal distribution(
at

k(1,1)st
|τt = s, ys:t

)
∼ t1

(
t − s + v + 1,

(
K−1

st μst
)(1)
, 1

)
,

or ((at − μ
(1)
st )/k

(1,1)
st |τt = s, ys:t ) follows standard univariate t distribution with degrees of freedom t − s + v + 1.

This completes the proof. �
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