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1. INTRODUCTION 

The notion of strict positive realness (SPR) of trans- 
fer functions plays an important role in absolute stabil- 
ity theory, adaptive control and system identification[l- 
51. In recent years, stimulated by the robustness analy- 
sis method[6-9], the study of robust strictly positive real 
transfer functions has received much attention, and great 
progress has been made[10-231. However, most available 
results belong to  the category of robust SPR analysis. 
Much work remains to  be done in robust SPR synthesis. 

Synthesis problems are mathematically more difficult 
than analysis problems. Usually, the synthesis problems 
require answering questions of existence and construction, 
whereas the analysis problem can be dealt with under 
the assumption of existence. Synthesis problems are of 
more practical significance from the engineering applica- 
tion viewpoint. 

The basic statement of the robust strictly positive real 
synthesis problem is as follows: Given an n-th order ro- 
bustly stable polynomial set F, does there exist, and 
how to construct a (fixed) polynomial b(s)  such that, 
Va(s)  E F, a(s) /b(s )  is strictly positive real? (If such 
a polynomial b(s)  exists, then we say that F is synthesiz- 
able.) 

When F is a low-order (n 5 3) interval polyne 
m i d  set, the synthesis problem above has been con- 
sidered by a number of authors and several important 
results['3~14~16~17~19-2'] have been presented. But when 

F is a high-order (n 2 4) interval polynomial set, even 
in the case of n = 4, the synthesis problem above is still 

By the definition of SPR, it is easy to know that the 
Hurwitz stability of F is a necessary condition for the ex- 
istence of polynomial b(s).  In [13-151, i t  was proved that, 
if all polynomials in F have the same even (or odd) parts, 
such a polynomial b(s) always exists; In [13,14,16,19-211, 
it was proved that, if n 5 3 and F is a stable interval 
polynomial set, such a polynomial b(s) always exists; Re- 
cent results in [18-201 show that, if n 5 3 and F is the 
stable convex combination of two polynomials ul(s )  and 
a2(5), such a polynomial b(s) always exists. Some suffi- 
cient condition for robust SPR synthesis are presented in 
[10,17,19-211, especially, the design method in [19,20] is 
numerically efficient for high-order polynomial segments 
and interval polynomials, and the derived conditions in 
[19,20] are necessary and sufficient for robust SPR synthe- 
sis of low-order (n  5 3) polynomial segments or interval 
polynomials. 

[16] 
transformed the robust SPR synthesis problem for the 
fourth-order interval polynomial set into linear program- 
ming problem in 1990 (namely, equations (58)-(60) in 
[16]), and by using linear programming techniques, they 
concluded that such a linear programming problem always 
had a solution, thus, it was thought that  the robust SPR 
synthesis problem for the fourth-order interval polynomial 
set had been solved. But in 1993, a synthesizable example 
in [17] showed that the corresponding linear programming 
problem had no solution. Hence, for the fourth-order in- 
terval polynomial set, on one hand, we could not prove 
theoretically the existence of robust SPR synthesis, on 
the other hand, we could not find a counterexample that 
is not synthesizable. Therefore, the robust SPR synthesis 
problem for interval polynomial set, even in the case of 
n = 4, is still an open problem[16~17~13~14~19-21~. 

In this paper, we prove that, for low-order (n 5 4) 
stable polynomial segments or interval polynomials, there 
always exists a fixed polynomial such that their ratio is 
SPR-invariant, thereby providing a rigorous proof of An- 
derson's claim on SPR synthesis for the fourth-order sta- 

open[l6>17?19-211. 

It should be pointed out that, Anderson et al. 
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ble interval polynomials. Moreover, the relationship be- 
tween SPR synthesis for low-order polynomial segments 
and SPR synthesis for low-order interval polynomials is 
also discussed. Our proof is constructive, and is useful in 
solving the general SPR synthesis problem. 

2. MAIN RESULTS 

In this paper, Pn stands for the set of n-th order polyno- 
mials with real coefficients, R stands for the field of real 
numbers, a ( p )  stands for the order of polynomial p(.), and 
Hn c P" stands for the set of n-th order Hurwitz stable 
p ol ynomials . 

In the sequel, p(.)  E I", q(.) E Pn, f(s) = p(s)/q(s) 
is a rational function. 

Definition 1[107169177231 A biproper rational func- 
tion f(s) (i.e., a ( p )  = a(q)) is said to be strictly positive 
real(SPR), if 

(i) f(s)  is analytic in Re[s] 2 0, i.e., q(-) E Hn; 
(ii) Re[f(jw)] > 0, 
If f(s) = p(s)/q(s) is proper, it is easy to get the fol- 

lowing property: 
Lemma 1[l11 If f ( s )  = p(s)/q(s) is a proper rational 

function, q(s)  E H", and Vw E R,Re[f(ju)] > 0, then 

, 

V u  E R. 

p ( s )  E ET" U Ern-1. ~. , 
Denote F = {U;(.) = S" + x;=la,(')sn-',i = 1,2} as 

the two endpoint polynomials of a stable polynomial seg- 
ment 

Lemma 2[161 VU(S)  E F, b(s)/a(s) is strictly positive 
real, if and only if, b(s)/a;(s), i = 1,2, are strictly positive 
real. 

(convex combination), it is easy to prove that: 

Consider an interval polynomials 

n 

Denote F = {ai(.) = sn + cy=l a~"s"-', i = 1,2,3,4} as 
the four Kharitonov vertex polynomials of Id6-']. 

Lemma 316] K is robustly stable if and only if ai(.) E 
H " , i  = 1,2,3,4.  

The following result was proved by Dasgupta and 
Bhagwat["]: 

Lemma 4[1°1 Va(s)  E K, b(s) /a(s)  is strictly positive 
real, if and only if, b(s)/ai(s),i = 1,2,3,4,  are strictly 
positive real. 

First, for a low-order (n 5 3) stable convex combina- 
tion of polynomials, by [18-201, we have 

Theorem 1["] If F = {ai(s) = sn + Cr=lc$i)sn-l, 
i = 1,2.} is the set of the two endpoint polynomials of a 
low order (n 5 3) stable segment of polynomials (convex 
combination) Is;, then there always exists a fixed polyno- 
mial b(s) such that Vu(.) E F, b(s ) /a(s )  is strictly positive 
real. 

Furthermore, if F is the four Kharitonov vertex poly- 
nomials of a low-order (n < 3) stable interval polynomial 
set, then we have 
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Theorem 2[13,14,16,17,19-211 If F = {ai(.) = sn + 
C~=lal(')sn-', i = 1,2,3,4.} is the set of the four 
Kharitonov vertex polynomials of a low order (n 5 3) sta- 
ble interval polynomial family K, then there always exists 
a fixed polynomial b(s)  such that Vu(.) E K, b(s)/a(s) is 
strictly positive real. 

The following two theorems are the main results of this 
paper: 

Theorem 3 If F = {U(.) = s4+a1s3+a2s2+a3s+a~, 
b(s) = s4 + bls3 + b2s2 + b3s + b4) is the set of the two end- 
point polynomials of a fourth order stable segment of poly- 
nomials (convex combination), then there always exists a 
fixed polynomial c ( s )  such that c ( s ) / a ( s )  and c ( s ) / b ( s )  
are strictly positive real. 

Consider the fourth-order interval polynomials 

Denote 

q ( s )  = s4 + ats3  + a i s 2  + a i s  +a;  
4 s )  = s4 + a;s3 + a,s2 + a3+s + a: 
a3(s) = s4 + 4 8 3  + a,s2 + a,s + a: 
a4(s) = s4 + a;s3 + .,+2 + .;s + a; 

as the four Kharitonov vertex polynomials of K[6-91. 
Theorem 4 If F = { q ( s ) , i  = 1,2,3,4} is the set of 

the four Kharitonov vertex polynomials of a fourth order 
stable interval polynomial family, then there always exists 
a fixed polynomial b(s) such that Va(s)  E F, b(s ) /u(s )  is 
strictly positive real. 

Note that in Theorem 3, c ( s ) / u ( s )  and c(s ) /b(s )  being 
strictly positive real implies vx E [0,1], 3 6  
being strictly positive real (by Lemma 2); similarly, in 
Theorem 4, Va(s)  E F,  b(s)/a(s) being strictly positive 
real implies Vu(s) E K, b(s) /u(s )  being strictly positive 
real (by Lemma 4). 

3. PROOFS OF MAIN RESULTS 

In order to prove the main results above, we must first 
establish some lemmas. 

Lemma 5 Suppose U(.) = s4+a~s3+a2s2+a3s+a4 E 
H4, then the following quadratic curve is an ellipse in the 
first quadrant of the sc-y plane: 

a3 
a1 

and this ellipse is tangent with y axis a t  (0, -), tangent 
a3 

a1 
with the lines z = a1 and a3y - a4z = 0 at  (al ,  a2 - -) 

and ( 4 a3a4 ), respectively. 

verified by a direct calculation. 

a2a3 - a1a4' a2(13 - ala4 
Proof: Since U(.) is Hurwitz stable, Lemma 5 can be 



Let a(s)  = s4 + als3 + a 2 2  + a39 + a4 E H4, for nota- 
tional simplicity, denote 

i-2: := ((2, Y)l(a: - 4a4)Z2 + 2(2a3 - aia2)zy + a?y2 
-2(a2a3 - 2 ~ 1 ~ 4 ) ~  - 2ala3y + U$ < 0) 

R; := ((2, y)la1 - 2 >_ 0, a22 - a1y - a3 2 0, 

R" := Q:UR,a 
a3y - a42 > 0) 

apparently, R" is a bounded convex set in the 2-y plane. 
Lemma 8 Suppose U(.) = s4+a1s3+a2s2+a3s+a~ E 

H4 and (z,y) E R", let c(s) := s 3 + z s 2 + y s + ~ ,  where E is 
positive and sufficiently small,then tlw E R, Re[-] 4 j w  1 > 

4 P )  
0. 

where E > 0 and is sufficiently small. 
Proof: Suppose (z,y) E R", let c(s) := s3+zs2+ys+~, 

Vw E R, consider 

+E(W4 - a2w2 + a4)] 

4J.w) 
a h w )  

In order to prove that 'dw E R,Re[-] > 0, let t = w 2 ,  

we only need to prove that, for any sufficiently small E > 0, 

f(t) := t[(Ul - z)t2 + (a22 - a1y - a3)t + (a3y - a42)] 
+E(@ - a2t + a4) > 0, vt E [O, +CO). 

Since (2, y) E. R", by definition of R" and Lemma 5,  (z, y) 
satisfies a1 - 2 > 0, a3y - a45 > 0, and 

[a22 - a l y  - a3I2 - 4(al - 2)(a3y - a42) < 0 

or 

CL1 - 2 2 O,U22-U1y-U3 2 O , U 3 Y - U 4 2  > 0 

Thus, Vt  E [O, $.CO) 

(a1 - z)t2 + (a22 - a1y - a3)t + (a3y - a42) > 0. 

On the other hand, we have f(0) > 0, and for any 
E > 0, if t is a sufficiently large or sufficiently small positive 
number, we have f(t) > 0. Namely, there exist 0 < t l  < t z  
such that, for all E > 0, t E [0, tl] U [t2, +CO), f ( t )  > 0. 

Denote 

M = inf t [ ( u ~ - 2 ) t ~ + ( a ~ c - a ~ y - Q 3 ) t + ( Q 3 y - a ~ s ) ] ,  
t a t 1  $21 

N = SUP I t2  -azt+a4 I 
t€[ti ,tal  

M 
N then M > 0 and N > 0. Choosing 0 < E < -, by a direct 

calculation, we have 

f(t) = t[(a1 - z)t2 + (a22 - a1y -asp + (a3y - a42)] 
+ E ( t 2  - a2t + a4) > 0,vt E [O, +m). 

Namely 

VW E R, Re[-] > 0. 
, 4 3 w )  

This completes the proof. 
Lemma 7 Suppose U(.) = s4 + u1s3 + u2s2 + a35 + 

a4 E H4,b(s) = s4 + bls3 + b2s2 + b3s + a4 E H4, if 
Xb(s) + (1 - X)a(s) E IT4, X E [0,1], then f2: n R! # 4. 

If VX E [0,1], Xb(s) + (1 - X)a(s) E H4, by 
Lemma 5, for any X E [O, 11, 

Proof: 

fi:a := {(Z,Y)l(a;z - 4a~4)Z' + 2 ( 2 a ~ 3  - a ~ l a ~ 2 ) z y  
+a:,y - z(aA2aA3 - 2aAlaA4)Z 
-2axiaxsY + 4 3  < 0) 

is also an elliptic region in the first quadrant of the 2-y 
plane, where ax; := a; + X(bi - a;), i = 1,2,3,4. Appar- 
ently, when X changes continuously from 0 to 1, 0 :~ will 
change continuously from fl: to 0:. 

= 4, by Lemma 5 (without loss Now assume R t  n 
b3 a3 a3 b3 
b i  ai a1 b l  

of generality, suppose - > -), 31 E [- -3 and U # 0, 
such that the following l i e  I 

X Y  I :  - + - = I  
u u  

is tangent with 0: and R: simultaneously, and I separates 
R: and R! (i.e., 0: and 0: are on different sides of I). 

Since I is tangent with Rz, consider 

(2) 
-2(UzU3 - 2UlU4)Z - 2UlU3y -#- U ;  = 0 

since a ( s )  is Hurwite stable and U # 0, by a direct calcula- 
tion, we know that the necessary and sufficient condition 
for 1 being tangent with 0: is 

(3) 

(4) 

(5) 

a 2  - a12 - uzav + a32) + u4a = 0 

U U ~  - blu2 - b2uv + b3v + b 4 ~  = 0 

uu2 - ax1212 - QAZUV + UA3U + UA4U = 0 

Since I is tangent with R:, for the same reason, we have 

From (3) and (4), we obviously have VX E [0,1], 

(5) shows that I is also tangent with R:A(VX E [0, l]), but 
I separates 0: and fit, and when X changes continuously 
from 0 to 1, RtA will change continuously from Rz to R:, 
which is obviously impossible.This completes the proof. 

Lemma 8 If F = {ai(s) , i  = 1,2,3,4.} is the set of 
the four Kharitonov vertex polynomials of a fourth order 
stable interval polynomial family, then R.2 c Ra4 and 
a"= c R"1. 

Proof: By the definition of the notation a", it is easy 
to see that 

R"1 = ((2,y)l ( U t  - z)t2 + ( a i 2  - a t y  - u8)t 

R " l =  {(z,y)( (a; - " ) t 2 + ( Q ; 2 - u ; y - u ~ ) t  

52- = {(z,y)( ( U t  - z)t2 + (a,. - u t y  - a8)t 

R"' = {(z,y)l (U; - z)t2 + ( U t 2  - a;y - u,')t 

+(a,y - a42)  > 0,vt E [O,oo)} 

+(afy - u i z )  > 0, vt E [O, 00)) 

+(a iy  - a,'.) > 0,vt E [O, CO)) 

+(ail/ - a42) > 0,vt E [O, CO)} 
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Obviously, we have QQ2 c QQ4 and QQs c Q.1. This com- 
pletes the proof. 

Lemma 9 If F = {ai(s),i = 1,2,3,4.} is the set of 
the four Kharitonov vertex polynomials of a fourth order 
stable interval polynomial family, then nt=lQai # d. 

Lemma 9 plays an important role in proving Anderson's 
claim on robust SPR synthesis for the fourth-order stable 
interval polynomials. For a complete understanding of it, 
we give three different proofs in the sequel. 

By Lemma 8, we only need to prove that 
Oa2 nilus # d. By Lemma 7, we know that QZ2 nQ:s # 4, 
but QQ2 = QZ2UQ,aa and Qas = Q;suQ,"s, thus QQ2nQaa # 
4. This completes the proof. 

Since F is the set of the four Kharitonov 
vertex polynomials of a fourth order stable interval poly- 
nomial family, by Lemma 5,  in the z-y plane, QE* and 

QZ4 are both tangent with z = 0 at  (0, y )  (denote this 

tangent point as A24); OE1 and QEs are both tangent with 

x = 0 at  (0,") (denote this tangent point as A13). De- 

note the tangent point of OZ2 ( QZ4 ) and z = a; as 

Proof 1: 

Proof 2: 

(-4 
a1 

- 
U 

4- 
U+ U+ 

a1 a1 
Az(aT, a; - 4) ( A4(a;, u t  - 4) ); and denote the tan- 

- 
gent point of R;l ( Qzs ) and z = u t  as Al(af,a$ - 5) 

( A3(ulf,a; - 3) ). Furthermore, denote the intersec- 

tion points of z = a; and the straight line a r y  - aaz = 

O,a$y - a i z  = O as &(a;, -),B4(a;, --T-), re- 

spectively; and denote the intersection points of z = U;' 

and the straight lines a;y - a,z = 0,a;y - uzz  = 0 as 

Bl(at, y), B3(at, -), respectively. 

- 4 

a; a$ a: a; 
a,' a3 

u ta ,  u ta$  

a3 a3 
In what follows, (A,B)  stands for the set of points 

in the line segment connecting the point A and the 
point B ,  not including the endpoints A and B, [ A , B )  
stands for the set of points in the line segment con- 
necting the point A and the point B,  including the 
endpoint A, but not B ,  ( A , B ]  stands for the set of 
points in the line segment connecting the point A and 
the point B ,  including the endpoint B, but not A. 
Then it is easy to see that [A2,&) c Qa2,[A2,B2) C 
[A4,B4) C QQ4,[-43,B3) C QQs,[A3,B3) C [AI,&) C 
RQ1,  and (A24,A2] C QQ2,  (A24,A2] C OQ4, (A137A31 C 
OQ=, (A13, A31 c R"1. 

(AIS, 
+ a- If % = 3, i.e., a; = ut and a; = a i .  Then, take 

6 > 0,6 sufficiently small, by Lemma 5, it is easy to verify 

that (6, A) E n&'=,i2Zi, thus n$lQ"i # d. 

"1 4 
U+ 

01 

a+ a- 
Now, suppose 4 > -?- and 

a1 4 

al a;' a t  a1 

a2 - - ~ ~ ( ~ - 2 + ) u ; + ~  a: a- U -  a; 

I t  is easy to verify that 

Thus, we have A$ E [A2,B2). Hence A$ E [A2,B2) n 
(A13,A3]. Therefore A$ E ni4,1QQi. Thus n?==,QQ; # 4. 
Finally, with + > 3, if 

a+ a- 

a1 4 

then it is easy to see that (A13,A3] n (&4,A2] # 4 
and (A13, As] n (&4, A21 c n;=lOQi. Thus, we also have 
n:=lQQi # d. This completes the proof. 

uta: 
B 3 ( 4 ,  -7) are defined identically as in the Proof 2 

above. (A,  B )  stands for the set of points in the line seg- 
ment connecting the point A and the point B,  but not 
including the endpoints A and B.  

If --= - 3, i.e., a; = u t  and a; = a,'. Then, take 

6 > 0,6 sufficiently small, by Lemma 5, it is easy to verify 

that (6,") E nf=lQ;z, thus n:=lR"i # 4. 

a3 

a; - a- 
a1 4 

U+ 

a1 
a+ a- 

Now, suppose -& > &, then it is easy to see that 

n;=lRQi. Thus, we also have nf=lRui # 4. This completes 
the proof. 

Lemma 10 Suppose a(.) = s4+als3+a2s2+a3s+a4 E 

If4, b(s) = s3 + xs2 t ys t z, and Vu E R, Re[-] > 0, 
take 

a1 4 
(A13, B3) n (A24, B2) # d and (A13, B3) n (A247 B2) c 

b ( j w )  
4P) 

N 

b (s) := b(s)  + T .  c(s), T > 0, T sufficiently small 

where c(s) is a fixed fourth-order monic polynomial. Then 
N 

is strictly positive real. 
4 s )  N 

Proof: Obviously, a(a)  = a ( b ) ,  namely, i ( s )  and 
a(s)  have the same order. Since a(.) E H4, there exists 

w1 > 0 such that, for all I w 12 wl, &[-I > 0. Denote 
N 

b ( j w )  
4 3 w )  
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Ml 
NI 

Then M1 > 0 and N I  > 0. Choosing 0 < r < -, it can 

be directly verified that 

This completes the proof. 
Now Theorem 3 is proved by simply combining Lem- 

mas 5-7 and Lemma 10. Theorem 4 is proved by simply 
combining Lemmas 5-6 and Lemmas 9-10. 

4. DISCUSSIONS AND EXAMPLES 

The following three examples correspond to different cases 
in the proof of our main results. 

Example 1 Suppose ul( s) = s4 + 89s3 + 56s2 + 88s + 
l,az(s) = ~ ~ + 1 1 ~ ' + 5 6 ~ ~ + 8 8 ~ + 5 0 , a 3 ( ~ )  = s4+S9s3+ 
56s2+88s+50, ~ ( 5 )  = s4+lls3+56s2+88s+l are the four 
Kharitonov vertex polynomials of a fourth-order interval 
polynomial set K ,  it is easy to check using Kharitonov's 
Theorem that K is robustly stable. By our method as 
in the constructive proof of Theorem 4, it is easy to get 
(11,7.6657) E nt==,R"'. Thus, choose b(s) = s3 + 11s2 + 
7.76657s+~, where E is a sufficiently small positive number 
(E is determined by Lemma 6, in this example, 0 < E 5 3), 

tcrlce E = 2, by Lemma 6, Vw E R,Re[-] > 0 , i  = 

1,2,3,4.  Finally, let b (5) := b(s) + T - s4, where r > O , T  
sufficiently small ( r  is determined by Lemma 10, in this 

example, 0 < T 5 0.5), it is easy to check that - 

1,2,3,4,  are strictly positive real (note that b(s) and (s) 
are not unique). 

In this example, if we take F = {ul(s) = s4 + l ls3 + 
56s2+88s+50,u2(s) = s4-t-S9s3+56s2+88s+50}, then it 
is exactly the counter-example provided in [17]. I t  can be 
checked that F does not satisfy the sufficient conditions 
in [10,16,17], but we can use the methods in [13-15,19,20] 
to do SPR synthesis. When F is enlarged to the interval 
polynomial set K in this example, the synthesis methods 
in [13-151 fail too, but we can still use the methods in 
[19,20] to  do synthesis. It is quite straightforward to do 
synthesis using the method in this paper. 

Suppose ul(s) = s4 + 5s3 + 6s' + 4s + 
0.5, u ~ ( s )  = s4 + 2s3 + 6s' + 6s + 1, u ~ ( s )  = s4 + 5s3 + 
6s2 + 4s + 1, u ~ ( s )  = s4 + 2s3 + 6s2 + 6s + 0.5 are the four 
Kharitonov vertex polynomials of a fourth-order interval 
polynomial set K, it is easy to check using Kharitonov's 
Theorem that K is robustly stable. By our method as 
in the constructive proof of Theorem 4, it is easy to get 
(2,2.56) E @==,Q"i. Thus, choose b(s) = s3+2s2+2.56s+ 
E ,  where E is a sufficiently small positive number (in this 
example, 0 < E 5 l), take E = 0.5, by Lemma 6, Vw E 

R, Re[-] > 0, i  = 1,2,3,4.  Finally, let b (s) := b(s)+ 

T . s4, where T > 0, r sufficiently small (in this example, 

N 4 3 w )  

N 

b (3) i = 
4 5 ) '  

Example 2 

N 

U i ( W )  

N 

0 < r 5 0.5), it is easy to check that a,i = 1,2,3,4, 
ai(s) -.  , 

are strictly positive real. 
Suppose u=,(s) = s4 + 2 . 5 ~ ~  + 6s2 + 

4s + 0.5,uz(s) = s4 + 2s3 + 5s2 + 6s + 5,a3(s) = s4 + 
2 . 5 ~ ~  + 5s' + 4s + 5,u4(s) = s4 + 2s3 + 6s' + 6s + 0.5 
are the four Kharitonov vertex polynomials of a fourth- 
order interval polynomial set K ,  it is easy to check us- 
ing Kharitonov's Theorem that K is robustly stable. By 
our method as in the constructive proof of Theorem 4, it 
is easy to  get (1.1475,2.4262) E nf=lRai. Thus, choose 
b(s) = s3 + 1.14759' + 2.4262s + E ,  where E is a suffi- 
ciently small positive number (in this example, 0 < E 5 l), 
take E = 0.5, by Lemma 6, V u  E R, Re[-] > 0, i = 

1,2,3,4. Finally, let b (5) := b(s) + T s4, where T > 0, T 

sufficiently small (in this example, 0 < T 5 0.2), it is easy 

to check that a, i = 1,2,3,4,  are strictly positive real. 

From the proofs of Theorem 3 and The- 
orem 4, we can see that, this paper not only proves the 
existence, but also provides a design procedure. 

Lemma 10 actually holds for arbitrary 
n-th order  polynomial^[^^^^^]. 

The constructive synthesis method is 
also insightful and helpful in solving the general robust 
SPR synthesis problem. In fact, we have recently suc- 
ceeded in proving the existence on robust SPR synthesis 
for fifth-order stable convex combinations using a similar 
method[l']. The SPR synthesis for higher-order systems 
is currently under investigation. 

Robust stability of a polynomial segment 
can be checked by many efficient methods, e.g., eigenvalue 
method, root locus method, value set method,  et^.[^^^]']. 
Robust stability of K in Theorem 4 can be ascertained by 
checking only two Kharitonov vertex 

From the proofs of Lemma 9, we can 
establish the relationship between SPR synthesis for the 
fourth-order polynomial segments and SPR synthesis for 
the fourth-order interval polynomials. In fact, it  is easy 
to see that Theorem 3 implies Theorem 4. Similarly, The- 
orem 1 implies Theorem 2. However, similar results may 
not be true for higher-order (n 2 5) systems. This subject 
is currently under investigation. 

Remark 6 Our results can easily be generalized to  
discrete-time case. 

Finally, it should also be pointed out that, for the ver- 
1 m.1 

of a general polytopic polynomial family F, even if F is ro- 
bustly stable, it is still possible that there does not exist a 

polynomial c(s) E such that, Vw E R,Re[-] > 
0, for all U(.) E F. 

To see this, let us look at an example of a third order 
triangle polynomial family. 

Example 4 Let F = {al(s) = s3 + 2-69' + 379 + 
64, u ~ ( s )  = s3 + 17s2 + 83s + 978, US(S)  = s3 + 15s2 + 

Example 3 

b ( j w )  
ai ( j w )  

N 

N 

ai (3) 

Remark 1 

Remark 2 

Remark 3 

Remark 4 

Remark 5 

tex set F = {u,(s> = sn + CY==, u i i ) s n - ~ ,  i = 1,2, .  

4 j w )  

4 3 w )  
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28s + 415). It is easy to verify that u,(s) , i  = 1,2,3, are 
Hurwitz stable. Moreover, all edges o f F ,  i.e., Au,(s)+(l- 
X)u j (s ) ,  X E [0,11, i, j = 1,2,3, are also Hurwitz stable. 
Therefore, by Edge is robustly stable. 
O n  the other hand, by a direct computation, we can easily 
see that there does not exist a polynomial c(s) E €I2, such 

that Vw E R, Re[-] > 0, i = 1,2,3. 4 j w )  
a i ( 3 w )  

Note that, in this example, though there does not exist 
a polynomial c(s) E H 2  such that Vw E R,Re[-] d j w )  > 

4 3 w )  
0, i = 1,2,3. But if we take (s) = s3 + 6s2 + 73s + 68, 

i t  is easy to check * , i  = 1,2,3,  are strictly positive 

real. This shows some intrinsic differences between the 
SPR synthesis of interval polynomial families and the SPR 
synthesis of polytopic polynomial families. This problem 
deserves further investigation. 

N 

ai ( 5 )  

5. CONCLUSIONS 

We have proved that, for low-order (n 5 4) stable polyno- 
mial segments or interval polynomials, there always exists 
a fixed polynomial such that their ratio is SPR-invariant, 
thereby providing a rigorous proof of Anderson’s claim on 
SPR synthesis for the fourth-order stable interval polyno- 
mials. Moreover, the relationship between SPR synthesis 
for low-order polynomial segments and SPR synthesis for 
low-order interval polynomials has also been discussed. 
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