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Abstract

In this paper, we discuss average consensus problem in undirected networks of dynamic agents with fixed and switching topologies as well
as multiple time-varying communication delays. By employing a linear matrix inequality method, we prove that all the nodes in the network
achieve average consensus asymptotically for appropriate communication delays if the network topology is connected. Particularly, several
feasible linear matrix inequalities are established to determine the maximal allowable upper bound of time-varying communication delays.
Numerical examples are given to demonstrate the effectiveness and the sharpness of the theoretical results.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the last few years, distributed coordination of networks
of dynamic agents has received a major attention within the
control community. This is partly due to broad applications of
multiagent systems in many areas including cooperative con-
trol of unmanned air vehicles, formation control [4], flocking
[3,10,14,18–20], attitude alignment of clusters of satellites [8],
and congestion control in communication networks. A critical
problem for coordinated control is to design appropriate pro-
tocols and algorithms such that the group of agents can reach
consensus on the shared information in the presence of limited
and unreliable information exchange as well as communication
delays.

Consensus problems have a long history in the field of com-
puter science, particularly in automata theory and distributed
computation [11]. In recent years, a number of researchers
have investigated in consensus problems from various perspec-
tives [1,4,7,9,12,13,15–17,21]. In [15], consensus problems
are addressed under a variety of assumptions on the network
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topology (fixed or switching), presence or lack of communi-
cation delays, and directed or undirected network information
flow. The work in [13] focuses on consensus problems under
dynamically changing interaction topologies.

It is well-known that, in general, unmodelled delay effects
in a feedback mechanism may destabilize an otherwise stable
system. This destabilizing effect of time-delays has been well
documented in the literature [6]. In multi-agent systems, time-
varying delays may arise naturally, e.g., because of the moving
of the agents, the congestion of the communication channels,
the asymmetry of interactions, and the finite transmission speed
due to the physical characteristics of the medium transmitting
the information (e.g., acoustic wave communication between
underwater vehicles).

So far, just few works considered consensus problems when
communication is affected by time-delays. Two different con-
sensus protocols have been investigated in [13] and [15], re-
spectively. The case when the common constant delay affects
only those variables that are actually being communicated be-
tween distinct agents in the network was studied in [13]. In [15],
the authors studied average consensus problems in undirected
networks with a common constant communication delay and
fixed topology. A necessary and sufficient consensus condition
was established.
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The aim of this paper is to consider average consensus
problems in undirected networks with fixed and switching
topologies as well as multiple time-varying communication
delays. Due to the introduction of switching topologies and
time-varying delays, the present methods in [13] and [15] do
not apply. In this paper, we shall introduce a linear matrix
inequality method to deal with this problem. The linear matrix
inequality method has been extensively used in delay system.
However, to the best of our knowledge, few people extend this
approach to consensus problems. Here, with the help of the
linear matrix inequality approach we will prove that the group
of dynamic agents can reach average consensus asymptotically
for appropriate time-varying delays if the network topology is
connected. Our results are presented in terms of feasible linear
matrix inequalities, from which the maximal allowable upper
bound of time-varying communication delays can be easily
obtained by using Matlab’s LMI Toolbox [5]. Numerical ex-
amples are worked out to illustrate the effectiveness and the
sharpness of our theoretical results.

This paper is organized as follows. Section 2 contains the
problem formulation, Section 3 is the main results. Some sim-
ulation results are presented in Section 4. The conclusion is
given in Section 5.

Throughout this paper, the notation ∗ represents the elements
below the main diagonal of a symmetric matrix. AT means the
transpose of the matrix A. In is a n×n identity matrix. We say
X > Y if X−Y is positive definite, where X andY are symmetric
matrices of same dimensions. ‖ ·‖ refers to the Euclidean norm
for vectors.

2. Problem statement

Let G = (V,E,A) be a weighted undirected graph of or-
der n (n�2) with the set of nodes V = {v1, . . . , vn}, set of
edges E ⊆ V × V, and a symmetric weighted adjacency ma-
trix A = [aij ] with nonnegative adjacency elements aij . The
node indexes belong to a finite index set I = {1, 2, . . . , n}.
An edge of G is denoted by eij = (vi, vj ). The adjacency ele-
ments associated with the edges of the graph are positive, i.e.,
eij ∈ E if and only if aij > 0. Moreover, we assume aii = 0
for all i ∈ I. The set of neighbors of node vi is denoted by
Ni = {vj ∈ V: (vi, vj ) ∈ E}. An undirected graph is called
connected if any two distinct nodes of the graph can be con-
nected via a path that follows the edges of the graph. Let xi ∈
R denote the value of node vi . We refer to Gx = (G, x) with
x = (x1, . . . , xn)

T as a network (or algebraic graph) with value
x ∈ Rn and topology (or information flow) G. The value of a
node might represent physical quantities such as attitude, posi-
tion, temperature, voltage, and so on.

Suppose each node of a graph is a dynamic integrator agent
with dynamics

ẋi = ui, i ∈ I. (1)

We say a state feedback

ui = ki(xj1, . . . , xjmi
) (A)

is a protocol with topology G if the cluster Ji ={vj1 , . . . , vjmi
}

of nodes with j1, . . . , jmi
∈ I satisfies the property Ji ⊆

{vi} ∪ Ni .
Under protocol (A), system (1) reduces to

ẋi = ki(xj1, . . . , xjmi
), i ∈ I. (2)

Let a = x(0) be the initial state of system (2). We say system
(2) achieves X-consensus asymptotically if for any a ∈ Rn,
xi(t) → X(a) as t → ∞ for each i ∈ I, where X: Rn → R be
a function of n variables x1, . . . , xn. Particularly, when X(x)=
Ave(x(0)) = (

∑n
i=1 xi(0))/n, we say system (2) achieves av-

erage consensus asymptotically. Solving the average consen-
sus problem is a typical example of distributed computation
of a linear function X(a) = Ave(a) using a network of dy-
namic systems. This is a more challenging task than reach-
ing a consensus with initial state a, since an extra condition
limt→∞ xi(t)=Ave(a), i ∈ I has to be satisfied, which relates
the final state of the system to the initial state a.

Let �ij denote the time delay for information communicated
from agent j to agent i. By now, two different consensus pro-
tocols have been investigated when communication is affected
by time-delays. One is

ui(t) =
∑

vj ∈Ni

aij [xj (t − �ij ) − xi(t − �ij )].

In the simplest case where �ij = � and the network topology is
fixed and undirected, average consensus is achieved if and only
if � ∈ [0, �/2�max(L)), where L is the graph Laplacian matrix
of topology G [15]. Another consensus protocol is

ui(t) =
∑

vj ∈Ni

aij [xj (t − �ij ) − xi(t)].

That is, communication delays only affect the information state
that is being transmitted. In the case when �ij = � and the net-
work topology is directed and dynamically changing, A consen-
sus result has been established in [13]. However, for a switching
topology, the case where communication delays are different
and time-varying remains unknown.

In this paper we consider average consensus problem under
the following protocol:

ui(t) =
∑

vj ∈Ni

aij [xj (t − �ij (t)) − xi(t − �ij (t))], (3)

where �ij (t), i, j ∈ I, are time-varying communication delays
and satisfy �ij (t) = �ji(t), i.e., the delays in transmission from
xi to xj and from xj to xi coincide.

Under protocol (3), system (1) has the following form

ẋi (t) =
∑

vj ∈Ni

aij [xj (t − �ij (t)) − xi(t − �ij (t))]. (4)

Rewrite (4) in matrix form as

ẋ(t) = −
r∑

k=1

Lkx(t − �k(t)), (5)
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where r �n(n − 1)/2, �k(·) ∈ {�ij (·) : i, j = 1, . . . , n} for
k = 1, . . . , r , and Lk = [lkij ] is the matrix defined by

lkij =

⎧⎪⎨
⎪⎩

−aij , j 	= i, �k(·) = �ij (·),
0, j 	= i, �k(·) 	= �ij (·),∑n

j=1lkij , j = i.

Based on the assumptions �ij (·) = �ji(·) and A is symmetric,
it is easy to see that Lk is symmetric and

∑r
k=1Lk = L = [lij ],

where L is the graph Laplacian induced by the information flow
G and is defined by

lij =
{∑n

j=1,j 	=iaij , j = i,

−aij , j 	= i,

By definition, each row sum of the Laplacian matrix L and the
matrix Lk is zero. Therefore, system (5) always has a continuum
of equilibrium points of the form x∗ = �1 in which there exists
a unique equilibrium point corresponding to every initial value
x(0) ∈ Rn, where � ∈ R and 1 = (1, . . . , 1)T.

In the following, we assume that time-varying delays in (5)
satisfy

(C1) 0��k(t)�hk , �̇k(t)�dk for t �0 and k = 1, . . . , r ,
where hk > 0 and dk �0, or

(C2) 0��k(t)�hk for t �0 and k = 1, . . . , r , where hk > 0.
That is, nothing has been known about the derivative of �k(t).

In a network of mobile agents, it is not hard to imagine
that some of the existing communication links can fail sim-
ply due to the existence of an obstacle between two agents.
The opposite situation can arise where new links between
nearby agents are created because the agents come to an ef-
fective range of detection with respect to each other. We are
interested in investigating such a problem: for a network with
switching topology, whether it is still possible to reach a con-
sensus or not. In this case, the following hybrid system is
considered:

ẋ(t) = −
r∑

k=1

Lksx(t − �k(t)), s = �(t) ∈ I0, (6)

where Lks is the symmetric matrix defined as above, and∑r
k=1 Lks = Ls is the Laplacian of graph Gs = (V,Es ,As)

that belongs to set �. The set � is a finite collection of graphs
of order n with an index set I0 ⊂ Z. The map �(t) : R → I0
is a switching signal that determines the network topology.

The following lemmas play an important role in the proof of
the main results.

Lemma 1 (Olfati-Saber and Murray [15]). Assume that G with
the Laplacian L is a connected undirected graph, then all eigen-
values but one simple eigenvalue at zero of L have positive
real-parts.

Lemma 2. Assume that G with the Laplacian L is a connected
undirected graph, then we have

ETLE > 0,

where

E =
[
In−1

E0

]
, E0 = (−1, −1, . . . ,−1).

Proof. By Lemma 1 we have that �2(L) > 0, where

0 = �1(L) < �2(L)� · · · ��n(L)

are all eigenvalues of L. On the other hand, since L is symmetric,
by the basic theory of Linear Algebra we know

xTLx��2(L)xTx if 1Tx = 0.

For any x̄ ∈ Rn−1 and x̄ 	= 0, by the definition of E, we can
easily get 1T(Ex̄) = 0. Thus, for any x̄ ∈ Rn−1 and x̄ 	= 0, we
have

x̄TETLEx̄ = (Ex̄)TL(Ex̄)

��2(L)(Ex̄)T(Ex̄)

> 0.

This implies that ETLE > 0. The proof of Lemma 2 is com-
plete. �

Lemma 3 (Schur complement, Boyd et al. [2]). Let M, P, Q
be given matrices such that Q > 0. Then[

P M

MT −Q

]
< 0 ⇐⇒ P + MQ−1MT < 0.

Lemma 4. For any real differentiable vector function x(t) ∈
Rn and any n × n constant matrix W = WT > 0, we have the
following inequality

h−1
k [x(t) − x(t − �k(t))]TW [x(t) − x(t − �k(t))]

�
∫ t

t−�k(t)

ẋT(s)Wẋ(s) ds, t �0, (7)

where �k(t) satisfies (C1) or (C2).

Proof. Using Schur complement, we get(
ẋT(s)Wẋ(s) ẋT(s)

ẋ(s) W−1

)
�0, s� − hk .

Integrating the above inequality from t − �k(t) to t and noting
that �k(t)�hk for t �0, we have(∫ t

t−�k(t)
ẋT(s)Wẋ(s) ds xT(t) − xT(t − �k(t))

x(t) − x(t − �k(t)) hkW
−1

)
�0.

Using Schur complement again, we get (7). �

3. Main results

In this section, we will consider the average consensus prob-
lem in two cases: networks with fixed topology and networks
with switching topology. Throughout this section, we assume
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that xi(t) = 0 for any t < 0 and i ∈ I. By introducing a lin-
ear matrix inequality approach, we prove system (5) or (6)
achieves average consensus asymptotically for appropriate up-
per bounds of communication delays �k(t) if its network topol-
ogy is connected. Some feasible linear matrix inequalities are
also established to determine the maximal allowable upper
bound of delays that guarantees the average consensus of the
system.

3.1. Networks with fixed topology

Consider system (5) with fixed topology G. Notice that 1TL=
0 and 1TLk = 0 for k = 1, . . . , r . Thus, � = Ave(x) is an in-
variant quantity. The invariance of Ave(x) allows the following
decomposition of x:

x = �1 + �, (8)

where �= (�1, . . . , �n)
T ∈ Rn satisfies 1T�=0. Here, we refer

to � as the disagreement vector. The vector � is orthogonal to
1. Moreover, � evolves according to the (group) disagreement
dynamics given by

�̇(t) = −
r∑

k=1

Lk�(t − �k(t)). (9)

In the following, we assume xi(t) = 0 for any t < 0.

Theorem 1. Assume that (C1) holds and the topology of G
is connected. Then for any 0�dk < 1, k = 1, . . . , r , there
exist appropriate hk > 0 such that system (5) achieves av-
erage consensus asymptotically. Particularly, the allowable
hk can be obtained from the following feasible linear matrix
inequality:

	 =
⎡
⎢⎣

	11 	12 	13

∗ 	22 	23

∗ ∗ 	33

⎤
⎥⎦< 0, (10)

where

	11 = ET(−2L +
r∑

k=1

dkPk)E,

	12 = [ET(L1+(1−d1)P1)E, . . . , ET(Lr+(1−dr)Pr)E],
	13 = −[ETLQ1, . . . , E

TLQr ],
	22 = diag{ET((d1 − 1)P1 − h−1

1 Q1)E, . . . , ET

((dr − 1)Pr − h−1
r Qr)E}

	23 =
⎡
⎢⎣

ETL1Q1 · · · ETL1Qr

...
. . .

...

ETLrQ1 · · · ETLrQr

⎤
⎥⎦ ,

	33 = diag{−h−1
1 Q1, . . . ,−h−1

r Qr},

E is defined as in Lemma 2, Pk > 0 and Qk > 0 are matrices
of appropriate dimensions.

Proof. We first prove that (10) is always feasible for any
1 > dk �0 under the assumption of Theorem 1. That is, there
exist appropriate Pk > 0, Qk > 0 and hk > 0 such that (10)
holds if the topology of G is connected. Since the topology
of G with Laplacian L is connected, by Lemma 2, we have
ETLE > 0. Choosing Pk = 
In and Qk = In for 
 > 0 and
k = 1, . . . , r , and using the Schur complement (Lemma 3), we
get that (10) is equivalent to

⎡
⎢⎢⎢⎢⎢⎣

−2ETLE ETL1E · · · ETLrE

∗ −h−1
1 ETE · · · 0

...
...

. . .
...

∗ ∗ · · · −h−1
r ETE

⎤
⎥⎥⎥⎥⎥⎦

+ 


⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r∑
k=1

dkE
TE (1 − d1)E

TE · · · (1 − dr)E
TE

∗ (d1 − 1)ETE · · · 0
...

...
. . .

...

∗ ∗ · · · (dr − 1)ETE

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
r∑

k=1

hkF
TF < 0, (11)

where

F T = [−LE L1E · · · LrE]T.

Noting that ETLE > 0, for any dk �0, by choosing h0 and 
0
sufficiently small, we can easily see that (11) holds for hk �h0
and 
�
0. Hence, (10) is always feasible for any 0�dk < 1
under the assumption of Theorem 1.

Next, we prove that, for any 0�dk < 1, system (5) achieves
average consensus asymptotically for 0��k(t)�hk , where hk ,
k = 1, . . . , r , are determined by (10). By the decomposition
(8), it suffices to prove that the zero solution of system (9)
is asymptotically stable if (10) holds. Now, construct the Lya-
punov function as the following:

V (t) = �T(t)�(t) +
r∑

k=1

∫ t

t−�k(t)

�T(s)Pk�(s) ds

+
r∑

k=1

∫ t

t−hk

(s − t + hk)�̇
T
(s)Qk �̇(s) ds, (12)

where Pk , Qk and hk satisfy (10). Rewrite system (9) as the
following equivalent form

�̇(t) = −L�(t) +
r∑

k=1

Lk�k(t), (13)
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where �k(t) = �(t) − �(t − �k(t)). Along the trajectory of the
solution of system (13), by (C1) we have

V̇ (t)�−2�T(t)L�(t)+2
r∑

k=1

�T(t)Lk�k(t)+
r∑

k=1

�T(t)Pk�(t)

−
r∑

k=1

(1 − dk)�
T(t − �k(t))Pk�(t − �k(t))

+
r∑

k=1

hk �̇
T
(t)Qk �̇(t)

−
r∑

k=1

∫ t

t−�k(t)

�̇
T
(s)Qk �̇(s) ds

= �T(t)(−2L+
r∑

k=1

dkPk)�(t)+
r∑

k=1

(dk−1)�T
k (t)Pk�k(t)

+ 2
r∑

k=1

�T(t)[Lk + (1 − dk)Pk]�k(t)

+
r∑

k=1

hk �̇
T
(t)Qk �̇(t) −

r∑
k=1

∫ t

t−�k(t)

�̇
T
(s)Q�̇(s) ds.

By (13) and Lemma 4, we have

V̇ (t)�yT(t)	̂y(t), (14)

where yT(t) = (�T(t), �T
1 (t), . . . , �T

r (t)), and

	̂ =
[
	̂11 	̂12

∗ 	̂22

]

+
r∑

k=1

hk[−L L1 · · · Lr ]TQk[−L L1 · · · Lr ]

with

	̂11 = −2L +
r∑

k=1

dkPk ,

	̂12 = [L1 + (1 − d1)P1 · · · Lr + (1 − dr)Pr ],
	̂22 = diag{(d1 − 1)P1 − h−1

1 Q1, . . . , (dr − 1)Pr − h−1
r Qr}.

Noting that 1T� ≡ 0, we can rewrite � = E�̃, where �̃ =
(�1, . . . , �n−1)

T, and E is defined as in Lemma 2. Thus, by
(14), we have

V̇ (t)� ỹT(t)WT	̂Wỹ(t),

where ỹ(t)=(�̃(t), �̃1(t), . . . , �̃r (t)), �̃k(t)= �̃(t)− �̃(t −�k(t))

for k = 1, . . . , r , and W = diag{E, . . . , E} is an n(1 + r) ×
(n − 1)(1 + r)-dimensional matrix. Using Schur complement
(Lemma 3), we see that (10) implies that WT	̂W < 0. There-
fore, there exists a positive constant � > 0 such that

V̇ (t)� − �‖�̃(t)‖2.

On the other hand, using the basic inequality a2 +b2 �2ab for
a, b ∈ R and � = E�̃, we can easily get ‖�̃(t)‖2 �‖�(t)‖2/n.
Thus, we have

V̇ (t)� − (�/n)‖�(t)‖2.

This implies that the zero solution of system (9) is asymptoti-
cally stable by Theorem 2.1 in [6, Chapter 5]. Hence, for any
1 > dk �0, system (5) achieves average consensus asymptoti-
cally for 0��k(t)�hk where hk is determined by (10). The
proof of Theorem 1 is complete. �

Remark 1. For any 0�dk < 0, the maximal allowable hk guar-
anteeing average consensus in Theorem 1 can be obtained from
the following optimization problem:

Maximize hk

s.t. 0�dk < 1, Pk > 0, Qk > 0, and (10).

This optimization problem can be solved by using the GEVP
solver in Matlab’s Control Systems Toolbox [12].

When dk �1 or nothing has been known about the derivative
of �k(t), we may construct the following Lyapnunov function
as

V (t) = �T(t)�(t) +
r∑

k=1

∫ t

t−hk

(s − t + hk)�̇
T
(s)Qk �̇(s) ds.

Similar to the proof of Theorem 1, we can easily obtain the
following corollary:

Corollary 2. Assume that (C2) holds and the topology of G is
connected. Then there exist appropriate hk > 0, k = 1, . . . , r ,
such that system (5) achieves average consensus asymptoti-
cally. Particularly, the allowable hk can be obtained from the
following feasible linear matrix inequality:


 =
⎡
⎢⎣


11 
12 
13

∗ 
22 
23

∗ ∗ 
33

⎤
⎥⎦< 0, (15)

where


11 = −2ETLE,


12 = [ETL1E · · · ETLrE],

13 = 	13,


22 = diag{−h−1
1 ETQ1E, . . . ,−h−1

r ETQrE},

23 = 	23,


33 = 	33,

E is defined as in Lemma 2, 	13, 	23 and 	33 are the same as in
Theorem 1, and Qk > 0 are matrices of appropriate dimensions.

3.2. Networks with switching topology

Consider system (6) with the switching topology {Gs : s =
�(t) ∈ I0}, where I0 ⊂ Z is a finite index set, and �(t) is a
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switching signal that determines the network topology. Under
arbitrary switching signal, �=Ave(x) is also an invariant quan-
tity. This allows the decomposition of any solution x(t) of sys-
tem (6) in the form (8). Therefore, the disagreement switching
system induced by (6) takes the following form:

�̇(t) = −
r∑

k=1

Lks�(t − �k(t)), s = �(t) ∈ I0. (16)

Theorem 3. Assume that (C1) holds and the topology of Gs

is connected for each s ∈ I0. Then for any 1 > dk �0, k =
1, . . . , r , there exist appropriate hk > 0 such that for any switch-
ing signal �(·), system (6) achieves average consensus asymp-
totically. Particularly, the allowable hk can be obtained from
the following feasible linear matrix inequalities:

	s =
⎡
⎢⎣

	11s 	12s 	13s

∗ 	22s 	23s

∗ ∗ 	33s

⎤
⎥⎦< 0, s ∈ I0, (17)

where

	11s = ET(−2Ls +
r∑

k=1

dkPk)E,

	12s = [ET(L1s+(1−d1)P1)E, . . ., ET(Lrs+(1−dr)Pr)E],
	13s = −[ETLsQ1, . . . , E

TLsQr ],
	22s = diag{ET((d1 − 1)P1 − h−1

1 Q1)E, . . . , ET

((dr − 1)Pr − h−1
r Qr)E},

	23s =
⎡
⎢⎣

ETL1sQ1 · · · ETL1sQr

...
. . .

...

ETLrsQ1 · · · ETLrsQr

⎤
⎥⎦ ,

	33s = diag{−h−1
1 Q1, . . . ,−h−1

r Qr},
E is defined as in Lemma 2, Pk > 0 and Qk > 0 are matrices
of appropriate dimensions.

Proof. We first prove that (17) is always feasible for any
1 > dk �0 under the assumption of Theorem 3. Since the topol-
ogy of Gs with Laplacian Ls is connected, by Lemma 2 we
have that ETLsE > 0 for each s ∈ I0. Set Pk =
In (
 > 0) and
Qk = In, similar to the proof of Theorem 1 we have that, for
any 1 > dk �0, there exist sufficiently small h0s and 
0s such
that 	s < 0 for hk �h0s and 
�
0s . Thus, for any 1 > dk �0,
(17) is feasible under the assumption of Theorem 2. One of its
feasible solutions is Pk = 
In with 
 = mins∈I0{
0s}, Qk = In

and hk = mins∈I0{h0s}for k = 1, . . . , r .
Now, we prove that, for any 1 > dk �0, system (6) achieves

average consensus asymptotically for any switching signal �(t)

and time delay 0��k(t)�hk , where hk , k = 1, . . . , r , are de-
termined by (17). It suffices to prove that the zero solution of
switching system (16) is asymptotically stable for any switch-
ing signal �(t) if (17) holds. Let V (t) defined as in (12) be the

common Lyapunov function of (16). Assume that the sth sub-
system is activated at time t, i.e., �(t) = s. Consider the right-
hand side derivative of V (t), i.e., D+V (t), along the trajecto-
ries of (16). Similar to the analysis in Theorem 1, (17) implies
that there exists �s > 0 such that D+V (t)� − �s‖�(t)‖2. Let
�=min{�s : s ∈ I0}. Then we have D+V (t)� −�‖�(t)‖2 for
any switching signal �(t). By Theorem 2.1 in [6, Chapter 5],
we have that the zero solution of (16) is asymptotically stable
for any switching signal. Thus, for any 1 > dk �0, system (6)
achieves average consensus asymptotically for 0��k(t)�hk

where hk is determined by (17). The proof of Theorem 3 is
complete. �

The following corollary is an immediate consequence of The-
orem 3.

Corollary 4. Assume that (C2) holds and the topology of Gs

is connected for s ∈ I0. Then there exist appropriate hk > 0,
k=1, . . . , r , such that for any switching signal �(·), system (6)
achieves average consensus asymptotically. Particularly, the
allowable hk can be obtained from the following feasible linear
matrix inequalities:


s =
⎡
⎢⎣


11s 
12s 
13s

∗ 
22s 
23s

∗ ∗ 
33s

⎤
⎥⎦< 0, s ∈ I0, (18)

where


11s = −2ETLsE,


12s = [ETL1sE · · · ETLrsE],

13s = 	13s ,


22s = diag{−h−1
1 ETQ1E, . . . ,−h−1

r ETQrE},

23s = 	23s ,


33s = 	33s ,

E is defined as in Lemma 2, 	13s , 	23s and 	33s are the same
as in Theorem 3, and Qk > 0 are matrices of appropriate di-
mensions to be determined.

4. Examples and simulation results

The following six undirected graphs with 0–1 weights will
be needed in the analysis of this section.

Example 1. Consider an undirected network with fixed topol-
ogy Ga in Fig. 1. For simplicity, we assume that �ij (t)= �1(t).
That is r = 1. It is easy to see that Ga is a connected graph.
By Theorem 1, we have that system (5) with fixed topology
Ga achieves average consensus asymptotically for appropriate
h1 > 0. On the other hand, using the Matlab’s LMI toolbox to
solve (10) and (15) we get the following estimates on h1 for
different d1:

(1) For d1 = 0, i.e., �1(t) ≡ h1, we have h1 �0.353. On
the other hand, based on the result in [15], we know that this
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system achieves average consensus asymptotically if and only
if h1 < �/2� = 0.395, where � = 4 is the largest eigenvalue of
the Laplacian L associated with the topology Ga . It is evident
that our estimate on h1 is very close to its critical value. The
simulation result also reveals this fact (see Fig. 2).

(2) We have h1 �0.303 for d1 = 0.5; h1 �0.261 for d1 =
0.9, and h1 �0.249 when nothing has been known about the
derivative of the time-varying delay �1(t).

Remark 2. The state trajectories of the system associated with
topologies Gb and Gc are shown in Fig. 3. By comparing,
it is clear that the allowable delay increases as the number
of the different communication links increases. This may be
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Fig. 1. Six examples of undirected connected graphs.
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Fig. 2. Consensus problem with communication time-delays on graph Ga given in Fig. 1.

reasonable since (10) in this case is equivalent to[−2ETLE ETLE

∗ −h−1
1 ETQ1E

]
+
[
d1E

TP1E (1−d1)E
TP1E

∗ (d1−1)ETP1E

]

+ h1

[−ETL

ETL

]
Q1[−LE LE] < 0 (19)

and the algebraic connectivity (or �2(L)) increases as the num-
ber of the different communication links increases [15]. We
believe that the delay bound increases as the algebraic connec-
tivity increases. We hope to kindle reader’s interest in further
research on this problem.

Remark 3. In Example 1 we find an interesting phenomenon
that the allowable delay decreases as the derivative of the delay
increases. This becomes apparent since the second part of (19)
decreases as d1 increases, i.e.,[
d1E

TP1E (1−d1)E
TP1E

∗ (d1−1)ETP1E

]
<

[
d2E

TP1E (1−d2)E
TP1E

∗ (d2−1)ETP1E

]

when d1 < d2.

Example 2. Consider an undirected network with the switch-
ing topology {Gd, Ge, Gf }. In this case, some of the exist-
ing communication links fail and some of them are created
due to the moving of the agents. Here, we assume also that
�ij (t) = �1(t). We can easily see that topologies Ge, Gd and
Gf are all connected. Thus, by Theorem 3, we have that there
exists an appropriate h1 > 0 such that system (6) associated
with the switching topology Ge, Gd and Gf achieves average
consensus asymptotically for arbitrary switching signal �(t).
By solving (17) and (18) we get the following estimates on h1
for different d1: h1 �0.254 for d1 = 0; h1 �0.226 for d1 = 0.5;
h1 �0.208 for d1 = 0.9, h1 �0.205 when nothing has been
known about the derivative of the time-varying delay �1(t). In
Fig. 4, we present two simulation results under random switch-
ing signal for the case of constant delay which indicate that for
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Fig. 3. Consensus problem with communication time-delays on graphs Gb and Gc given in Fig. 1.
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Fig. 4. Consensus problem with communication time-delays on switching topologies {Gd, Ge, Gf } given in Fig. 1.

the obtained h1 = 0.254, the asymptotic average consensus is
ensured and the asymptotic average consensus disappears for
the value of h1 beyond 0.491.

5. Conclusion

This paper has considered the average consensus problems in
undirected networks of dynamic agents with fixed and switch-
ing topologies as well as multiple time-varying communication
delays. By introducing a linear matrix inequality method, we
proved that all the nodes in the network can reach average con-
sensus asymptotically for an appropriate upper bound of com-
munication delays if the network topology is connected. Some
feasible linear matrix inequalities have also been established
to get the maximal allowable upper bound of the time-varying
communication delays. Some simulation results have been pre-
sented to demonstrate the effectiveness and the sharpness of
our theoretical results.
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