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Abstract

We study the collective dynamics of a group of motile particles with a leader. The leader is

unaffected by the particle members whereas each member is influenced by the leader and the

other members. By using coupled oscillators theory and Lyapunov function method, we show

how the group dynamics depends on the motion of the leader and the coupling weights among

all particles. Generally speaking, two types of collective motions will occur, depending on

different ranges of the coupling weights among the member particles. One is that all the

member particles will move in the same direction and the other is that all the member particles

move in such a way that the weighted centroid of the group approaches a fixed position. In

each case, all the member particles eventually move in the same manner except for the

directions of the motion in certain cases. Numerical simulations are worked out to

demonstrate the theoretical results. The study suggests potential approaches to control a

group motion by steering the motion of the leader and adjusting coupling patterns. This is of

practical interest in applications of multiagent systems.
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1. Introduction

In recent years, collective motion and self-organized behavior of swarms, agents,
and particles have become a major objective in many fields such as ecology and
theoretical biology [1,2], biological physics [3–12], and control engineering [13–17].
The studies focus on understanding the general mechanisms and operational
principles of such coordinated cooperative phenomena as well as their potential
applications in various engineering practice such as control of multi-robots and
traffic flows, etc. For example, the authors of Ref. [3] proposed a simple model for
phase transition of a group of self-driven particles and numerically demonstrated
complex dynamics of the model. A subsequent analysis of a continuum model was
presented in Ref. [5]. Collective behavior of self-propelled particles was also
investigated in Refs. [7,8]. Crawford and Davies [6] and Acebrón and Spigler [9]
studied synchronization of globally coupled oscillators. An interesting issue that
arises in the studies is the collective behavior of particle groups with leaders. For
instance, in Ref. [13], moving reference points were viewed as virtual leaders used to
manipulate the geometry of autonomous vehicle group and direct the motion of
group. The cohesion of the members of swarms following an edge-leader was
analyzed in Ref. [14]. Jadbabaie et al. [15] investigated leaderless/leader coordination
of mobile autonomous agents using nearest neighbor rules. Leader–follower
networks were also considered in Ref. [18].
In a recent paper [19], the collective motion of a self-propelled particle group has

been analyzed by viewing the particle group as a coupled phase oscillator system. It
was shown that under sufficiently large coupling strength, the particles either move
in parallel or maintain the centroid of the particle group motionless eventually. It
also presented formation control design. However, the model of Ref. [19] did not
consider the role of a leader in the particle group.
In this paper we investigate the dynamics of a coupled particle group with an

independent leader. We show that the leader’s dynamics can significantly influence
the collective motion of particle group. The evolution of the particle members will
eventually be the same as that of the leader for certain ranges of the coupling
weights. This makes it possible to control the particle group by steering the motion
of the leader, which is of practical interest in applications such as control of multi-
robots or autonomous vehicles.
The paper is organized as follows. Section 2 presents the particle model. Dynamics

analysis of the model is carried out in Section 3. Section 4 gives numerical
simulations of the theoretical results. Some conclusions are drawn in Section 5.
By convention, R represents the real number set. The notation y0 ! y�0ðþÞ means

y04y�0 and y0 ! y�0; and y0 ! y�0ð�Þ denotes y0oy�0 and y0 ! y�0:
2. Particle model

We consider a group of ðN þ 1Þ identical particles (of unit mass) moving in the
plane at unit speed, in which a particle indexed by 0 is assigned as the ‘‘leader’’ and
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the other particles indexed by 1; . . . ;N are referred to as ‘‘members’’. The leader is
unaffected by the members whereas each member is influenced by the leader and the
other members. A continuous-time kinematic model of the ðN þ 1Þ particles is
described as follows:

_r0 ¼ eiy0 ;

_y0 ¼ F ðy0Þ ;

_rk ¼ eiyk ;

_yk ¼ K0 sinðy0 � ykÞ þ K1

XN

j¼1

sinðyj � ykÞ ; ð1Þ

where 1pkpN : In complex notation, the vector rk 2 C 	 R2 (the punctured
complex plane) denotes the position of particle k and the angle yk

denotes the direction of its (unit) velocity vector eiyk ¼ cos yk þ i sin yk; 0pkpN:
F ðy0Þ is a smooth function defined in I 
 R: When F ðy0Þ is not identical
with 0; we assume that the equilibrium points of _y0 ¼ F ðy0Þ (if any)
are all hyperbolic and that the motion of the leader has not finite escape
time. K0;K1 2 R are two parameters with 0oK0=K1oN; specifying the
coupling strength between each member and the leader and the coupling strength
between any two members, respectively. The initial values of all yk and rk are selected
arbitrarily.
Collective dynamics of Eqs. (1) without variables r0; y0 (and hence K0 ¼ 0) has

been studied in Refs. [19,20]. In the present form, since y0 is independent
of all yk whereas each yk depends on y0 for k ¼ 1; . . . ;N; the dynamics
of yk are in general more complex than that concerned before. In the
following we will analyze the dynamics of model (1) by using coupled oscillators
theory [20].
3. Dynamics analysis

Observe that the right side of Eqs. (1) does not depend on the position variable r

(here we omit the index) and r are dependent on y:Hence we only need to analyze the
dynamics of y in the sequel and then examine the dynamics of r when needed. For
convenience, denote ȳk ¼ yk � y0; k ¼ 0; 1; . . . ;N: For k ¼ 1; . . . ;N; the dynamics of
ȳk are described as follows:

_̄yk ¼ � K0 þ K1

XN

j¼1

cos ȳj

 !
sin ȳk þ K1

XN

j¼1

sin ȳj

 !
cos ȳk � F ðy0Þ : (2)

Notice that Eq. (2) is similar to the general reducible phase oscillator model
in Ref. [20], where the authors presented a reduction process and analyzed the
dynamics of the model using Lyapunov second method. Their method and
results have also been used in Ref. [19]. Similar to the arguments of Watanabe
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and Strogatz [20], we can analyze the dynamics of ȳk: We will make use of the
following notations:

ḡ ¼
1

N

XN

j¼1

cos ȳj ;

h̄ ¼
1

N

XN

j¼1

sin ȳj ;

Pȳ ¼
1

N þ 1
K0e

iȳ0 þ K1

XN

j¼1

eiȳj

 !

¼
1

N þ 1
ðK0 þ K1Nḡ þ iK1Nh̄Þ ;

R ¼
1

N þ 1
K0r0 þ K1

XN

k¼1

rk

 !
: (3)

Clearly, R is the position vector of the weighted centroid of the group. One has

_R ¼ Pȳe
iy0 :

For convenience in the following discussion, we rewrite the equation of y0 in Eqs. (1)
as

_y0 ¼ F ðy0Þ : (4)

To investigate the dynamics of ȳk; we need first to determine qualitative properties
of y0: Without loss of generality, we assume that F ðy0Þc0: Then by assumption the
equilibrium points of Eq. (4) (if any) are all hyperbolic. Hence for any initial value
y0ðt0Þ in I, the evolution of y0 has one of the following properties, depending on
properties of F ðy0Þ and y0ðt0Þ:
P1:
 y0 monotonically tends to an equilibrium point of Eq. (4);

P2:
 y0 monotonically increases and approaches the boundary of I;

P3:
 y0 monotonically decreases and approaches the boundary of I.
In the last two cases the sign of F ðy0Þ does not change in I. In the first case there
exists at least one equilibrium point of Eq. (4 ) in I and according to the assumption
on F ðy0Þ; the equilibrium point is either stable or unstable. This implies that as
t ! þ1; y0 either monotonically tends to the equilibrium point or monotonically
approaches the boundary of I. We summarize these properties in the following four
cases, where y�0 is an equilibrium point of Eq. (4):
�
 y0 2 P1ðþÞ denotes that P1 occurs and y0 ! y�0ðþÞ as t ! þ1:

�
 y0 2 P1ð�Þ denotes that P1 occurs and y0 ! y�0ð�Þ as t ! þ1:
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�
 y0 2 P2 denotes that P2 occurs.

�
 y0 2 P3 denotes that P3 occurs.
From this, we have the following lemma.

Lemma 1. For any initial value y0ðt0Þ 2 I ; the sign of F ðy0Þ is eventually constant as

t ! þ1: Specifically, F ðy0Þ40 for y0 2 P1ð�Þ or y0 2 P2; and F ðy0Þo0 for y0 2
P1ðþÞ or y0 2 P3:

Lemma 1 will be useful in analysis of the dynamics of ȳk: Observe that
Eq. (2) includes a term �K0 sin ȳk � F ðy0Þ in its right-hand side, which comes from
the influence of the leader on every particle member, so the governing equations of ȳk

are different from that considered in Refs. [19,20]. We will investigate the dynamics
of ȳk by taking a coordinate transformation and analyzing the dynamics of new
variables.

3.1. Change of variables

From Eqs. (3), we have

XN

j¼1

cos ȳj ¼ Nḡ;
XN

j¼1

sin ȳj ¼ Nh̄ :

Inserting them into Eq. (2) yields

_̄yk ¼ NK1h̄ cos ȳk � ðK0 þ NK1ḡÞ sin ȳk � F ðy0Þ (5)

for k ¼ 1; . . . ;N: Take the changes of variables [20]

tan
1

2
ðȳk �YÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
1� g

s
tan

1

2
ðck �CÞ

� �
(6)

for k ¼ 1; . . . ;N; which map N-dimensional state vector ðȳ1; ȳ2; . . . ; ȳNÞ

to the (N þ 3)-dimensional state vector ðg;Y;C;c1; . . . ;cNÞ: In Eq. (6), Y
and C are two rigid rotation variables, g is a dilation with 0pgo1; and ck; k ¼

1; . . . ;N are new phase variables. All these variables depend on time. Eq. (6)
may be regarded as a way to redistribute the phase variables ȳk on unit
circle, for more detailed implication about the transformation we refer
to Ref. [20].
From Eq. (6) and certain trigonometric identities, one can get two useful formulas:

sinðȳk �YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
sinðck �CÞ

1� g cosðck �CÞ
; cosðȳk �YÞ ¼

cosðck �CÞ � g
1� g cosðck �CÞ

:

(7)
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Differentiating Eq. (6) with respect to time, using some trigonometric identities and
after some algebraic manipulations, we get

_̄yk � _Y
1þ cosðȳk �YÞ

¼
1

1� g
_gffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p sinðck �CÞ

1þ cosðck �CÞ

þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
1� g

s
_ck �

_C
1þ cosðck �CÞ

: ð8Þ

Inserting Eqs. (5) and (7) into Eq. (8) and after some algebraic manipulations,
we obtain

0 ¼ ½K1Nh̄ cos ȳk � ðK0 þ K1NḡÞ sin ȳk � F ðy0Þ � _Y�

�½1� g cosðck �CÞ� �
_g sinðck �CÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
ð _ck �

_CÞ : ð9Þ

Note that

cos ȳk ¼ cosðȳk �YÞ cos Y� sinðȳk �YÞ sin Y ;

sin ȳk ¼ sinðȳk �YÞ cos Yþ cosðȳk �YÞ sin Y : ð10Þ

Substituting Eqs. (10) into Eq. (9) and using Eqs. (7), we have

0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
_ck

þ ½K1P � K0 sin Yþ gðF ðy0Þ þ _YÞ� cosðck �CÞ

� ðK1Q þ K0 cos YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
þ

_gffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
" #

sinðck �CÞ

þ ½ð�K1P þ K0 sin YÞg� ðF ðy0Þ þ _YÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
_C� ð11Þ

for k ¼ 1; . . . ;N and

P ¼ Nðh̄ cos Y� ḡ sin YÞ ¼
XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
sinðcj �CÞ

1� g cosðcj �CÞ
;

Q ¼ Nðh̄ sin Yþ ḡ cos YÞ ¼
XN

j¼1

cosðcj �CÞ � g

1� g cosðcj �CÞ
: ð12Þ

Observe that if we set in Eq. (11) that

K1P � K0 sin Yþ gðF ðy0Þ þ _YÞ ¼ 0 ;

ðK1Q þ K0 cos YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
þ

_gffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p ¼ 0 ;

ð�K1P þ K0 sin YÞg� ðF ðy0Þ þ _YÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
_C ¼ 0 ;
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i.e., let the three variables ðg;Y;CÞ satisfy the following differential equations:

_g ¼ �ð1� g2ÞðK1Q þ K0 cos YÞ ;

g _C ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
ðK1P � K0 sin YÞ ;

g _Y ¼ �K1P þ K0 sin Y� gF ðy0Þ ð13Þ

for ga0 and

0 ¼ K1

XN

j¼1

sinðcj �CÞ � K0 sin Y ;

_g ¼ �K1

XN

j¼1

cosðcj �CÞ � K0 cos Y ;

0 ¼ �_y0 � _Yþ _C ð14Þ

for g ¼ 0; where y0 satisfies Eq. (4), then Eq. (11) reduces to

_ck ¼ 0; k ¼ 1; . . . ;N : (15)

Thus the dynamics analysis of ȳk is converted into that of g;Y;C; and ck governed
by Eqs. (4), (13), (14), and (15).
Eq. (15) means that the N new phase variables ck are frozen. Hence ck can be

considered as parameters. Under the coordinate transformation (6) the original N

variables are converted into 3 new variables and N parameters. Hence three
constraints can be imposed on the initial values of g;Y;C and ck; k ¼ 1; . . . ;N:
Here we impose the constraints

XN

k¼1

cos ck ¼
K0

K1
;
XN

k¼1

sin ck ¼ 0 (16)

on the initial values of ck and hence on ck for k ¼ 1; . . . ;N:
Under constraints (16), it yields from the first equation in Eqs. (14) that

sin Cþ sin Y ¼ 0 : (17)

From this we further have

cos Cþ cos Y ¼ 0 or cos C� cos Y ¼ 0 :

And we impose a constraint on the initial values of Y and C such that

cos Cþ cos Y ¼ 0 for g ¼ 0 : (18)

Thus from the second equation of Eqs. (14) we get

_g ¼ 0 for g ¼ 0 :

Again from Eqs. (14) we see that for g ¼ 0; ðy0; g;Y;CÞ evolves on a manifold
defined by

M ¼ fðy0; g;Y;CÞ : g ¼ 0; C�Y� y0 ¼ Cg ; (19)

where y0 satisfies Eq. (4) and C is a constant.
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In the following we will analyze the dynamics of Y;C and g governed by Eqs. (4)
and (13) with N parameters ck and constraints (16) and (18) by introducing an
auxiliary V function. From the analysis we finally obtain the dynamics of yk:
3.2. V-function and convergent dynamics

Observe that Y is coupled with C; g and y0; we choose a V-function as follows:

V ¼
XN

k¼1

ln
1� g cosðck �CÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

 !
�

K0

K1
gð1þ cos YÞ �

K0

K1
ðlnð1� gÞ � vÞ ;

(20)

where if F ðy0Þ � 0; then v ¼ 0; otherwise, for K140

v ¼

2y0 if y0 2 P2 ;

�2y0 if y0 2 P3 ;
1
2
ðy0 � y�0 � 2Þ2 if y0 2 P1ðþÞ ;
1
2ðy0 � y�0 þ 2Þ2 if y0 2 P1ð�Þ

8>>>><
>>>>:

(21)

and for K1o0;

v ¼

�2y0 if y0 2 P2 ;

2y0 if y0 2 P3 ;
1
2 ðy0 � y�0 þ 2Þ2 if y0 2 P1ðþÞ ;
1
2
ðy0 � y�0 � 2Þ2 if y0 2 P1ð�Þ

8>>>><
>>>>:

(22)

with y0 being the solution of Eq. (4) and y�0 an equilibrium point of it.
Below we analyze the dynamics of Eqs. (13) and (4) using the derivatives of the V-

function with respect to time t and to g; respectively. Differentiating V with respect
to t, making use of Eqs. (12) and (13), and after some algebraic manipulations, we
have

_V ¼ K1G1G2 þ K1G3 þ ðK0=K1ÞG4 ; (23)

where

G1 ¼
XN

k¼1

g� cosðck �CÞ

1� g cosðck �CÞ
þ

K0

K1
ð1þ gÞ �

K0

K1
ð1� g2Þð1þ cos YÞ ;

G2 ¼
XN

k¼1

g� cosðck �CÞ

1� g cosðck �CÞ
�

K0

K1
cos Y ;

G3 ¼
XN

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
sinðck �CÞ

1� g cosðck �CÞ
�

K0

K1
sin Y

 !2

;

G4 ¼ _v � g sin YF ðy0Þ :
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Evidently, G3X0 for all ðg;Y;C; y0Þ and G4 ¼ 0 if F ðy0Þ � 0:We make the following
assertion.

Assertion. For all ðg;Y;C; y0Þ
(i)
 G1X0; G2X0 and G1 ¼ 0 if and only if g ¼ 0;

(ii)
 if F ðy0Þc0; then G440 (resp. G4o0) for K140 (resp. K1o0) as t is large enough.
The proof of the assertion is presented in Appendix A. From this it follows that
K1

_V40 for all ðg;Y;C; y0Þ as t is large enough. This implies that V eventually
increases along the solutions of Eqs. (4) and (13) for K140 and decreases for K1o0:
On the other hand, by differentiating V-function with respect to g; we obtain

qV

qg
¼

G1

1� g2
40

for 0ogo1: This implies that V strictly increases with g and vice versa. Thus along
the solutions of Eqs. (4) and (13),
�
 if K140; then g ! 1;

�
 if K1o0; then g ! 0:
Hence the dynamics of Eqs. (13) depends on the sign of K1:We consider two cases in
the following.
First, for the case of K140; i.e., g ! 1; we have from Eqs. (7),

ȳk ! Y� p; i:e:; yk ! y0 þYþ p; ðmodð2pÞÞ (24)

for k ¼ 1; . . . ;N; which mean that all phase variables ȳk tend to be synchronizing
(this corresponds to the in-phase state of phase oscillators in Ref. [20]). This indicates
that all the members will move in the same direction eventually. Also note that the
equations for the position of every member are all in the same form. Hence all
members will move in the same manner as t ! þ1:
To compare the motion of the members with that of the leader, notice that from

Eqs. (1) it follows that

_̄yk ¼ K0 sinðy0 � ykÞ þ K1

XN

j¼1

sinðyj � ykÞ � F ðy0Þ

¼ � K0 sin ȳk þ K1

XN

j¼1

sinðȳj �Y� ȳk þYÞ � F ðy0Þ

¼ � K0 sin ȳk þ K1 cosðȳk �YÞ
XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
sinðcj �CÞ

1� g cosðcj �CÞ

"

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
sinðck �CÞ

1� g cosðck �CÞ

XN

j¼1

cosðȳj �YÞ

#
� F ðy0Þ
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for k ¼ 1; 2; . . . ;N: As g ! 1 the above equations approximate to the following
form:

_̄yk ¼ �K0 sin ȳk � F ðy0Þ : (25)

If F ðy0Þ=K0 tends to a constant a along the solution of (4) as t ! þ1 and jajp1;
then either � arcsin a or pþ arcsin a ðmodð2pÞÞ is a stable equilibrium point of (25).
Denote the stable equilibrium point by ck: It follows that ȳk ! ck; i.e., yk ! y0 þ ck

as t ! þ1: Hence the governing equation of rk approximate to the following form:

_rk ¼ _r0e
ick

as t ! þ1; where ck are constants, k ¼ 1; 2; . . . ;N: This implies that the members
eventually move in the same manner as the leader does if the directions of motion are
disregarded.
Next, we consider the case of K1o0; i.e., g ! 0: From Eqs. (7) we have

sinðȳk �YÞ ! sinðck �CÞ; cosðȳk �YÞ ! cosðck �CÞ

as g ! 0: For g ¼ 0; i.e., confined to M, the following equalities hold for k ¼

1; . . . ;N

sinðȳk �YÞ ¼ sinðck �CÞ; cosðȳk �YÞ ¼ cosðck �CÞ : (26)

From Eqs. (17), (18) and (26) we have

sin ȳk ¼ sinðȳk �YþYÞ ¼ � sin ck; cos ȳk ¼ cosðȳk �YþYÞ ¼ � cos ck :

Summing above equalities from k ¼ 0 to N and using constraints (16), we get

XN

k¼1

cos ȳk ¼ �
K0

K1
;
XN

k¼1

sin ȳk ¼ 0 : (27)

It follows that Nḡ ¼ �K0=K1;Nh̄ ¼ 0; i.e., Pȳ ¼ 0; which is equivalent to constraints
(16) restricted on M. Therefore, Pȳ ! 0 as g ! 0: This implies that the weighted
centroid of the particle group tends to a fixed position as t ! þ1:
As for the motion of each individual member, it follows from Eqs. (26) that

yk ¼ ck � C; ðmodð2pÞÞ (28)

on M for k ¼ 1; . . . ;N ; where C ¼ C� y0 �Y: This means that for k ¼ 1; . . . ;N ; yk

are constants on M for given parameters ck (this corresponds to the splay state of
the phase oscillators in Ref. [20]). Thus all members move along straight lines on the
manifold M. So without considering the directions of motion we can say that the
members will move in the same manner.
Summarizing the above discussion we arrive at the following conclusion.

Proposition. Consider the particle model in Eqs. (1).
1.
 If K140; then the members will all move in the same direction eventually.

2.
 If K1o0; the members will move in such a manner that the weighted centroid of the

particle group approaches a fixed point and they move along straight lines as t ! þ1 .
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3.
 In each case, neglecting the directions of motion, all members will eventually move in

the same manner as t is large enough.

4.
 Particularly, in the case of K140; if F ðy0Þ=K0 tends to a constant in ½�1; 1� along

solutions of Eq. (4) as t ! þ1; then all members will eventually move in the same

manner as the leader does by neglecting motion directions.

The results imply that the members will eventually tend to form certain
formations.

Remark 1. In above discussion, if we impose constraints

XN

k¼1

cos ck ¼ �
K0

K1
;
XN

k¼1

sin ck ¼ 0

on ck; k ¼ 1; 2; . . . ;N instead of Eq. (17), and

cos C� cos Y ¼ 0 for g ¼ 0 :

on the initial values of Y and C instead of Eq. (18), we can obtain the same results.

Remark 2. Observe that the condition of 0oK0=K1oN is only used in the case of
K1o0 and is not required for the case of K140: Therefore, Proposition (1) and (4)
also hold for (1) for K140 and K0=K1XN:
4. Numerical simulations

To demonstrate the preceding theoretical analysis, we have performed a lot of
numerical simulations. Here we display some of them. In the numerical simulations,
we choose one leader and ten members. In the figures presented below, the arrows on
the curves indicate the directions of the motion. The values of t in the figures indicate
the time slots for simulations.
Fig. 1 presents a set of simulation results for position evolutions of eleven particles

described by Eqs. (1) with F ðy0Þ ¼ 0:25 and different values of the pair ðK0;K1Þ as
indicated in the figures. In Figs. 1(a)–(d), each curve indicates a trajectory of the
motion of a particle and the trajectories of the leader are the same as shown in Fig.
1(a). Figs. 1(a) and (b) show the motion of the particles with K140 and K1o0;
respectively. The trajectories in the similar shapes in each figure show that all the
members almost move in the same manner if one neglects the direction of motion.
This agrees with the analytical result of Proposition (3). Fig. 1(a) also shows that the
members and the leader move in the same manner, as predicted in Proposition (4)
because of F ðy0Þ=K0 � 0:5 for all t in this case. From Fig. 1(b), it can be seen that the
particle members are split into two subgroups whose motions are indicated by the
dashed and the solid lines, respectively. The simulations in Figs. 1(b) and (c) are
carried out for the same value of ðK0;K1Þ and different running time of t ¼ 6� 104

and 1:6� 104; respectively. Fig. 1(d) is an enlargement of the box at the center of
Fig. 1(c), in which we have removed some trajectories for the sake of clarity and only
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Fig. 1. Phase diagrams of the position dynamics of the particles with F ðy0Þ ¼ 0:25 and different values of
the pair ðK0;K1Þ: The abscissa axis and the ordinate axis represent the first and the second components of
the position vector r, respectively, in (a)–(d).
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left the trajectories of the leader and the weighted centroid, as well as that of 4
members which are arbitrarily chosen and indicated by the thick lines in Fig. 1(c).
From Fig. 1(d), we can see that the trajectory of the weighted centroid of the group
appears to be a point. This agrees with the analytical result of Proposition (2) that
for K1o0; the position of the weighted centroid of the group approaches a
fixedpoint eventually.
Figs. 2(a)–(c) show the evolutions of the directions of motion of the particles

illustrated in Fig. 1. In Fig. 2(a), all yk evolve almost along a straight line in time.
This indicates that for K140 the members move in the same direction. Fig. 2(b) is an
enlargement of the box in Fig. 2(a), in which a small distance between the two lines
shows that there exists a small difference between the directions of the members and
the leader. Fig. 2(c) shows the evolutions of the motion directions for K1o0: It can
be seen that all yk evolve almost along two parallel straight lines with a distant of p
as t41:3� 104: This indicates that the motile particle members are split into two
subgroups with each group moving in the same direction while the two groups
moving in opposite directions. Also, the segments in Fig. 2(c) for to1:3� 104 are
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Fig. 2. Evolutions of the directions of the motion of the particles considered in Fig. 1.
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almost straight and are steeper than those for t41:3� 104: This indicates that the
directions of motion of the particles change more slowly as t increases. From Fig.
2(c) it can be evaluated that the slope of the lines for t41:3� 104 is about 3: 1915�
10�4: Thus the change of the direction of motion is very small. This agrees with the
analytical result of Proposition (2) that the particle members will eventually move
along straight lines as t ! þ1:
Fig. 3 shows another group of simulation results of model (1) with two sets of

parameters. Figs. 3(a)–(d) assume that F ðy0Þ ¼ 0:25 and the indicated values of the
pair ðK0;K1Þ: Figs. 3(e) and (f) take a different function of the form F ðy0Þ ¼
1=ðy20 þ 1Þ and different values of the pair ðK0;K1Þ as indicated in the figures. In
Figs. 3(a)–(d), the trajectories of the leader are the same as that in Fig. 1(a). Fig. 3(b)
is an enlargement of the box in Fig. 3(a). The simulations in Figs. 3(a)–(e) all agree
very well with the analytical results of Proposition that the particle members will
move in the same manner if the directions of motion are neglected and that the
weighted centroid tends to a fixed point for K1o0: Moreover, noting K0=K1 ¼

10 ¼ N from the values of ðK0;K1Þ in Fig. 3(e) and F ðy0Þ=K0 ! 0 as t ! þ1; the
simulation in Fig. 3(e) verifies Remark 2.
Besides, some new features can also be seen from Figs. 3(a)–(d) and (f).

Specifically, for those K0 with small jK0j; the particle members move along straight
lines as shown in Figs. 3(a) and (c) in finite time slots. Fig. 3(d) shows that the
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Fig. 3. Phase diagrams of the position dynamics of the particles with F ðy0Þ ¼ 0:25 in (a)–(d) and F ðy0Þ ¼
1=ðy20 þ 1Þ in (e) and (f). The different values of pair ðK0;K1Þ are indicated in the figures. In (a)–(f), the

abscissa axis and the ordinate axis represent the first and the second components of the position vector r,

respectively. The dashed lines in (e) and (f) indicate the trajectory of the leader.
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members move in a similar manner to that the leader does when K140 and F ðy0Þ=K0

tends to a constant a with jaj41 as times increasing (F ðy0Þ=K0 � 5 for all time in
Fig. 3(d)). Fig. 3(f) shows that the directions of the particle members are
almost opposite to that of the leader for K1o0 and K0=K1 ¼ N
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(K0=K1 ¼ N ¼ 10 in Fig. 3(f)). Detailed analysis about these features are under
investigation currently and will be presented elsewhere.
5. Conclusions

We have considered the collective dynamics of a motile particle group
with a leader. Analytical study shows that the motion of all member
particles depends on that of the leader and the coupling weights. In general, two
types of collective motion will occur, depending on different ranges of the coupling
weights among the members. One is that all members move in the same direction and
the other is that all members move so that the weighted centroid of the group
approaching a fixed position. In each case, all member particles will eventually
move in the same manner if neglecting the directions of motion. Numerical
simulations agree with the analytical results very well. The results of this paper show
that it is possible to control the particle group by steering the motion of the leader.
This is of practical interest in applications such as control of multi-robots or
autonomous vehicles.
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Appendix A
Proof of Assertion. First we prove (i). We only show G1X0: The case of G2X0 can
be established similarly.
For g ¼ 0; from the expression of G1; we have

G1 ¼ �
XN

k¼1

cosðck �CÞ �
K0

K1
cos Y :

Since cosðck �CÞ ¼ cos ck cos Cþ sin ck sinC; by (16)–(18), we get G1 ¼ 0:
For 0ogo1; since

qG1

qg
¼
XN

k¼1

1� cos2ðck �CÞ

½1� g cosðck �CÞ�2
þ 2g

K0

K1
ð1þ cos YÞ þ

K0

K1
40

for all ðY;C; y0Þ; then G1 strictly increases in g: Therefore G1X0 for all ðg;Y;C; y0Þ
and the equality holds if and only if g ¼ 0:
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Now we prove (ii). We only show the case of K140: The case of K1o0 can be
done similarly. For K140; we have

G4 ¼ _v � g sin YF ðy0Þ

¼

ð2� g sin YÞF ðy0Þ if y0 2 P2 ;

ð�2� g sin YÞF ðy0Þ if y0 2 P3 ;

ðy0 � y�0 � 2� g sin YÞF ðy0Þ if y0 2 P1ðþÞ ;

ðy0 � y�0 þ 2� g sin YÞF ðy0Þ if y0 2 P1ð�Þ :

8>>>>><
>>>>>:

According to Lemma 1, G440 always holds as t is large enough. &
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