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Previous studies mostly assume deterministic interactions among neighboring individuals for games on
graphs. In this paper, we relax this assumption by introducing stochastic interactions into the spatial Prisoner’s
dilemma game, and study the effects of interaction stochasticity on the evolution of cooperation. Interestingly,
simulation results show that there exists an optimal region of the intensity of interaction resulting in a maxi-
mum cooperation level. Moreover, we find good agreement between simulation results and theoretical predic-
tions obtained from an extended pair-approximation method. We also show some typical snapshots of the
system and investigate the mean payoffs for cooperators and defectors. Our results may provide some insight
into understanding the emergence of cooperation in the real world where the interactions between individuals
take place in an intermittent manner.
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I. INTRODUCTION

How to understand cooperative behavior among selfish
individuals in a group is a central problem in social and
biological systems, and evolutionary game theory has pro-
vided a powerful framework to study this problem. As one of
the most famous games, the Prisoner’s dilemma game �PDG�
can describe the conflict of interests between what is best for
the group and what is best for the individual. In the original
PDG, two players simultaneously decide whether to cooper-
ate or defect. They will receive R if both cooperate, and P if
both defect. While a player receives S when confronted to a
defector, which in turn receives T, where T�R� P�S. Evi-
dently, for one-shot PDG defection is unbeatable and thus
preferred by rational players, although they can realize that
mutual cooperation yields higher payoff than mutual defec-
tion.

However, the unfavorable equilibrium behavior �defec-
tion� obtained in the original PDG is often violated in the
real world �1�. To understand the evolution of cooperation in
social and biological systems, noteworthy, several mecha-
nisms have been proposed �2–4�, including kin selection �5�,
direct reciprocity �6�, indirect reciprocity �7�, graph selection
�or spatial reciprocity� �8,9�, and group selection �10�. Very
importantly, the combination of original evolutionary games
and graph theory provides an extended framework to study
the emergence of cooperation in social systems, as some net-
work models can precisely depict the structures of social
networks including small-world and scale-free properties.
Generally, for games on graphs, players occupying the verti-
ces of a graph are constrained to interact only with their
nearest neighbors for collecting payoffs based on the set of
payoff values, then players update their strategies by learning
from players in their neighborhoods according to the pro-

posed updating rule. Within this framework, in the last de-
cades the evolutionary PDG has been studied in different
network models, and it is found that population structures
play a crucial role in the organization and emergence of co-
operative behaviors �for example, see �8,11–15� and refer-
ences therein�.

However, herein we would like to point out that, to our
knowledge, in most previous studies of games on graphs, a
common simplifying assumption is made, that players al-
ways fully interact with all their neighbors during the inter-
action stage. Namely, the deterministic interactions existing
among neighboring individuals are fully in action. Actually,
in real social systems, not all of the possible interaction re-
lationships are always in effect; instead sometimes these
pairwise interactions are activated in an intermittent manner
even if there are links among neighboring individuals. In this
sense, the actual interaction graph should be only a subset of
the full one. In the vain of this spirit, Traulsen et al. relaxed
the setting that individuals deterministically interact with
their neighbors, and first studied the case of finite well-mixed
populations in which each pair of individuals interact with a
probability, leading to different numbers of interactions per
individual �16�. This work shows this introduction of sto-
chastic interaction for neighboring individuals results in het-
erogeneous payoff evaluation for a well-mixed population,
and further enriches the knowledge of evolutionary dynamics
in sophisticated yet realistic situations. Naturally, it is worth
further studying the effects of stochastic interaction on the
evolution of cooperation in structured populations.

In view of the above situations, presently we abandon the
assumption of deterministic interactions that has been used
in the previous study of networked games, and investigate
the effects of stochastic interaction on the evolution of coop-
eration in spatial PDG. For the sake of simplicity, here, we
assume that each pair of directly connected players engages
in pairwise interaction with a probability p, where p
� �0,1� measures the intensity of interaction. p=1 means
full interactions, and our model recovers to the classical spa-
tial game model. For 0� p�1, the actual number of interac-
tion partners is subject to a binomial distribution. Interest-
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ingly, we find that some certain amount of interaction
stochasticity substantially promotes cooperation in the sys-
tem. We also provide an extended pair-approximation
method to theoretically predict the cooperation level. In the
rest of the context, we will present in detail our findings and
corresponding explanations.

II. MODEL

In this study, we consider the evolutionary PDG on a
square lattice with periodic boundary conditions. Each player
engages in pairwise interactions within its von Neumann
neighborhood. The reason that we concentrate on the simple
case of square lattices is twofold: First, it is a well-studied
model of population structures in the last decades, and there-
fore we can easily compare our results with those previously
investigated �8,11,17,18�; second, for square lattices, the
pair-approximation �PA� technique can be used to estimate
the equilibrium frequency of cooperators �15,19–21�. Fol-
lowing common practice �8,11�, we adopt the rescaled payoff
matrix depending on one single parameter b: T=b�1, R
=1, and P=S=0. During the evolutionary process, each
player who occupies one site of the graph can either cooper-
ate or defect, and in each generation each pair of directly
connected players plays the PDG with a probability p inde-
pendently. Here, the parameter p �0� p�1� measures the
intensity of interaction. For p→1, our model recovers to the
classical spatial game. For p→0, all interactions between
players are “frozen,” and thus no game �interaction� happens.
For 0� p�1, the actual number of interactions with neigh-
bors satisfies a binomial distribution, determining each indi-
vidual’s total payoff. After playing games, each player is
allowed to learn from one of its adjacent neighbors and up-
date its strategy. As reported in Ref. �17� individuals with
better performance in collecting payoffs may have stronger
attractiveness than others in society, here we also consider
this realistic scenario for individuals and incorporate indi-
viduals’ inhomogeneous attractiveness in choosing neighbors
for strategy updating. Similarly, we define the selection prob-
ability of a player x selecting one of its neighbors y as

Px→y =
Py

�
z��x

Pz

, �1�

where the sum runs over all neighbors of player x, and we
denote by Px the payoff of player x. Moreover, we would like
to point out that in our study there are instances where
�z��x

Pz is equal to zero. Where this occurs, player x will
randomly select one player y from its adjacent neighbors.
Whereafter, player x adopts the neighbor’s strategy with a
probability depending on the payoff difference by the Fermi
function

f�Py − Px� =
1

1 + exp�− �Py − Px�/K�
, �2�

where K characterizes the noise effects in the strategy adop-
tion process �11�. Herein, we only consider the simple situ-
ation for individuals’ selection probability and simply set K

=0.1 in this work, and mainly focus on how the interaction
stochasticity affects the evolution of cooperation in spatial
PDG.

III. RESULTS

In what follows, we will show the simulation results car-
ried out on a square lattice of size 100�100. Initially, the
two strategies of C and D are randomly distributed among
the population with an equal probability 0.5. The key quan-
tity for characterizing the cooperative behavior of the system
is the density of cooperators, �c, which is defined as the
fraction of cooperators in the whole population. In our study,
we implement this simulation model with synchronous up-
date. After a suitable transient time �this transient time varies
if we choose different parameters for the system�, the system
reaches a dynamical equilibrium, and the density �c reaches
its asymptotic value and remains there within small fluctua-
tions �the fluctuations are smaller than 0.01� �22–24�. This
asymptotic value is taken to describe the cooperation level,
and all the simulation results reported below are averaged
over 100 different realizations of initial conditions.

First we present the cooperation level as a function of the
temptation to defect b for different values of p, as shown in
Fig. 1�a�. For p=0.05, full cooperation is achieved irrespec-
tive of the value of b. While for larger p the region of full
cooperation decreases or vanishes, that is, full cooperation

FIG. 1. �Color online� The cooperation level as a function of b
for different values of p in �a�. Simulation results �b� and theoretical
analysis by pair approximation �c� for the cooperation level as a
function of p for different values of the temptation to defect b.
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cannot be maintained and cooperation decreases with in-
creasing b. It is shown that interaction stochasticity can pro-
mote cooperation and there may exist some values of p, re-
sulting in a plateau of high cooperation level. Further, to
quantify the role of stochastic interaction in promoting coop-
eration more precisely, we then study the dependence of the
cooperation level on p for different values of b, as shown in
Fig. 1�b�. Clearly, for fixed b, there exists an optimal region
of p, leading to full cooperation. When p becomes larger and
goes beyond this region, the cooperation level monotonically
decreases with p. For infinitesimal p→0, �c converges to
0.5; with increasing p�0, �c first increases sharply until a
plateau of full cooperation is achieved �see Fig. 1�b��. Nota-
bly, the length of this plateau decreases with increasing b,
which means the positive effect of interaction stochasticity
�i.e., p� on the enhancement of cooperation is diminished, to
a certain extent, by increasing the amount of temptation to
defect. Here, we only show the results for b�1.20 in our
study. Actually, for b larger than 1.20 this result of optimal
cooperation is significantly weakened or vanishes, and the
cooperation level approaches zero for large p→1 �17�. Be-
sides, we provide an extended pair-approximation �PA�
method �see the Appendix� to predict the cooperation level as
a function of p �see Fig. 1�c��. In accordance with our simu-
lation results, the PA method qualitatively reflects the role of
interaction stochasticity in cooperation, but underestimates
the resulting cooperation level in general. Note that the rea-
son of the deviations between these two approaches is that
our extended pair approximation does not fully take into ac-
count the effects of the spatial structures, especially spatial
clusters. Herein, our simulation results as well as PA predic-
tions explicitly show that cooperation can be promoted sub-
stantially by this sort of interaction stochasticity.

In order to intuitively understand the effect of interaction
stochasticity on cooperation, we plot some typical snapshots
of the system at equilibrium for fixed b=1.10 with respect to
different p values �see Fig. 2�. One can find that cooperators
can survive or even thrive by means of forming tight com-

pact clusters. Generally, the formations of cooperator clusters
arise from the spatial effect on cooperation in the PDG �8�;
nevertheless, the introduction of interaction stochasticity sig-
nificantly influences the cluster formation process as well.
From Figs. 2�a�–2�f�, we can find that varying the amount of
interaction stochasticity leads to different cluster patterns of
cooperators and defectors. In particular, when p is small,
e.g., p=0.005 as shown in Fig. 2�a�, cooperators can survive
by forming some compact clusters during the process of
fighting with defectors; whereas when p is in the optimal
region, e.g., p=0.1 as shown in Fig. 2�b�, cooperators can
form a single large contiguous cluster leading to the extinc-
tion of defectors finally; in contrast, when p is large, e.g.,
p=0.7 as shown in Fig. 2�e�, only small and isolated patches
for cooperators can be formed to minimize exploitation by
defectors such that cooperators and defectors can coexist on
a square lattice in this situation. It is shown that cooperators
are more likely to benefit from such stochastic interactions
than defectors, and therefore able to resist the invasion of
periphery defectors and prevail ultimately. Noticeably, for
large p exceeding the optimal region, the typical cluster size
of cooperators decreases with increasing p, resulting in a
gradual drop of cooperation level. Furthermore, we investi-
gate the cluster formation process at different time step t for
b=1.10 and p=0.05, as reported in Fig. 3. Initially, coopera-
tors and defectors are randomly distributed with the same
probability on the square lattice �see Fig. 3�a��. Interestingly,
from Fig. 3�b� we can see that cooperators and defectors are
quickly clustered with themselves, respectively �t=20�, al-
though the density of cooperators at this moment is not much
higher than the initial one. As time step t increases, the size
of defector clusters deceases gradually. Finally, the defector
clusters disappear and cooperators take over the population.
It can be indicated that cooperators are strongly favored un-
der this mechanism of interaction stochasticity: They not
only succeed in resisting the invasion of boundary defectors,
but also expand themselves by turning defectors into coop-
erators through strategy imitation.

FIG. 2. �Color online� Snapshots of typical distributions of co-
operators �blue� and defectors �red� on a square lattice obtained by
b=1.10 and different values of p. These snapshots, as well as sub-
sequent ones, are a 50�50 portion of the full 100�100 lattices. �a�
p=0.005, �b� p=0.1, �c� p=0.3, �d� p=0.5, �e� p=0.7, and �f� p
=1.0.

FIG. 3. �Color online� Snapshots of typical distributions of co-
operators �blue� and defectors �red� on a square lattice for b=1.10
and p=0.05 at different time step t. �a� t=0 ��c�0�=0.50�, �b� t
=20 ��c�20�=0.5108�, �c� t=50 ��c�50�=0.7192�, �d� t=100
��c�100�=0.8584�, �e� t=150 ��c�150�=0.886�, and �f� t=200
��c�200�=0.9864�.
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Notice that cooperators tend to form cluster patterns
where cooperators assist each other to avoid defectors’ ex-
ploitation in spatial games during the evolutionary process
�17,19,20,25�. Generally, this pattern formation for coopera-
tors influences the interactions between cooperators and de-
fectors, and thus affects the collecting payoffs of cooperators
and defectors. This naturally results in the changes of coop-
eration level according to the updating rule. Now, let us
study the mean payoffs of cooperators and defectors in the
population as well as the ones of cooperators and defectors
lying around the boundary, in order to qualitatively explain
these nontrivial results. Interestingly, one can find that the
mean payoff of cooperators is much higher than that of de-
fectors for all p, as plotted in Fig. 4�a� �26�. This result
indicates that cooperators are at a greater advantage in col-
lecting payoffs over defectors under our proposed mecha-
nism, which favors the evolution of cooperation. To confirm
our simulation results, we also provide theoretical predic-
tions for the mean payoffs of cooperators and defectors in the
whole population �see the Appendix�. We can find that the
predictions are in accordance with the trends �i.e., the
changes of mean payoffs for p� in comparison with numeri-
cal simulations, although there are little deviations between
them. Further, we study the mean payoffs of cooperators and

defectors along the boundary, respectively �see Fig. 4�b��.
Different from the results shown in Fig. 4�a�, both the mean
payoffs of cooperators and defectors along the boundary

�P̄c�boun and P̄d�boun� are zero when p is in the optimal region,
since defectors become extinct in the population and there is
no boundary between cooperators and defectors in this situ-

ation. We also plot the results of P̄c�boun and P̄d�boun for very
small p as shown in the inset of Fig. 4�b�, and find that

P̄c�boun is not less than P̄d�boun for various values of p. In fact,
the introduction of stochastic interaction between connected
players can effectively inhibit interactions between coopera-
tors and defectors along the boundary. For defectors, this
induces a negative feedback mechanism that can reduce their
payoff. As a result, such a mechanism of stochastic interac-
tion can promote the cooperation level. Specifically, for very
small p, interactions between all of the paired individuals are
remarkably inhibited simultaneously, thus the mean payoffs
of cooperators and defectors in the system are both small.
But in this situation the mean payoff of cooperators is still
higher than that of defectors. As a consequence, cooperators
have a weak advantage over defectors in strategy updating;
hence during the strategy updating, the probability for defec-
tors along the boundary changing into cooperators is slightly
higher than vice versa for fixed value of K �see the inset of
Fig. 4�b��. Therefore, cooperation can be maintained in this
case �in particular, the cooperation level is around 0.5 when
p approaches zero since the strategy updating probability for
all of the players is near 0.5�. While in the case of interme-
diate p, from the beginning of evolution until defectors die
out in the system, the mean payoff of defectors is smaller
than that of cooperators, and the difference between them is
comparable with K. Therefore, concerning players’ attrac-
tiveness, cooperators are more likely to be imitated as role
model than defectors; meanwhile, the transition probability
of defectors changing into cooperator, f�PC− PD�, is consid-
erably large, whereas, f�PD− PC� is relatively small so that
eventually cooperators tend to replace defectors and take
over the whole population. Whereas for larger p→1, both
the mean payoffs of cooperators and defectors become
higher. However, the clustering advantage in providing
higher payoffs for cooperators than defectors is insufficient
for large p, especially for large values of b, since there are
little limitations of interactions between connected defectors
and cooperators. Generally, the strategy updating probability
for both defectors and cooperators along the boundary is not
very high for fixed K. In this sense, cooperators and defec-
tors may coexist for an exceedingly long time. In combina-
tion with these different cases of p, there should exist an
appropriate region of intermediate interaction intensity,
which can induce the most favorable cooperation.

Finally, we would like to point out that the results re-
ported here are robust with respect to the detailed updating
mechanism �the Fermi function, finite analog of replicator
dynamics�, to the updating fashion �synchronous, asynchro-
nous�, to different initial frequencies of cooperators, and to a
different payoff matrix �P=� �0���1�� �8,27�. We have
confirmed that the qualitative results do not change if we
made the above-mentioned variations to our model.

FIG. 4. �Color online� �a� The mean payoffs of cooperators and
defectors in the whole population, obtained respectively by simula-

tions �P̄c�sim and P̄d�sim� and theoretical analysis �P̄c�theor and

P̄d�theor�, as a function of p for b=1.10. �b� The mean payoffs of

cooperators and defectors along the boundary �P̄c�boun and P̄d�boun�
as a function of p for b=1.10. The inset in �b� shows the results for
small values of p in detail.
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IV. DISCUSSION AND CONCLUSION

So far, we have presented the main results of our model.
In our study, individuals are allowed to intermittently interact
with their social partners. That is to say, among neighboring
individuals, pairwise partnerships uniformly occur with a
probability p controlling the intensity of interaction. In this
sense, the actual partnership networks are dynamical in na-
ture, i.e., time-varying ones. Besides, considering the effects
of players’ performance in collecting payoffs on choosing
neighbors for strategy updating, players are able to preferen-
tially choose a role model from their neighbors. Interestingly,
we find there exists an intermediate region of p resulting in
optimal cooperation �massive cooperation�. In fact, note that
payoff-based preferential imitation �17�, or equivalently, het-
erogeneity in teaching activity �18,28�, has already been rec-
ognized as an important mechanism of promoting coopera-
tion in spatial games, recently. However, this sort of
preferential imitation does not directly link with the optimal
phenomena observed in our study. To verify this, we thus
conduct a comparative study in which we relax this condition
of preferential imitation, i.e., individuals randomly imitate
one of their neighbors. Both our Monte Carlo simulations
and pair-approximated results exactly show that there still
exists optimal cooperation for intermediate p. Therefore, the
existence of optimal cooperation is essentially attributed to
the interaction stochasticity. The largest differences are that
the optimal region is much narrowed to a single point and the
critical value of b, below which optimal cooperation exists,
is much lower. Here, we introduce this preferential imitation
in our proposed model in order to mainly consider the real-
istic situation, and this introduction of preferential imitation
also contributes to the sustainment of massive cooperation.
Not surprisingly, in the case without preferential imitation,
the cooperation level is correspondingly lowered and ap-
proaches zero just for very small temptation to defect �17�.

It is worth noting that, in Ref. �16�, the authors found that
the resulting “payoff stochasticity” reduces the intensity of
selection in finite well-mixed populations. In their model,
similarly, individuals randomly interact with others, leading
to a heterogeneity in the number of interaction partners.
From this perspective, roughly speaking, our model is a spa-
tially extended version of theirs. Our work further comple-
ments their finding: Interaction stochasticity provides a fa-
vorable environment for cooperators to thrive. In addition to
the source of payoff stochasticity discussed here, Perc first
introduced payoff variations, generated from a chaotic attrac-
tor, into spatial PDG, and found that cooperation is promoted
as well as a dynamical “coherence resonance” behavior in
such a system �29�. In Perc’s work, chaotic variations, mod-
eled by a spatially extended Lorenz system, are introduced to
individuals’ payoffs collected from interactions with all their
neighbors. Thus, payoff stochasticity results from such envi-
ronmental disturbances other than interaction randomness. In
line with these previous works, the present study further
highlights the positive effect of payoff stochasticity on the
evolution of cooperation.

On the other hand, the introduction of stochastic interac-
tion reduces the effective neighborhood size, since the ex-
pected number of interaction partners monotonically de-

creases with decreasing p values. In other words, interaction
randomness essentially decreases the population viscosity �or
average number of neighbors�, which plays a decisive role in
the evolution of cooperation on graphs, according to the
simple rule found in Ref. �9�. In general, the effects of net-
work topologies, such as degree heterogeneity �12,14�, topo-
logical randomness �30�, and average degree �31�, signifi-
cantly affect the outcome of games on networks. Specially, a
dynamical feature of optimal cooperation can emerge as a
result of the randomness in topologies �30�. However, in our
study, the randomized interaction networks are continuously
evolving during the evolutionary process; while the investi-
gations in Ref. �30� focus on static networks, that is, the
interaction neighbor set for every player is fixed, but the
amount of randomness in topologies can be tuned by a pa-
rameter. Furthermore, the dual graph model, in which the
interaction graph and replacement graph are separated, has
been studied in Refs. �21,32–34�. Actually, although our
model also involves the essence of dual graph, previous ex-
plorations mainly concentrate on the effect of dual graph on
the evolution of cooperation; differently, we focus on the role
of interaction stochasticity, one of the possible stochastic ef-
fects, in the cooperative dynamics. Generally speaking, the
dynamical randomness stemming from diverse factors of sto-
chasticity constitutes an important mechanism to maintain
cooperation, as already demonstrated by previous studies
�29,30,35,36�.

In summary, we have studied the effect of interaction sto-
chasticity on the evolution of cooperation in spatial PDG.
Interestingly, by means of Monte Carlo simulations, we
showed that there exists an optimal region of the amount of
interaction stochasticity resulting in massive cooperation.
Our simulation results are in good agreement with theoretical
predictions obtained from an extended pair-approximation
method. Furthermore, in order to give an intuitive account of
the maintenance of cooperation in our model, we provided
some typical snapshots of the system and compared mean
payoffs of defectors and cooperators along the boundary. Our
work may evidence stochastic interaction as an alternative
mechanism to enhance cooperation in self-interested indi-
viduals.
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APPENDIX: EXTENDED PAIR-APPROXIMATION
METHOD

We consider the randomized interaction for connected
players on the square lattice. For the sake of clarity, we plot
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a small part of the square lattice as shown in Fig. 5. Here, we
denote by ic �id� the actual number of an individual’s inter-
actions with other cooperators �defectors� among its neigh-
borhood. Based on the statement mentioned in the above
context, we take site B, for example, and can compute the
collecting payoff of a cooperator occupying the site of B plus
a defector occupying the site of A for different configura-
tions,

Pc�u,v,w,ic,id� = �nc�u,v,w�
ic

��4 − nc�u,v,w�
id

�
�pic+id�1 − p�4−ic−idic, �A1�

where nc�u ,v ,w� is the number of cooperators among the
neighbors u, v, w. Similarly, we obtain the collecting payoff
of a defector occupying the site of B plus a cooperator occu-
pying the site of A for different configurations as

Pd�u,v,w,ic,id� = �nc�u,v,w� + 1

ic
��3 − nc�u,v,w�

id
�

�pic+id�1 − p�4−ic−idbic. �A2�

Further, by assuming that there are nc cooperators in the
neighborhood of an individual, according to Eq. �A1� the
mean payoff of cooperators in the system is given by

P̄c = �
ic=0

nc

�
id=0

4−nc �nc

ic
��4 − nc

id
�pic+id�1 − p�4−ic−idic

= nc� 1

1 − p
�4

�1 − p�4p = ncp = 4
pc,c

�c
p . �A3�

Similarly, the mean payoff of defector is given by

P̄d = 4
pc,d

�d
pb . �A4�

Subsequently, following previous works �15,19–21�, we
extend the pair-approximation method and describe, respec-
tively, the motion of fractions of CC �pc,c� and CD �pc,d�
links as

ṗc,c = �
x,y,z

�nc�x,y,z� + 1�pd,xpd,ypd,z

� �
u,v,w

pc,upc,vpc,wf�Pc�u,v,w� − Pd�x,y,z��

− �
x,y,z

nc�x,y,z�pc,xpc,ypc,z �
u,v,w

pd,upd,vpd,wf

��Pd�u,v,w� − Pc�x,y,z�� , �A5�

ṗc,d = �
x,y,z

�1 − nc�x,y,z��pd,xpd,ypd,z

� �
u,v,w

pc,upc,vpc,wf�Pc�u,v,w� − Pd�x,y,z��

− �
x,y,z

�2 − nc�x,y,z��pc,xpc,ypc,z �
u,v,w

pd,upd,vpd,wf

��Pd�u,v,w� − Pc�x,y,z�� . �A6�

Here, based on the description of the strategy updating
rule, f�Pc�u ,v ,w�− Pd�x ,y ,z�� and f�Pd�u ,v ,w�
− Pc�x ,y ,z�� can be described, respectively, as

f�Pc�u,v,w� − Pd�x,y,z�� = �
ic

�
id

�
ic�

�
id�

Pc�u,v,w,ic,id�

� PB

�f�Pc�u,v,w,ic,id�

− Pd�x,y,z,ic�,id��� , �A7�

f�Pd�u,v,w� − Pc�x,y,z�� = �
ic

�
id

�
ic�

�
id�

Pd�u,v,w,ic,id�

� PB

�f�Pd�u,v,w,ic,id�

− Pc�x,y,z,ic�,id��� , �A8�

where �PB means the sum of payoffs of A’s neighbors for all
the possible configurations. In combination with the symme-
try condition pc,d= pd,c and the constraint pc,c+ pc,d+ pd,c
+ pd,d=1, we can obtain that �c= pc,c+ pc,d. Here, in order to
solve for pc,c and pc,d, we treat Eqs. �A5� and �A6� by nu-
merical integration, and accordingly get the cooperation
level.
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