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Online detection of whether a data stream has reached the steady state is known to be an important problem in many
applications such as process control, data reconciliation and fault detection. This paper introduces a novel online steady state
detection algorithm under the Bayesian framework based on a multiple change-point state space formulation and the
sequential Monte Carlo methods. A Rao-Blackwellization technique is proposed to substantially reduce the variance of Monte
Carlo estimation and greatly enhance the computational efficiency. In addition, a resampling scheme called the Optimal
Resampling is used for eliminating duplicate samples and the robustness of steady state detection is significantly improved
by using the information of the particles more efficiently. Numerical studies based on simulated signals and application to a
real data set are used to evaluate the performance of the proposed method and compare with other existing methods from
the literature. The proposed method is shown to establish a more robust performance than other methods. And it is much
more computationally efficient than the standard sequential Monte Carlo method. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

S
teady state of a system in many applications is one of the most important requirements to evaluate the performance of the
process or to trigger the next actions in the process control. Timely detection of whether a data stream reaches the steady state
(i.e., mean and variance unchanged) has been found critical in various fields, such as process control considered by Mahuli et al.,1

Cao and Rhinehart,2 Jiang et al.,3 and Wu et al.,4 data reconciliation considered by Narasimhan et al.,5 Bagajewicz and Jiang,6 Bhat and
Saraf,7 Korbel et al.,8 fault detection and diagnosis (FDD) considered by Kim et al.,9 and process optimization considered by Mhamdi
et al.10 We can categorize the steady state detection problem into two types: offline and online. Most of the well-developed methods
in the literature correspond to the offline detection problems arising from discrete-event simulations, where it is usually very difficult
to start the simulation directly from the steady state because the steady state of the system is typically unknown. Data collected
during the transient period (or warm-up period) prior to the steady state causes estimation bias, which is called the initialization bias
in the steady state parameter estimation which is considered by Kelton and Law,11 Gallagher et al.,12 Fishman13 and Hoad et al.14 To
solve this problem, usually the simulation is first run long enough to guarantee the simulation output has reached the steady state.
Then offline methods are typically used to identify the starting point of the steady state in the simulation outputs so that the data
from the transient period can be removed. These methods can be further classified into five different types as proposed by
Robinson15: graphical methods, heuristic approaches, statistical methods, initialization bias tests, and hybrid methods.

Compared to the offline methods which have been extensively investigated in the simulation literature, studies for online steady
state detection are limited. The main challenge of online detection is that it has to be done in real-time, which justifies the need for
detection procedures to timely update estimations as the latest observations become available. The existing online methods typically
utilize a moving data window, based on which some test statistics are developed to decide if the signal has entered the steady state.
Examples of such methods include polynomial interpolation test (PIT) which is proposed by Savitzky and Golay,16 Roux et al.,17

variance ratio test (VRT) which is proposed by Crow et al.,18 Cao and Rhinehart,2 slope detection method (SDM) which is proposed
by Holly et al.,19 Bethea and Rhinehart,20 Wu et al.,4 and t-test which is proposed by Narasimhan et al.21 However, the performance
of all these methods is highly dependent on the selection of the data window size. Either too small or too large the size may
significantly increase either the false alarm rates (FAR) or detection delays. Also, the appropriate window size is very sensitive to noise
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levels as well as types of signals. Usually one specific window size cannot perform consistently well for various types of signals with
different noise levels. Therefore, it is urgent to develop methods with more flexibility and robustness to handle various situations.

Naturally the online steady state detection problem can be approached from the Bayesian perspective, where the prior
information of model parameters and transition point to the steady state, combined with the latest observations, are used to
dynamically update the knowledge of the current state of the process. The main disadvantage of the Bayesian method is that it
usually leads to intractable posterior distributions. However, recent advance in the field of computational statistics makes the
computations of posterior distributions feasible. The most common computational Bayesian methods are the Markov Chain Monte
Carlo (MCMC) algorithms, such as Liu,22 Robert and Casella.23 However, MCMC algorithms are typically not appropriate for online
applications because of its fast increasing computational cost over time when data size gets larger and larger. On the other hand,
the sequential Monte Carlo (SMC) methods, including the particle filtering (PF) techniques, can be used, such as Doucet et al.,24

Arulampalam et al.25 In contrast to the standard MCMC approaches, the sequential structure of the SMC methods allows for updating
estimations sequentially for each newly arriving observation in a computationally efficient way, which is very useful for online
inference.

Recently, a PF method has been proposed by Wu et al.26 for online steady state detection. In their method, the targeting signal is
approximated by a multiple change-point model and the PF techniques are used to estimate the posterior distribution of the latest
change-point and other model parameters (slope, intercept and noise variance). Some improvement strategies including the stratified
sampling, partial Gibbs resample-move techniques, and timeliness improvement strategy are developed to overcome the particle
degeneracy and reduce the computational cost. Such PF method is shown to be much more effective and robust in steady state
detection compared with moving data window based methods. However, the major disadvantage of the PF method is that it requires
a large number of particles to achieve accurate posterior distribution approximations, due to the high dimension of model
parameters, which leads to high computational cost and may limit its applications in many online detection problems that require
quick responses. In this paper, we propose a novel SMC method using a Rao-Blackwellization technique, combined with a resampling
method called the Optimal Resampling, to substantially reduce the computational cost and improve the detection robustness on noisy
data. The main contribution of our algorithm is its significant improvement in computational efficiency by taking advantage of the
Rao-Blackwellization technique, while still achieving comparable or even better detection performance compared with the PF
method. The significant reduction of computational costs makes our method a much more preferred method for many online
applications where quick steady state detection is critical.

The rest of the paper is organized as follows. A multiple change-point model formulation of this problem is introduced in Section 2.
In Section 3, we give a detailed description of the proposed SMC algorithm. The numerical examples and application to real signals
are presented in Section 4. And a summary is given in Section 5.

2. Piecewise linear model with multiple change-points

Given a noisy signal y0 : N= (y0, y1,…, yN), this paper targets detecting the steady state of the signal using a multiple change-point
model. The basic idea is that we approximate any signal, linear or nonlinear, using a piecewise linear model that allows for local linear
representations of the signal, as shown in Figure 1. The parameters (slope, intercept and noise variance) are assumed to be
independent across different line segments. When the latest line segment is sufficiently ‘flat’, the signal is considered to be in the
steady state.

Figure 1. Illustration of approximating nonlinear signals using piecewise linear model: (a) signal generated using exponential function and noise; (b) oscillating nonlinear
function

Y. HOU, J. WU AND Y. CHEN

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2667–2683

2
6
6
8



Suppose at time t the model parameters are ξt ¼ β0t; β1t; σ
2
t

� �
, where β0t is the intercept of the current line segment, β1t is the

slope, and σ2t is the unknown variance of Gaussian noise. The model parameters ξt are subject to change atm unknown change-points
Cm= (c1, c2,…, cm) while remaining constant otherwise. This multiple change-point model can be written as

ξt ¼

θ1 if 0 ≤ t < c1

θ2 if c1 ≤ t < c2

⋮ ⋮

θm if cm�1 ≤ t < cm

θmþ1 if cm ≤ t ≤ N

8>>>>>><>>>>>>:
(1)

where θi ∈3, i= 1, 2,…,m+ 1 are the values of model parameters at m+ 1 different line segments.
Within the Bayesian framework, we assign appropriate priors to the change-points between two segments, as well as other model

parameters. Their posterior distributions can then be sequentially updated and the steady state can be inferred based on the
posterior distributions of model parameters (e.g., slope) of the current line segment. In model (1), the θi’s and ci’s are unknown.
We assign a prior distribution qθ(�) for θi’s. Let τt be the latest change-point up to time t. It is easy to see that τt= ci� 1 iff ci� 1 ≤ t< ci.
Therefore τt’s and ci’s contain equivalent information. We assign a prior transition probability for τt given τt� 1 as P(τt|τt� 1). If a change
occurs at time t, we have τt= t, otherwise τt= τt� 1. In this paper we assume P(τt= t|τt� 1) = p, which corresponds to a geometric
distribution with probability p for the random duration of each line segment.

To facilitate application of a sequential Monte Carlo (SMC) method for online inference of model parameters, we first reformulate
the piecewise linear model in (1) into a state space model, where at each time t the distribution of the observation yt depends on a
hidden state vector denoted by xt. Defining the state vector as xt= (ξt, τt), the state space model is given as

xt ¼ ξt; τtð Þjxt�1 ¼
θ�; tð Þ with probability p change occurs at tð Þ
xt�1 ¼ ξt�1; τt�1ð Þ with probability 1-p no change at tð Þ

�
yt ¼ β0t þ β1tt þ εt; εteN 0; σ2t

� � (2)

where θ* ~ qθ(�) and is independent of ξt� 1, and εt is the Gaussian noise. The state transition of the state space model is illustrated in
Figure 2. It can be seen that the state space model in (2) equivalently represents the piecewise linear model in (1). Based on (2), at any
time t, with probability p a change occurs (τt= t) and a new line segment is started. Since ξt, t ≥ 0 contain all the information on θi’s in
(1) and τt, t ≥ 0 contain all the information on ci’s in (1), the inference of the parameters in the piecewise linear model in (1) is
equivalent to the inference of the state vector xt= (ξt, τt) in (2). Consequently, we can focus on the state space model in (2) and
the inference of (ξt, τt) to develop the steady state detection method.

If τt=0 for all t, that is, if there is no change-point, the state space model in (2) reduces to a linear Gaussian system, in which the
Kalman filter (KF), proposed by Kalman,27 provides a closed-form solution for efficient state estimations. However, because of the
existence of unknown change-points, the state space model is a nonlinear model which cannot be solved directly by KF. On the other
hand, the PF techniques are common and effective for nonlinear state space models. Recently, a PF method has been proposed by
Wu et al.26 for online steady state detection. A disadvantage of the method in Wu et al.26 is that it requires a large number of particles
because each parameter in the state vector xt needs to be sampled. In the following section, we propose a more efficient sequential
Monte Carlo algorithm based on a variance reduction method called Rao-Blackwellization.

Figure 2. Illustration of the state space model
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3. Rao-blackwellzied sequential Monte Carlo method for online steady state detection

3.1. Review of standard SMC algorithm for state space model

In this section, the general framework of standard SMC algorithm for state space model is reviewed. The main idea for SMC method is
to use a recursive importance sampling strategy to get a set of properly weighted samples, which are used to approximate the desired
posterior density of the state vector in a state space model. For the state space model in Eq. (2), let x0 : t= {x0, x1,…, xt} be the set of all
state vectors up to the current time t, and y0 : t= (y0, y1,…, yt) be the observations up to the current time t. Online inference of x0 : t is of
our central interest; that is, at time t, we want to estimate the posterior density p(x0 : t|y0 : t). Usually p(x0 : t|y0 : t) is of an intractable
density form where direct simulations cannot be implemented.

In such case, we often resort to the Importance Sampling (IS) approach in which we bypass the intractable distribution by

considering some importance distribution where direct simulations can be easily performed. Let x ið Þ
0:t

n on

i¼1
be the n samples (particles)

generated from an importance distribution π(x0 : t|y0 : t), where x ið Þ
0:t denotes the i -th sample/particle. By associating the importance

weight

w ið Þ
t ¼

p x ið Þ
0:tjy0:t

� �
π x ið Þ

0:tjy0:t
� � (3)

to the sample x ið Þ
0:t , the posterior density of interest can be approximated as

p̂ x0:tjy0:tð Þ ¼
Xn
i¼1

w ið Þ
t δ x0:t � x ið Þ

0:t

� �
(4)

where δ denotes the Dirac function and the weights are normalized such that
Xn
i¼1

w ið Þ
t ¼ 1. Therefore p̂ x0:tjy0:tð Þ is a discrete weighted

approximation of the true posterior p(x0 : t|y0 : t). The pairs x ið Þ
0:t;w

ið Þ
t

n on

i¼1
are a collection of properly weighted sample with respect to

the posterior distribution p(x0 : t|y0 : t). An important observation is that x ið Þ
t is also properly weighted by w ið Þ

t with respect to the
marginal posterior distribution p(xt|y0 : t).

To implement Monte Carlo techniques for the online estimation problem, p̂ x0:tjy0:tð Þ with respect to p(x0 : t|y0 : t) needs to be
sequentially computed. Since the state equation in our system follows the Markovian structure, we can implement the importance
sampling recursively, which forms the basis of SMC methods, as in Liu and Chen,28 Doucet et al.29 Based on the Bayes’ theorem,
weights can be sequentially updated as follows

w ið Þ
t ¼

p x ið Þ
0:tjy0:t

� �
π x ið Þ

0:tjy0:t
� �∝ p x ið Þ

0:tjy0:t�1

� �
p ytjx ið Þ

0:t; y0:t�1

� �
π x ið Þ

0:t�1jy0:t�1

� �
π x ið Þ

t jx ið Þ
0:t�1; y0:t

� �
¼ w ið Þ

t�1

p x ið Þ
t jx ið Þ

0:t�1; y0:t�1

� �
p ytjx ið Þ

0:t; y0:t�1

� �
π x ið Þ

t jx ið Þ
0:t�1; y0:t

� � (5)

Applying (5) to the state space model in (2), we have

w ið Þ
t ∝w ið Þ

t�1

f t�1 x ið Þ
t jx ið Þ

t�1

� �
gt�1 ytjx ið Þ

t

� �
π x ið Þ

t jx ið Þ
0:t�1; y0:t

� � (6)

where ft� 1(xt|xt� 1) is the probability density function (pdf) of (xt|xt� 1) and gt� 1(yt|xt) is the pdf of yt given xt.
If we want to estimate the expectation of a function of x0 : t, say m(x0 : t), conditioning on y0 : t, we have

E m x0:tð Þjy0:tð Þ ¼ ∫m x0:tð Þp x0:tjy0:tð Þdx0:t≃
Xn
i¼1

w ið Þ
t m x ið Þ

0:t

� �
(7)

There are two important issues regarding the design and implementation of the SMC algorithm. One is the selection of the

importance density π x ið Þ
t jx ið Þ

0:t�1; y0:t
� �

in (6). It is often convenient to choose it to be the prior π x ið Þ
t jx ið Þ

0:t�1; y0:t
� �

¼ f t�1 x ið Þ
t jx ið Þ

t�1

� �
,

which greatly simplifies the weights update in (6) as

w ið Þ
t ∝w ið Þ

t�1gt�1 ytjx ið Þ
t

� �
(8)

The other important issue is the use of resampling. The standard SMC algorithm suffers from the degeneracy phenomenon, where
after a few iterations, all but one of the weights are very close to zero, as mentioned in Doucet et al.29 This degeneracy indicates the
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majority of computational work for updating samples and weights is wasted. The resampling scheme is used to reduce such effect by
eliminating particles with low weights and concentrating on those with large weights, so that all of the resampled particles can
contribute significantly to the importance sampling estimates. A simple and common choice of resampling procedure is the

multinomial resampling, which involves generating a new set of particles x jð Þ
t

n on

j¼1
by resampling with replacement n times from

x ið Þ
t

n on

i¼1
according to their weights w ið Þ

t

n on

i¼1
, and then assigning equal weights 1/n to the new set of particles x jð Þ

t

n on

j¼1
.

The above procedure of the standard SMC algorithm with resampling is usually called the PF algorithm and shown in Algorithm 1.
In the following sections, we propose two improvements of the standard SMC algorithm. In section 3.2, a variance reduction method
called Rao-Blackwellization is used to substantially lower the computational cost of the standard SMC algorithm. In section 3.3, we
introduce a new resampling scheme to achieve better detection estimation of the steady state.

Initialization, for i= 1,…, n:
♦ Sample particles x ið Þ

0 ¼ ξ ið Þ
0 ; τ ið Þ

0

� �
, where ξ ið Þ

0 ¼ θ ið Þ
0 eqθ �ð Þ and τ ið Þ

0 ¼ 0.

♦ Assign w ið Þ
0 ¼ 1=n to each particle x ið Þ

0 .
For t = 1,…, T:
♦ For i = 1,…, n:
○ Draw samples x ið Þ

t from the importance distribution f t�1 xt jx ið Þ
t�1

� �
.

♦ Updating weights:
○ Compute weights w ið Þ

t according to Eq. (8) and normalize the weights such that
Xn
i¼1

w ið Þ
t ¼ 1.

♦ Resampling: resample x ið Þ
t ;w ið Þ

t

n on

i¼1
to generate n equally weighted particles x̃ jð Þ

t ; 1n

n on

j¼1
, and set x ið Þ

t ;w ið Þ
t

n on

i¼1
¼ x̃ jð Þ

t ; 1n

n on

j¼1
.

Algorithm 1. Standard SMC Algorithm

3.2. Rao-blackwellized SMC algorithm

In this section, a Rao-Blackwellized version of the SMC algorithm is proposed. Its main idea is to marginalize out the parameters
associated with each line segment and achieves substantial variance reduction of Monte Carlo estimates. The parameters of each line
segment can be integrated out and estimated by taking advantage of the results from Bayesian linear regression. With Rao-
Blackwellization proposed by Casella and Robert,30 Doucet et al.,24 the algorithm is much more efficient than the standard SMC
algorithm.

To make proper inference of the state vector xt which consists of four parameters, the common way for standard SMC algorithm is
to obtain estimates based on their joint posterior distribution, namely p βt; σ2t ; τtjy0:t

� �
, where βt= (β0t, β1t) in Wu et al.26 Although such

method is effective and robust to detect the steady state, it is at the expense of high computational cost since a large number of
particles have to be generated at each time step t to approximate the joint distribution of four variables. However, under appropriate
choice of priors, βt and σ2t of each line segment can actually be integrated out, resulting in a particularly efficient algorithm with
reduced variance of the estimates. More specifically, the unknown posterior density of interest can be factorized as follows

p βt; σ
2
t ; τtjy0:t

� � ¼ p βt; σ
2
t jτt; y0:t

� �
P τtjy0:tð Þ (9)

in which the conditional posterior density p βt; σ2t jτt; y0:t
� �

can be solved analytically if we use the conjugate priors for βt and σ2t .
Consequently, estimating the joint distribution p βt; σ2t ; τtjy0:t

� �
requires sampling from only a one dimensional distribution P(τt|y0 : t),

which can dramatically reduce the number of particles needed to reach a given estimation accuracy. In the remainder of this section,
we will first discuss how to obtain the analytical solution for the conditional joint posterior density p βt; σ2t jτt; y0:t

� �
. Then we will

discuss how to sample τt based on another application of the Rao-Blackwellization.
To derive the conditional joint posterior density p βt; σ2t jτt; y0:t

� �
, we first factorize it as

p βt; σ
2
t jτt; y0:t

� � ¼ p βtjσ2t ; τt; y0:t
� �

p σ2t jτt; y0:t
� �

¼ p βtjσ2t ; τt; yτt :t
� �

p σ2t jτt; yτt :t
� � (10)

The last equation in (10) is due to the assumption that the model parameters between different line segments are independent.
Using the conjugate prior, we assume that βtjσ2t follows a normal distribution with mean vector μ0 and covariance matrix σ2tΣ0, where
Σ0 is a 2×2 positive definite matrix. The prior distribution of σ2t is chosen to be the inverse gamma density with shape parameter a0
(a0> 1) and scale parameter b0(b0> 0). Due to the conjugacy of normal and inverse gamma distributions and based on the results
from Bayesian linear regression in O’Hagan,31 we have
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βtjσ2t ; τt; yτt :t
� �eN μτt ;t; σ

2
t Στt ;t

� �
σ2t jτt; yτt :t
� �eIG aτt ;t; bτt ;t

� �
and the parameters μτt ;t;Στt ;t; aτt ;t; bτt ;t are updated according to the following equationsX

τt;t
¼

X-1
0
þ D′

τt;tDτt;t

� �-1
μτt;t ¼

X
τt;t

X-1
0
μ0 þ D′

τt;tyτt :t
� �

aτt;t ¼ a0 þ t � τt þ 1

2

bτt; t
¼ b0 þ 1

2
y′τt :tyτt :t þ μ′

0

X-1
0
μ0 � μ′

τt;t

X-1
τt;t

μτt;t

� �
(11)

where Dτt ;t ¼

1

1

τt

τt þ 1

⋮

1

⋮

t

266664
377775, matrix S′ is the transpose of matrix S.

When approaching the steady state, the signal can be characterized by a sustained ‘flat’ line segment. For this reason, the
posterior knowledge of βt, especially that of the slope parameter β1t, is very important for steady state detection. The marginal
posterior distribution of βt after integrating out σ2t can be computed based on Lemma 1 as follows (the proof is included in
Appendix A).

Lemma 1:

βtjτt; yτt :t
� �

follows a bivariate non-standardized student’s t-distribution with degrees of freedom 2aτt ;t , location parameter μτt ;t , and

scale matrix
bτt ;t
aτt ;t

Στt ;t , which is denoted as βtjτt; yτt :t
� � et2 μτt ;t;

bτt ;t
aτt ;t

Στt ;t; 2aτt ;t
� �

.

To approximate the desired posterior density p βt; σ2t ; τtjy0:t
� �

using (9), we also need to generate Monte Carlo samples of τt, the

latest change-point at the current time t, to approximate P(τt|y0 : t). Intuitively, we can generate each sample τ ið Þ
t from its prior transition

probability P τ ið Þ
t jτ ið Þ

t�1

� �
based on the idea of the standard SMC algorithm. However, a more efficient way to sample τ ið Þ

t can be done as

follows, which is based on the application of Rao-Blackwellization to τt that is similar to Chopin32:

• For each particle τ ið Þ
t�1 and its associated weight w ið Þ

t�1, i=1,…, n, create its two possible descendants at time t, with weights:

τ i;1ð Þ
t ¼ τ ið Þ

t�1; w i;1ð Þ
t ¼ w ið Þ

t�1P τ ið Þ
t ¼ τ ið Þ

t�1jτ ið Þ
t�1

� �
p ytjτ ið Þ

t ¼ τ ið Þ
t�1; yτ ið Þ

t : t � 1

� �
;

τ i;2ð Þ
t ¼ t; w i;2ð Þ

t ¼ w ið Þ
t�1P τ ið Þ

t ¼ tjτ ið Þ
t�1

� �
p ytjτ ið Þ

t ¼ t; yτ ið Þ
t : t � 1

� � (12)

The predictive density p ytjτ ið Þ
t ; yτ ið Þ

t : t � 1

� �
in (12) can be calculated based on the following Lemma 2 (see Appendix B for the proof).

Lemma 2:
Denote Xt ¼ 1 t½ �, then

(a)

ytjτt; yτt :t�1

� �et1 Xtμτt ;t�1;
bτt ;t�1

aτt ;t�1
1þ XtΣτt ;t�1X

’
t

� �
; 2aτt ;t�1

� �
; if τt ¼ τt�1;

(b)

ytjτt; yτt :t�1

� �et1 Xtμ0;
b0
a0

1þ XtΣ0X
’
t

� �
; 2a0

� �
; if τt ¼ t:

whereμτt ;t�1;Στt ;t�1; aτt ;t�1; bτt ;t�1 are parameters associated with the line segment yτt :t�1 that can be obtained using equations in (11),
t1(�) the univariate non-standardized student’s t-distribution.
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The resulting set of 2n particles after Rao-Blackwellzation of τ ið Þ
t ; i ¼ 1;…; n can be resampled according to the weights

w i;1ð Þ
t ; w i;2ð Þ

t ; i ¼ 1; 2;…; n to obtain n resampled particles to avoid an exponentially increasing number of particles. By doing exact

calculations on weights of all possible values of τ ið Þ
t , i.e., τ ið Þ

t ¼ τ ið Þ
t�1 and τ ið Þ

t ¼ t, the randomness inherent in the simulation of τ ið Þ
t based

on P τ ið Þ
t jτ ið Þ

t�1

� �
is removed, which leads to further variance reduction.

At time t, similar to the standard SMC algorithm, the resulted 2n particles can be used to approximate the true posterior

distribution P(τt|y0 : t). Suppose τ i;jð Þ
t ;w i;jð Þ

t

n on

i¼1
; j ¼ 1; 2 are the 2n properly weighted samples with respect to P(τt|y0 : t) after the

Rao-Blackwellization of τ ið Þ
t , then the posterior density p(βt|y0 : t) can be approximated as

p̂ βtjy0:tð Þ ¼
Xn
i¼1

X2
j¼1

w i;jð Þ
t p βtjτ i;jð Þ

t ; yτ i;jð Þ
t : t

� �
(13)

where p βtjτ i;jð Þ
t ; yτ i;jð Þ

t : t

� �
can be obtained from Lemma 1.

It is well-known that the student’s t-distribution in Lemma 2 can be well-approximated by normal distribution with the same mean
and variance when its degrees of freedom 2aτt ;t�1 (or 2a0) ≥ 30 to reduce the computational cost, as proposed by Li and Moor.33 In
Section 4, we will use both the exact calculations for the pdf of student’s t-distribution and their normal approximations to study the
detection performance.

In summary, the proposed Rao-Blackwellized version of our SMC algorithm is given in Algorithm 2 as follows.

Initialization:
♦ Sample particles τ ið Þ

0 ;w ið Þ
0

n on

i¼1
with τ ið Þ

0 ¼ 0 and w ið Þ
0 ¼ 1

n.
For t = 1,…, T:
♦ For i = 1,…, n:
○ Create two possible descendants τ i;1ð Þ

t ¼ τ ið Þ
t�1, τ

i;2ð Þ
t ¼ t of τ ið Þ

t�1, calculate their associated weightsw i;1ð Þ
t ; w i;2ð Þ

t based on Eq. (12) and normalize the

weights such that
Xn
i¼1

X2
j¼1

w i;jð Þ
t ¼ 1.

♦ Parameter estimation: estimate p(βt|y0 : t) based on Eq. (13).

♦ Resampling: resample τ i;jð Þ
t ;w i;jð Þ

t

n on

i¼1
; j ¼ 1; 2 to generate n equally weighted particles eτ kð Þ

t ; 1n

n on

k¼1
, and set τ ið Þ

t ;w ið Þ
t

n on

i¼1
¼ eτ kð Þ

t ; 1n

n on

k¼1
.

Algorithm 2. Rao-Blackwellized SMC Algorithm

3.3. Optimal resampling

A simple resampling method for the Rao-Blackwellized SMC algorithm discussed in previous section is the multinomial
resampling method. However, the resampled particles using multinomial resampling suffer from a significant loss of diversity

(with many duplicate particles) because the particles with significant importance weights w ið Þ
t are repeatedly selected many

times. Due to the discrete nature of the change points τt in our model, having duplicate particles is wasteful as they contain
exactly the same information as a single particle with its weight equal to the sum of the weights of the duplicate
particles.

Therefore, at each time t we will combine duplicate particles into a single particle so that we only have distinctive particles before
the resampling step. Then we will apply the Optimal Resampling (OR) method, which is proposed by Fearnhead and Clifford,34 for the
set of distinctive particles. Suppose at time t� 1 we have nd distinctive particles after resampling. Then after Rao-Blackwellization of

τ ið Þ
t at time t, there will be 2nd particles τ i;jð Þ

t ;w i;jð Þ
t

n ond

i¼1
; j ¼ 1; 2, where τ i;1ð Þ

t ¼ τ ið Þ
t�1, τ

i;2ð Þ
t ¼ t and

Xnd
i¼1

X2
j¼1

w i;jð Þ
t ¼ 1. By combining the

duplicate particles τ i;2ð Þ
t ¼ t;w i;2ð Þ

t

n ond

i¼1
, we will have nd+ 1 distinctive particles τ ið Þ

t ;w ið Þ
t

n ondþ1

i¼1
, where τ ið Þ

t ¼ τ i;1ð Þ
t ;w ið Þ

t ¼ w i;1ð Þ
t ; i ¼

1; 2;…; nd; τ
ndþ1ð Þ
t ¼ t;w ndþ1ð Þ

t ¼
Xnd
i¼1

w i;2ð Þ
t . The following Algorithm 3, which is a special case of the OR method, can be used to

resample nd distinctive particles from the nd+1 distinctive particles τ ið Þ
t ;w ið Þ

t

n ondþ1

i¼1
.
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• Step 1: calculate the unique solution c to the equation:
Xndþ1

i¼1

min 1; cw ið Þ
t

� �
¼ nd .

• Step 2: for i = 1,…, nd + 1, if w ið Þ
t ≥1=c then particle τ ið Þ

t is kept with its original weight w ið Þ
t . Assume we keep q particles.

• Step 3: apply the stratified sampling algorithm in Appendix C to resample nd� q particles from the remaining nd + 1� q particles, each resampled
particle is assigned a weight 1/c.

Algorithm 3. OR Algorithm

The stratified sampling scheme used in the last step ensures each distinctive particle is resampled at most once so that the

resulting nd particles are distinctive. It is shown in Fearnhead and Clifford34 that the resampled nd samples eτ ið Þ
t ; ew ið Þ

t

n ond

i¼1
are still

properly weighted with respect to the desirable posterior distribution P(τt|y0 : t). The OR method has the computational complexity

of O(n). And it is optimal since it minimizes the expected squared error E
Xndþ1

i¼1

W ið Þ
t � w ið Þ

t

� �2" #
, where W ið Þ

t is the random weight of

a particle after resampling (W ið Þ
t equals w ið Þ

t , 1/c or 0), which is proved in Fearnhead and Clifford.34

Note that when t is small (e.g., t =1, 2…), only t distinctive particles are needed, corresponding to τt= 1,…, t, respectively. When t is
large, we need to limit the maximum number of distinctive particles after resampling at each time t. Let nd denote this maximum limit

and nt (nt ≤ nd+ 1) be the number of distinctive particles after Rao-Blackwellization of τ ið Þ
t at time t, with the properly weighted samples

τ ið Þ
t ;w ið Þ

t

n ont

i¼1
with respect to P(τt|y0 : t), the posterior density p(βt|y0 : t) at time t can be approximated as

p̂ βtjy0:tð Þ ¼
Xnt
i¼1

w ið Þ
t p βtjτ ið Þ

t ; yτ ið Þ
t : t

� �
(14)

The Rao-Blackwellized SMC algorithm with the OR method is summarized in Algorithm 4.

Set nt= 1, τ 1ð Þ
1 ¼ 1 and w 1ð Þ

1 ¼ 1.
For t = 2,…, T:
♦ For i = 1,…, nt:
○ Create two possible descendants τ i;1ð Þ

t ¼ τ ið Þ
t�1, τ

i;2ð Þ
t ¼ t of each τ ið Þ

t�1, calculate their associated weightsw i;1ð Þ
t ; w i;2ð Þ

t based on Eq. (12) and normalize

the weights such that
Xnt
i¼1

X2
j¼1

w i;jð Þ
t ¼ 1.

♦ Combine duplicate particles into nt + 1 distinctive particles, the resulted samples are τ ið Þ
t ;w ið Þ

t

n ontþ1

i¼1
, where τ ið Þ

t ¼ τ i;1ð Þ
t ;w ið Þ

t ¼ w i;1ð Þ
t ; i ¼

1; 2;…; nt ; τ
ntþ1ð Þ
t ¼ t;w ntþ1ð Þ

t ¼
Xnt
i¼1

w i;2ð Þ
t . Set nt = nt + 1.

♦ Parameter estimation: estimate p(βt|y0 : t) based on Eq. (14).
♦ Resampling: if nt = nd + 1, using the OR method in Algorithm 3 to obtain eτ ið Þ

t ; ew ið Þ
t

n ond

i¼1
; set τ ið Þ

t ;w ið Þ
t

n ont�1

i¼1
¼ eτ ið Þ

t ; ew ið Þ
t

n ond

i¼1
and nt = nd.

Algorithm 4. Rao-Blackwellized SMC Algorithm with Optimal Resampling

3.4. Steady state detection rule

As the steady state can be characterized by a sustained ‘flat’ line segment in the piecewise linear model of signals, we can develop our
detection rule based on the slope parameter of the last line segment of the piecewise linear model. Therefore, we define the steady
state detection index as πt≡ Pr(|β1t| ≤ s0|y0 : t) where s0 is the slope threshold. At time t, the detection index can be estimated as

π̂t ¼
Xnt
i¼1

w ið Þ
t Pr β1tj j ≤ s0jτ ið Þ

t ; yτ ið Þ
t : t

� �
(15)

Based on Lemma 1, the marginal posterior distribution of β1t follows a non-standardized student’s t-distribution. However,
computing cumulative probability for the non-standardized student’s t-distribution is time-consuming. Note that the conditional
posterior distribution of β1t given σ2t is

β1t jσ2t ; τ ið Þ
t ; yτ ið Þ

t :t eN μτ ið Þ
t ;t

2ð Þ
; σ2tΣτ ið Þ

t ;t

2;2ð Þ� �
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where μτ ið Þ
t ;t

2ð Þ
is the second element of μτ ið Þ

t ;t
,Στ ið Þ

t ;t

2;2ð Þ
is the second diagonal element ofΣτ ið Þ

t ;t
, and μτ ið Þ

t ;t
andΣτ ið Þ

t ;t
are obtained using (11). If

we replace σ2t with its posterior mean value E σ2t jτ ið Þ
t ; yτ ið Þ

t :t

� �
¼

b
τ
ið Þ
t

;t

a
τ
ið Þ
t
;t
�1 , where aτ ið Þ

t ;t
, bτ ið Þ

t ;t
are obtained using (11), the marginal posterior

distribution of β ið Þ
1t can be approximated by the normal distribution as

β1tjτ ið Þ
t ; yτ ið Þ

t :t
_eN μτ ið Þ

t ;t

2ð Þ
;

bτ ið Þ
t ;t

aτ ið Þ
t ;t

� 1
Στ ið Þ

t ;t

2;2ð Þ
 !

Based on this approximation, the corresponding probabilities of each particle can be calculated much faster. From our experience
π̂t typically increases quickly and becomes close to one after the data reach the steady state. So the detection result is pretty robust to
small errors in approximating π̂t .

At each time t, if π̂t is larger than a given threshold value, π0, we stop the algorithm and consider that a steady state is detected at
time t. Similarly, since π̂t typically increases quickly and becomes close to one after the data reach the steady state, the detection
results are robust to small change of π0. In this paper, we set π0 to be 0.9 for all the examples.

4. Numerical Study

4.1. Simulated signals and model parameter setup

Simulations based on artificially generated signals are first conducted to evaluate the performance of our proposed steady state
detection algorithm. A signal is generated based on the superposition of a bias functions and the noise. This paper uses four types
of bias functions: linear, quadratic, exponential and oscillating, as shown in Table I. These are the most commonly tested functions
for off-line steady state detection algorithms in the discrete-event simulation literature. For the bias direction of the first three
functions, without loss of generality, we use the negative bias which represents the biased data starting below the steady state mean,
as mentioned in Hoad et al.14 A linearly decreasing function is chosen for the amplitude of the oscillating signals. For the noises, we
use three types of autoregressive model: random Gaussian error (AR(0)), AR(1) and AR(2), as shown in the following Table II. The signal,
y(t), is generated based on the addition of the bias function B(t) in Table I and the noise rt in Table II, namely y(t) = B(t) + rt, t=1,…,N.

For all signals T0 is the true transition point to the steady state. In selecting the prior parameters, a non-informative prior with

μ0 ¼ 0 0½ �′ and Σ0 ¼
10000 0

0 10000

	 

is used for β. For the noise variance σ2, its prior parameters a0 and b0 are set to be 10 and 0.1,

respectively. For the prior transition probability p, any value between 0.1 and 0.5 can work well and here we use p = 0.2. The maximum
number of distinctive particles after resampling is chosen to be nd= 16 for all simulations.

Table I. Four types of bias functions

Signal Bias function Shape

Linear

B tð Þ ¼
t

T0
h; t ¼ 1;…; T0

h; t ¼ T0 þ 1;…;N

8<:
Quadratic

B tð Þ ¼ h 1� t � T0ð Þ2
T0 � 1ð Þ2

 !
; t ¼ 1;…; T0

h; t ¼ T0 þ 1;…;N

8><>:
Exponential

B tð Þ ¼ h 1� 10
�
1� t

T0 � 1

0B@
1CA; t ¼ 1;…; T0

y T0ð Þ; t ¼ T0 þ 1;…;N

8>>><>>>:
Oscillating

B tð Þ ¼ h
T0 � t

T0 � 1
sin

πt
f

� �
; t ¼ 1;…; T0

0; t ¼ T0 þ 1;…;N

8<: f ¼ T0
10

� �
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4.2. Illustration of the steady state detection

We illustrate our proposed algorithm on steady state detection by using a simulated linear signal with noise level σ = 0.06, h= 1 and
T0 = 200. The slope threshold s0 is set to be 0.0025. Figure 3 shows the corresponding detection process. It can be seen that π̂t jumps
abruptly to large values close to 1 shortly after T0 (the true steady state transition point). Besides, at time t= 100, 200 and 500, the
estimate of the posterior probability of the latest change-point, p̂ τtjy0:tð Þ , is almost concentrated near the true change-points: 1
(t ≤ 200) or 200 (t> 200). Processing each signal with 500 time steps by the proposed algorithm only takes an average of 0.9 seconds
in MATLAB 2014b running on a 3.40GHz Intel processor, which is much lower than that of the PF method in Wu et al.26 (12 seconds for
500 time steps). Meanwhile, by sampling only one variable based on the Rao-Blackwellization method and employing the efficient OR
resampling algorithm, our method uses at most 16 particles for each time step, which is substantially lower than the 1000 particles
used for each time step by the PF method of Wu et al.26 In addition, using normal approximations for calculating the pdf of student’s
t-distribution leads to further reduction of computational time to an average of 0.6 seconds and similar detection performance. This
example shows that our algorithm can detect the change-point with timeliness and high computational efficiency.

Many signals in practice have a decaying variance with a fixed mean. When the signal enters the steady state, the variance is small
and stable. To see how well our algorithm performs to detect the transition to steady state for such signals, we simulate the signal
with zero mean and the noise amplitude as follows

Figure 3. Illustration of steady state detection for linear signal: simulated signal (top), estimated posterior probability of the latest change-point at different time steps
(middle), and the detection index π̂t (bottom)

Table II. Equations and parameter values for three types of noises

Types Equation Parameter values

AR(0) rt= εt
εteN 0; σ2t

� �
AR(1) rt= φ1rt� 1 + εt φ1 = 0.6
AR(2) rt= φ2rt� 1 + φ3rt� 2 + εt φ2 =� 0.25, φ3 = 0.5
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σ tð Þ ¼ 30 T0�tð Þ= T0�1ð Þσ0; if t ≤ T0

σ0 ; if t > T0

(

where σ0 = 0.1 and T0 = 300. The following Figure 4 shows that our detection algorithm is also well-performed for such a signal.

4.3. Performance evaluation

Following Wu et al.,26 we consider the false alarm rates (FAR) and deviation of the estimated steady state transition point τ from the
true transition point T0 (also called detection bias) to evaluate the performance of the proposed online steady state detection
algorithm. The FAR is the probability that τ̂ < T0. It is considered because in some situations the cost of early detection is higher than
that of delayed detection. The FAR usually serves as an auxiliary evaluation metric. The main evaluation metric in this paper is the
weighted standard detection error (WSDE), as defined in Wu et al.26

WSDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

i¼1

w τ̂ið Þ τ̂i � T0ð Þ2
vuut w τ̂ið Þ ¼ w∈ 0; 1ð �; τ̂i ≥ T0

1; τ̂i < T0

�
(16)

where τ̂i denotes the estimated change-point in the ith replication and Ns is the total number of replications used for each type of
signals in the simulation. When w=1, WSDE is the root mean square deviation (RMSD) of τ̂i from T0. When w< 1, larger penalty is
given to early detection than late detection in WSDE.

4.4. Comparison with existing online methods

In this section, we compare the proposed method in this paper with three other existing online steady state detection methods: the
PF method proposed by Wu et al.,26 the SDM method proposed by Holly et al.,19 Bethea and Rhinehart,20 Wu et al.,4 and the VRT
method proposed by Crow et al.,18 Cao and Rhinehart.2 The PF method proposed by Wu et al.26 is the most recently developed online
steady state detection method in the literature. It is based on the standard SMC, or the PF algorithm, and incorporates several
improvement strategies such as the partial Gibbs resample-moves technique. The other two methods, the SDM and VRT, both
incorporate a moving data window based on which they estimate either the slope or the variance to determine if the signal enters
the steady state. In this section, we refer to the proposed Rao-Blackwellized SMC method in this paper as RBSMC method.

Each type of signal is generated by combining one of bias functions in Table I and one of noise autoregressive types in Table II. For
the bias function, we set h= 1 and test two values of T0: T0 = 200 and T0 = 300. Three noise amplitudes σt= 0.06, 0.1, 0.14 are used for

Figure 4. Steady state detection for a signal with zero mean and exponentially decaying variance: simulated signal (top), and the detection index π̂t (bottom)
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AR(0) and σt= 0.06, 0.1 are used for AR(1) and AR(2). As in Wu et al.,26 we use Ns= 500 replications for each type of signal and the
detection parameters (window size, thresholds) of all methods are selected to minimize the WSDE with w = 1. For our proposed
method, we set slope threshold s0 = 0.0021 for all signals.

Figure 5 shows the WSDE as functions of the penalty weight w for each noise autoregressive type. As we can see, the proposed
RBSMC method and PF are much more accurate than SDM, VRT in terms of the WSDE in all penalty weights. Besides, the proposed
RBSMC method is slightly better comparing with the PF method in most of the penalty weights.

The detailed results for the AR(0) noise with w = 1 are shown in Table III. From Table III, it can be seen that the two SMC-based
methods (RBSMC and PF) offer the most competitive detection results in terms of the WSDE and FAR with signals of various bias

Table III. Comparison of RBSMC, PF, SDM and VRT for w = 1 and noise type AR(0). The detection parameters are (1) RBSMC,
S0 = 0.0021; (2) PF, S0 = 0.0022; (3) SDM, window size m = 50, threshold = 8 ×10-5; (4) VRT, m = 98, threshold = 0.6

Signal σ

WSDE FAR

RBSMC PF SDM VRT RBSMC PF SDM VRT

Linear h = 1,T0 = 200 0.06 52.6 42.0 59.8 78.6 0 0 0 0
0.10 55.7 53.9 60.7 66.1 0 0 0 0
0.14 59.6 64.5 57.6 60.4 0 0 0 0

h= 1,T0 = 300 0.06 46.7 40.9 58.0 70.9 0 0 0 0
0.10 49.9 53.1 55.9 56.6 0 0 0 0.04
0.14 53.5 70.4 58.6 121.6 0.01 0.01 0.03 0.75

Quadratic h = 1,T0 = 200 0.06 17.6 12.1 33.6 37.6 0.01 0.11 0 0
0.10 22.8 21.2 31.9 26.7 0.03 0.04 0.02 0.04
0.14 26.3 33.7 28.2 18.5 0.06 0.06 0.14 0.36

h = 1,T0 = 300 0.06 20.0 33.8 22.4 16.3 0.89 1 0.11 0.33
0.10 24.4 28.1 23.9 37.5 0.81 0.93 0.45 0.83
0.14 29.9 22.4 34.5 72.8 0.71 0.62 0.62 0.93

Exponential h = 1,T0 = 200 0.06 23.3 16.6 45.9 44.4 0.01 0.12 0 0
0.10 28.1 26.3 40.5 23.2 0.07 0.08 0.03 0.30
0.14 31.7 35.0 34.8 26.1 0.12 0.06 0.17 0.73

h = 1,T0 = 300 0.06 37.6 61.7 35.5 27.2 0.93 1 0.04 0.51
0.10 45.4 49.4 32.2 67.3 0.85 0.98 0.38 0.96
0.14 51.1 40.1 55.7 107.8 0.85 0.88 0.82 0.99

Oscillating h= 1,T0 = 200 0.06 23.1 27.1 94.9 74.4 0 0.01 1 0
0.10 29.3 27.6 90.2 61.5 0 0.04 0.99 0
0.14 38.7 26.6 94.0 54.1 0 0.06 1 0

h= 1,T0 = 300 0.06 9.4 23.0 156 63.6 0.39 0.04 1 0
0.10 19.5 25.7 156 49.8 0.21 0.2 0.99 0
0.14 32.6 29.4 152 40.6 0.07 0.55 1 0

Overall 37.3 39.1 59.9 60.3 0.25 0.28 0.38 0.28

Figure 5. The weighted standard detection error (WSDE) of the proposed RBSMC, PF, SDM, VRT as a function of the penalty weight w for AR(0), AR(1) and AR(2)
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functions. Both of them have consistently better performance than themoving-window basedmethods (SDM and VRT). The advantage
of the SMC-based methods over the moving-window based methods can be understood intuitively as follows: The SMC-based
methods are based on the piecewise linear model in (1) with multiple unknown change-points. Therefore they behave as methods with
adaptive “window” sizes. Compared with the moving-window based methods with a fixed “window” size, SMC-based methods are very
flexible in adjusting their “window” sizes based on the observed signals to give much more robust detection performance.

Comparing between the RBSMC and PF methods, the RBSMC has slightly better overall performance in terms of smaller WSDE (37.3
vs. 39.1) and smaller FAR (0.25 vs. 0.28), and using normal approximations for calculating the pdf of student’s t-distribution in RBSMC
leads to the same overall performance (see Appendix D for detailed results). Most importantly, the main advantage of the RBSMC
method to the PF method is in the substantial saving of computational cost. This significant saving of computational cost makes the
RBSMCmethod a much more preferred method for many online applications where quick processing of the data in real time is critical.

Figure 6. Steady state detection for the CNP signal with ultrasonic power 30 W and 50 W in the dispersion of 30 g Al2O3
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4.5. Application to steady state detection in micro/nanoparticle dispersion process

In this subsection, we apply the RBSMC algorithm to real signals called cavitation noise power (CNP) signals from the ultrasonic-cavitation
based nanoparticle dispersion process. Currently, the micro/nanoparticle research has attracted intense scientific interests because of its
potential applications in biomedical, optical and electrical fields. In these applications, micro/nanoparticles need to be dispersed evenly
into the base materials before use to improve the material properties. However, the particles often cluster together as a result of high
surface energy and large surface-to-volume ratio. The ultrasonic cavitation method can be used for effective dispersion of
micro/nanoparticles. The dispersion process can be monitored by detecting the steady state of CNP signals based on the fact that the
steady state of CNP signals corresponds to the maximum dispersion extent at the ultrasonic power level. Please refer to Wu et al.4 for
details on the ultrasonic cavitation process, the experimental setup used to collect the data, and the method to obtain the CNP signals.

Figure 6 shows the detection results for the CNP signals with ultrasonic power 30W and 50W, respectively, in the dispersion of 30 g
Al2O3. Theofflinemethod EWMA-MSER inWu et al.4 is used as a benchmarkmethod to evaluate theproposedmethod. It can be seen that
the detection results (red solid line) of the proposed RBSMC method are quite close to those of the offline method (black dashed line).

5. Summary

In this paper, we study the problem of online steady state detection using a multiple change-point model and sequential Monte Carlo
methods. A piecewise linear model is used to approximate the signal. Within the Bayesian framework, the posterior densities of model
parameters can be sequentially updated given the latest observations. The stopping criterion for detecting the steady state is
established based on the fact that the steady state can be characterized by a sustained ‘flat’ line segment in the piecewise linear model.

The main contribution of our proposed algorithm is its high computational efficiency based on the Rao-Blackwellization technique.
By solving analytically for the conditional distribution of the model parameters, estimating the joint posterior distribution of four
variables in the state vector requires sampling from only a one dimensional posterior distribution. This leads to substantial variance
reduction of the Monte Carlo estimates and the use of significantly smaller number of particles than the standard SMC algorithm,
while achieving comparable or better estimation accuracy. In addition, by applying the so-called Optimal Resampling method and
eliminating duplicate particles, the robustness and timeliness of steady state detection is significantly improved by using the
information of the particles more efficiently.

The performance of our proposed method is evaluated through both artificially simulated signals and a real data example from the
ultrasonic-cavitation based nanoparticle dispersion process. Results demonstrate the robustness of the proposed algorithm for
various types of signals with different levels of noises, and much faster computational time compared to the standard PF method.
Note that in this paper, only non-informative priors are selected for our change-point model parameters. However, in practice, we
may have better prior knowledge for the signals, such as slopes, bias shapes, levels of noises, and steady state transition locations.
Therefore, under the Bayesian framework we can easily use more informative priors of model parameters in our steady state detection
algorithm to take advantage of the prior knowledge on the process and further improve the detection performance. Note that in our
current method, we only consider the problem with univariate observations. A potential future work is to develop methods for
multivariate data. Additionally, the change point model used in this paper can be applied to develop a Bayesian statistical process
control (SPC) method for short-run production processes, where we can conduct on-line inference of process parameters to
determine whether they have shifted into the out-of-control range. This is our ongoing research.
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Appendix A

Proof of Lemma 1
The joint posterior distribution of βt and σ2t is:

p βt ; σ
2
t jτt; yτt :t

� � ¼ p βtjσ2t ; τt; yτt :t
� �

p σ2t jτt; yτt :t
� �

∝ σ2t
� �-1

exp -
1

2σ2t
βt-μτt ;t

� �′Σ-1τt ;t βt-μτt ;t

� �� �
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� �- aτt ;tþ1ð Þ exp -

bτt ;t
σ2t

� �
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σ2t
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1

2
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� �′Σ-1τt ;t βt-μτt ;t

� �� �� �
Let A ¼ bτt ;t þ 1

2 βt � μτt ;t

� �′Σ�1
τt ;t βt � μτt ;t

� �
The marginal posterior distribution of βt can be obtained after integrating out σ2t :

p βtjτt; yτt :t
� � ¼ ∫p βt; σ

2
t jτt; yτt :t

� �
dσ2t ∝∫ σ2t
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Appendix B

Proof of Lemma 2
a If τt= τt� 1, we are making posterior inferences based on the observations yτt�1 :t�1.

Since βt�1jσ2t�1; τt ¼ τt�1; yτt�1 :t�1

� �eN μτt ;t�1; σ
2
t�1Στt ;t�1

� �
, we have Xtβt�1jσ2t�1; τt ¼ τt�1; yτt�1 :t�1

� �eN Xtμτt ;t�1; σ
2
t�1XtΣτt ;t�1X

’
t

� �
, and

the conditional distribution of yt would be ytjσ2t�1; τt ¼ τt�1; yτt�1:t�1
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2
t�1 1þ XtΣτt ;t�1X

’
t

� �� �
, The joint posterior

distribution of yt; σ
2
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b If τt= t, yt is independent of y0 : t� 1 and we are making posterior inferences based on the prior information. That is to say,
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� �
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Appendix C

Let w ið Þ
t , i=1, 2,…, nd+ 1� q be the weights of remaining particles to be resampled, a total of nd� q particles need to be resampled.

With the unique solution c, we apply the stratified sampling algorithm of Carpenter et al.35:

• Initialize: simulate s as the realization of a uniform random variable on [0,1/c], and set i = 1.
• While i ≤ nd+ 1 - q do

s ¼ s-w ið Þ
t .

If s< 0 do

Resample particle i, assign it with weight 1/c;

s = s + 1/c.

End

i = i + 1.

End
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Appendix D

RBSMC detection results for AR(0) noise with both exact calculations and normal approximations for the pdf of student’s t-distribution:

Signal σ

WSDE FAR

Exact Approximation Exact Approximation

Linear 0.06 52.6 52.6 0 0
h= 1,T0 = 200 0.10 55.7 55.0 0 0

0.14 59.6 59.6 0 0
0.06 46.7 45.9 0 0

h= 1,T0 = 300 0.10 49.9 49.5 0 0
0.14 53.5 54.5 0.01 0.01
0.06 17.6 17.4 0.01 0.01

h = 1,T0 = 200 0.10 22.8 22.8 0.03 0.02
Quadratic 0.14 26.3 27.5 0.06 0.06

0.06 20.0 21.3 0.89 0.93
h = 1,T0 = 300 0.10 24.4 23.7 0.81 0.77

0.14 29.9 28.7 0.71 0.75
0.06 23.3 24.5 0.01 0.01

h = 1,T0 = 200 0.10 28.1 28.9 0.07 0.06
Exponential 0.14 31.7 32.5 0.12 0.11

0.06 37.6 38.9 0.93 0.92
h = 1,T0 = 300 0.10 45.4 44.0 0.85 0.87

0.14 51.1 52.1 0.85 0.86
0.06 23.1 23.4 0 0

h= 1,T0 = 200 0.10 29.3 28.6 0 0
Oscillating 0.14 38.7 40.0 0 0

0.06 9.4 9.8 0.39 0.39
h = 1,T0 = 300 0.10 19.5 20.8 0.21 0.19

0.14 32.6 31.4 0.07 0.05
Overall 37.3 37.3 0.25 0.25
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