
Combustion Theory and Modelling
Vol. 11, No. 3, June 2007, 427–453

Theoretical analysis of the evolution from ignition kernel
to flame ball and planar flame

Z. CHEN∗ and Y. JU

Department of Mechanical and Aerospace Engineering, Princeton University,
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Dynamics of flame kernel evolution with and without external energy addition has been investigated
analytically and numerically. Emphasis is placed on the effects of radiation heat loss, ignition power and
Lewis number on the correlation and transition between the initial flame kernel, the self-extinguishing
flame, the flame ball, the outwardly propagating spherical flame and the propagating planar flame.
The present study extends previous results by bridging the theories of the non-adiabatic stationary
flame balls and travelling flames and allowing rigorous consideration of radiation heat losses. The
results show that the effects of radiation heat loss play an important role in flame regimes and flame
transition and result in a new isolated self-extinguishing flame. Furthermore, it is found that radiation
heat losses significantly increase the critical ignition radius and result in three different dependences
of the minimum ignition power on the Lewis number. Comparisons between the results from the
transient numerical simulation and those from the quasi-steady state analysis show a good agreement.
The results suggest that prediction of flame initiation without appropriate consideration of radiation
is not acceptable.
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1. Introduction

Understanding of flame initiation is important not only for fundamental combustion research
but also for fire safety control and the development of low-emission gasoline and homo-
geneous charge compression ignition (HCCI) engines. When an external energy is locally
deposited into a combustible mixture, there are four possible outcomes: an evolution from
outwardly propagating spherical flame to planar flame; a stationary flame ball; a propagat-
ing self-extinguishing flame; or a decaying ignition kernel (partially burning hot pocket)
[1–3]. The evolution of the flame kernel and the final outcome depends on the magnitude
of energy addition, fuel concentration, radiation heat loss and transport and kinetic prop-
erties. Efficient flame initiation with minimum energy deposition and successful control of
fire spreading highly depend on the understanding of the correlations between ignition ker-
nels, flame balls, self-extinguishing flames and propagating spherical and planar flames, as
well as the impacts of radiation intensity and the transport properties on the flame regime
transitions.

It is well known that for an unstretched planar flame, radiation heat loss defines the lean
and rich flammability limits of a fuel [4, 5]. If the planar flame is stretched, sub-limit flames
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may exist when the Lewis number is below a critical value [6–8]. For the same reason,
sub-limit flames also exist for curved flames such as spherical flames. It has been known
since the work of Zel’dovich et al. [9] that a diffusion controlled stationary flame ball with
a characteristic equilibrium radius (flame ball radius) can exist at a mixture concentration
lower than the flammability limit. A stability analysis showed that the adiabatic flame balls
are inherently unstable [10]. A small perturbation will cause the flame either to propagate
inward and eventually extinguish or to propagate outward and evolve into a planar flame.
The flame ball size is considered to be a critical parameter in controlling flame initiation
[9–11]. It was in Ronney’s microgravity experiments [1, 12–15] that stable flame balls and
self-extinguishing flames were first observed. Theoretical and numerical studies of flame balls
[16–18] demonstrated that radiation heat loss plays an important role in affecting the flame
ball size and stability. A flame ball with large equilibrium radius can be stabilized by radiation
heat loss. Recently, the self-extinguishing flames and self-wrinkling flames were studied by
Bechtold et al. [19], and the effects of radiation heat loss were investigated. However, since
these theoretical studies were only focused on the dynamics of separated phenomena such as
flame balls and self-extinguishing flames, the travelling flames were isolated from flame balls
and self-extinguishing flames. As a result, the relation between self-extinguishing flames and
flame balls and the relation between flame ball size and successful flame initiation of outwardly
propagating flames were not well understood.

Recognizing the importance of the missing relationship between flame balls and travelling
flames, a theoretical analysis by He and Law [3] was conducted to examine the transition
of a propagating spherical flame to a flame ball. Although it was concluded that radiation
heat loss has a significant effect on flame transition, the impact of radiation heat loss in the
unburned region was not considered. In order further to examine the effect of detailed chem-
istry and transport properties on the flame transition between travelling flames and flame
balls, numerical simulations were conducted for hydrogen–air mixtures at normal and ele-
vated pressures [20, 21]. The results confirmed the existence of flame transition predicted by
theory and provided quantitative comparison with experimental data. Because of the tremen-
dous computation cost of travelling flames, the numerical simulations were unfortunately
only limited to hydrogen mixtures. The effects of Lewis number on the flame transition and
the different contributions of radiation heat losses from burned and unburned zones on the
flame transitions remain unclear. A recent study by He [22] was motivated to study the flame
initiation at large Lewis numbers, but it did not consider radiation heat loss. This makes
the results less realistic because near limit flame initiation is dominantly affected by radi-
ation heat loss. Therefore, the role of the heat loss on flame transition and the correlation
between the flame regimes from ignition kernels to flame balls and propagating flames remain
unknown.

The present study is aimed at: (a) providing a general theoretical description of the flame
transition between the initial flame kernel, the self-extinguishing flame, the flame ball and
the outwardly propagating flame; and (b) bridging both the flame ball theory and the trav-
elling flame theory with specific emphasis on the effects of Lewis number and the indi-
vidual contribution of radiation heat losses from burned and unburned zones on the flame
regimes, flame transition and minimum flame initiation energy and kernel size. First, the
mathematical model is given. Then, based on the quasi-steady assumption, an analytical ex-
pression describing the flame propagating speed is obtained and validation in limiting cases
is demonstrated. The effects of radiation heat losses on flame regimes and flame transi-
tion, and ignition energy effects on flame initiation are studied. Finally, numerical simula-
tion of the time-dependent flame initiation problem is conducted to verify the theoretical
results.
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2. Mathematical model

We consider an unsteady spherical flame kernel evolution with and without an external ignition
source at the centre. By assuming constant thermal properties, the conservation equations for
energy and fuel mass are given as

ρ̃C̃P
∂ T̃

∂ t̃
= 1

r̃2

∂

∂ r̃

(
r̃2λ̃

∂ T̃

∂ r̃

)
− H̃ + q̃ω̃ (1a)
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− ω̃ (1b)

where t̃ , r̃ , ρ̃, T̃ and Ỹ are time, radial coordinate, density, temperature and fuel mass fraction,
respectively. q̃ is the reaction heat-release per unit mass of fuel, C̃P is the specific heat capacity
at constant pressure, λ̃ is the thermal conductivity and D̃ is the mass diffusivity of fuel. To
simplify the problem in the theoretical analysis, we also adopt the commonly used constant
density model [23] so that the convection flux is absent. The validation of this assumption will
be made later by transient numerical simulation. ω̃ is the reaction rate for one-step irreversible
reaction, ρ̃ ÃỸ exp(−Ẽ/R̃0T̃ ), in which Ã is the pre-factor of Arrhenius law, Ẽ the activation
energy, and R̃0 the universal gas constant. The volumetric radiation heat loss H̃ is estimated
by using the optically thin model, H̃ = 4σ̃ K̃ p(T̃ 4 − T̃ 4

∞), where σ̃ is the Stefan–Boltzmann
constant and K̃ p denotes the Planck mean absorption coefficient of the mixture.

By using the adiabatic planar flame speed S̃0
L and the flame thickness δ̃0

f = λ̃/ρ̃C̃P S̃0
L , the

velocity, length, time, temperature and fuel mass fraction can be normalized as

u = ũ
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(2)

where T̃∞ and Ỹ∞ denote the temperature and fuel mass fraction in the fresh mixture, and
T̃ad = T̃∞ + Ỹ∞q̃/C̃P is the adiabatic flame temperature of planar flame. By further attaching
the coordinate to the moving flame front, R = R(t), the non-dimensional equations take the
following form
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where Le = λ̃/ρ̃C̃P D̃ is the Lewis number and U the flame front propagating speed, U (t) =
d R(t)/dt . The radiation heat loss and chemical reaction rate are normalized, respectively, as

H = H̃ δ̃0
f

ρ̃C̃P S̃0
L (T̃ad − T̃∞)

ω = ω̃δ̃0
f

ρ̃ S̃0
L Ỹ∞

(4)

It can be seen that the present model extends the previous theoretical flame ball models [9, 16,
17] by including travelling flames and radiation heat loss on both the burned and unburned
sides, so that the correlation between flame ball and travelling flames and the impact of radiation
on the flame transition between different flame regimes can be qualitatively examined.

In the limit of large activation energy, chemical reaction occurs only within a very thin
zone of high temperature and the reaction rate can be replaced by a Delta function with jump
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conditions used at the flame front [23]

ω = exp

[
Z

2

T f − 1

σ + (1 − σ )T f

]
· δ(r − R) (5)

where Z = Ẽ(1 − σ )/R̃0T̃ad is the Zel’dovich number and σ = T̃∞/T̃ad the expansion ratio.
The jump relations at the flame interface becomes
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In the present study, we also examine the impact of external energy deposition on successful
flame initiation and flame transition. A constant energy flux is locally deposited in an initially
homogeneous mixture. For an initial flame kernel with a radius of R, the centre of the flame
kernel is located at r = 0, and 0 ≤ r ≤ R and R ≤ r < ∞ are respectively the burned and
unburned regions. By defining the flame as the location where fuel concentration goes to zero,
the boundary conditions for temperature and fuel mass fraction can be given as

r = 0, r2∂T/∂r = −Q, Y = 0 (7a)

r = R, T = T f , Y = 0 (7b)

r = ∞, T = 0, Y = 1 (7c)

where Q is the normalized ignition power given by

Q = Q̃

4πλ̃δ̃0
f (T̃ad − T̃∞)

(8)

3. Theoretical analysis

The unsteady problem given by equations (3a) and (3b) cannot be solved analytically. In fact,
as will be demonstrated later by unsteady numerical simulations, it is reasonable to assume
that in the attached coordinate moving with flame front, the flame can be considered as in
quasi-steady state (∂/∂t = 0). This assumption has been widely used in previous studies [10,
22, 24]. Therefore, the governing equations can be simplified to
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In addition, for the convenience of the algebraic manipulation the heat loss term H is approx-
imated by a linear function of normalized temperature as H = h · T and h is the heat loss
constant which takes the following form

h = 4σ̃ K̃ p δ̃
0
f (T̃ 4 − T̃ 4

∞)

ρ̃C̃P S̃0
L (T̃ − T̃∞)

≈ 4σ̃ K̃ pλ̃(
ρ̃C̃P S̃0

L

)2
T̃ 3

ad (10)

Note that the radiation heat loss constant involves the radiation intensity and the fuel con-
centration. For any given mixture composition, an increase of h means a decrease of fuel
concentration (decrease of flame speed). For methane–air flames, the heat loss constant h
calculated according to equation (10) is in the range of 0.001 to 0.1.
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3.1 Analytical solution without external energy addition

Equation (9) with boundary conditions given by equation (7) can be solved analytically for
Q = 0. An exact solution of temperature and fuel mass fraction distribution can be found.
For fuel lean cases, the fuel mass fraction in burned gas region (0 ≤ r ≤ R) is zero and that
in unburned gas region (R ≤ r < ∞) is obtained by solving equation (9b) with boundary
conditions given by equations (7b) and (7c).
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As to the temperature distribution, for adiabatic flames (h = 0), the analytical solution is
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For non-adiabatic flames, since the radiation properties in burned and unburned gases may be
different, we use h1 and h2 to represent the heat loss constants in the burned and unburned
regions, respectively, in order to examine the individual contribution of the radiation heat

losses from these two regions. By defining ki =
√

U 2 + 4hi (i = 1, 2), an analytical solution
of temperature distribution is obtained
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where
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0
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Note that this exact solution removes the requirement of small heat loss assumption (h ∼
1/Z ≤ 1) which is commonly used in the previous studies [16, 17, 23]. Therefore, the present
study provides a more rigorous consideration of radiation modelling to understand the rela-
tion between the spherical flames and the far field propagating planar flames in the limit of
R → ∞.

By using jump relations given by equation (6), one obtains an algebraic system of equations
for flame propagating speed U , flame radius R and flame temperature T f
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where
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Therefore, the present study extends the study of He [22] by considering the coupling of
radiation heat loss with the flame kernel evolution, which is the key mechanism for near limit
flames, and allows bridging between the spherical flame limits and the flammability limit of
planar flames. By numerically solving equation (14), the relation between flame propagating
speed, flame radius and flame temperature and the existence of different flame regimes at
different radiation heat loss constants (or different fuel concentrations) and Lewis numbers
can be obtained.

3.2 Validation in limiting cases

In the following it will be shown that, in different limiting cases, the current model recovers
the previous results of stationary flame balls [16, 17], outwardly propagating spherical flames
[24] and planar flames [4, 23].

3.2.1 Stationary flame ball. In previous studies [16, 17], the non-adiabatic stationary flame
ball was investigated via asymptotic analysis assuming small heat loss (h1 = hin/Z ,h2 =
hout/Z2) and the relation between heat loss and flame radius was obtained

Ln
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= Lin
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)2
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)
(15)

where
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√
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.

T f Z and RZ are flame temperature and radius of adiabatic stationary flame ball [9].
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]
(16)

In the present study, the exact solution for fuel mass fraction and temperature distribution
is obtained without using small heat loss assumption. In the limit of U = 0, equation (14)
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reduces to the following form for non-adiabatic stationary flame ball

T f
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If small heat loss assumption (h1 = hin/Z , h2 = hout/Z2) is used and high-order terms of 1/Z
are neglected, the above relation can be reduced to the same form as equation (15). Therefore,
the flame ball solution [16, 17] is a limiting case of the present result.

3.2.2 Outwardly propagating spherical flames. A flame speed relation for propagating
spherical flames was obtained by Frankel and Sivashinsky [24]. It is readily seen that the
present result given by equation (14) recovers the same result in the limit of zero heat loss and
large flame radius (h1 = h2 = 0 and R � 1). Specifically, for R � 1, the exponential integral
can be represented by an asymptotic series

R−2e−U LeR

/ ∫ ∞

R
τ−2e−U Leτ dτ ≈ U Le + 2

R
(18)

By using the above expansion and defining V = U + 2/R, equation (14) reduces to the
following form

T f V = V + 2
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= exp
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]
(19)

The following relation can be immediately derived from equation (19), which is exactly the
same equation given by Frankel and Sivashinsky [24]

VLnV = Z

R

(
1

Le
− 1

)
(20)

As such, the present models are valid in both limits of flame ball and travelling flames and
can provide the relationship and transition mechanism between these two flames during flame
kernel growth.

3.2.3 Planar flame speed and flammability limit. In the limit of R → ∞, the functions
F and G become

F(k1 R, 1 + U/k1, −U/k1)

F(k1 R, U/k1, −U/k1)
→ 1
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Therefore, equation (14) reduces to
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2
= U = exp

[
Z

2

T f − 1

σ + (1 − σ )T f

]
(21)

Asymptotically, when the heat loss is in the order of 1/Z in the limit of large Zel’dovich
number (h1 = hin/Z , h2 = hout/Z , and Z � 1), equation (21) recovers the classical theory
of flammability limit for planar flames [4, 23]

L = −U 2Ln(U 2) with L = hin + hout = Z (h1 + h2) (22)

The flammability limit is defined by L = 1/e and U = e−1/2. Therefore, equation (14) is a
general solution to describe the dynamics of flame kernel growth and depicts a clear correlation
between the ignition kernel, flame ball, propagating curved flames and planar flames. In the
following section, we will demonstrate the role of radiation heat loss, Lewis number and
external energy addition in flame regimes and flame initiation.
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3.3 Effects of radiation heat losses from the burned and unburned regions

Radiation heat losses from the burned and unburned zones affect the flame temperature in
different ways. Heat loss from the unburned zone will directly reduce the flame temperature.
However, heat loss from the burned region only affects the flame temperature via the heat
conduction from the flame. In addition, the radiation heat loss depends on the ratio of high
temperature volume and the flame front surface area. As the flame kernel grows, the ratio
changes significantly. For example, the normalized radiation heat losses from burned and
unburned zones can be given as

Hin = h1

∫ R

0

T (r ) · r2dr

/(
R2 dT

dr

∣∣∣∣
R−

− R2 dT

dr

∣∣∣∣
R+

)
(23a)

Hout = h2
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R
T (r ) · r2dr

/(
R2 dT

dr

∣∣∣∣
R−

− R2 dT

dr
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R+

)
(23b)

where (R2 dT
dr |R− − R2 dT

dr |R+ ) is the total heat generation from chemical reaction. By using the
temperature distribution obtained in equation (13), the ratio of these heat losses in the limit of
small and large flame radius becomes

Hin

Hout
=

⎧⎪⎨
⎪⎩

0 if R → 0

h1

h2

·
√

1 + 4h2/U 2 + 1√
1 + 4h1/U 2 − 1

if R → ∞ (24)

The above qualitative result shows that the radiation heat losses from burned and unburned
zones will have different impact on flame temperature and flame transition. Unfortunately, in
previous theoretical studies [3, 22], the radiation heat loss in the unburned region was simply
neglected and the competing role of radiation heat losses from the unburned and burned zones
as the flame kernel grows were not well understood.

In the following we will take an example of CH4-air flames and use equation (14) to
demonstrate how differently the radiation heat losses from the burned and unburned regions
affect the flame temperature and speed. For flames around stoichiometric equivalence ratio,
we choose Z = 10 and σ = 0.15. Equation (23) is used to evaluate the radiation heat losses
from different zones and the total normalized radiation heat loss is the summation of them
Hall = Hin + Hout.

Figure 1 shows the dependence of normalized heat loss and flame propagating speed on the
flame radius for Le = 1 and h = 0.015. It is seen that there are two branches in the U − R
diagram: the fast stable branch abc and the slow unstable branch cde. At point c, the flame
is extinguished at a finite propagating speed because the normalized heat loss reaches its
maximum on the fast flame branch abc. It is also observed that the normalized total heat loss
changes non-monotonically as the flame radius increases. There exists a minimum value as
the flame reaches point b for fast branch and point d for slow branch. This phenomenon can
only be explained by considering the individual contributions of heat losses in the burned and
unburned zones.

The dependences of the normalized radiation heat losses in the burned and unburned zones,
Hin and Hout, are shown in figure 1(b). It is seen that Hin increases monotonically with flame
radius while Hout decreases monotonically with flame radius. It is shown that the radiation
heat loss from the unburned zone Hout remains nearly constant when flame radius is larger
than 20 and it is one order smaller than Hin (Hout/Hin < 0.1 when R > 20). This means that
the effect of heat loss in the unburned zone becomes weaker as the flame grows, but it does
not mean that the heat loss from the unburned zone can be neglected because heat losses from
these zones affect flame temperature in different ways. The rapid increase of flame speed and
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Figure 1. The dependence of normalized radiation heat loss and flame propagating speed on flame radius for Le =
1 and h = 0.015: (a), Hall − R and U − R; (b), Hin − R and Hout − R.
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the peak of the radiation heat loss in the region of R < 20 are caused by the competition of
radiation heat losses from the burned and unburned zones.

For the radiation heat loss larger than the critical heat loss (L = 1/e and hc = 0.0184) of
the flammability of the planar flame, a flame will not exist at large flame radius. Figure 2
shows the dependences of normalized heat loss and flame propagating speed on the flame
radius for Le = 1 and h = 0.0197. It is interesting to note that propagating spherical flame
still exists at intermediate flame radii and there are two extinction limits, respectively, at small
and large radii. The normalized total heat loss also changes non-monotonically and peaks
at both extinction limits. This indicates that the extinction at small radius is caused by the
heat loss in the unburned zone and the extinction at large radius by that from the burned
zone [figure 2(b)]. The appearance of the extinction limit at small flame radius has not been
reported in previous studies and the existence of this extinction limit will significantly affect
the ignition kernel size for successful flame initiation. Therefore, in order to understand the
flame kernel evolution adequate inclusion of the effect of radiation heat loss in the unburned
gas is particularly important.

3.4 Correlation between different flame regimes at different Lewis numbers

Figure 3(a) shows the flame propagating speed as a function of flame radius for various
radiation heat loss constants (or different fuel concentrations) with Le = 1. To demonstrate
further the importance of heat loss in the unburned zone, the results with radiation heat loss
only from the burned gas is shown in figure 3(b). In figure 3, solutions on the horizontal axis of
U = 0 denote the stationary flame balls [equation (17)] and those on the vertical axis at large
flame radius denote the planar flame [equation (21)]. The solution curves between the flame
ball solutions and the planar flame solutions represent the travelling spherical flames. It is seen
from figure 3(a) that for adiabatic flame (h = 0), the quasi-steady state flame ball exists at
small radius. As the flame size grows the flame speed increases rapidly because of the increase
of diffusion flux and eventually reaches the planar flame speed (U = 1) at a large flame radius.
When there is a small radiation heat loss (h = 0.005), the quasi-steady state flame ball solution
does not exist, and at a small flame radius, flame extinguishes at a finite flame speed. As the
flame radius increases, flame speed increases and ultimately reaches the corresponding non-
adiabatic planar flame speed. As the radiation heat loss further increases and becomes larger
than the critical heat loss associated with the flammability limit, as explained in figure 2(a),
sub-limit flames only exist at intermediate sizes and the radiation heat losses from the unburned
and burned zones yield two extinction limits at small and large flame radii, respectively. To
distinguish this flame regime from the self-extinguishing flame observed in the microgravity
experiments [1, 13], we will refer to it as an isolated self-extinguishing flame because this
flame cannot be initiated by a small localized ignition source. When only the radiation heat
loss in the burned zone is considered [figure 3(b)], it is seen that the quasi-steady state solution
of stationary flame ball exists for all heat losses. This obviously contradicts to the experimental
observation [14]. Therefore, it can be concluded that the present model can successfully predict
the existence of multiple flame regimes and the transition between the flame ball and travelling
flame. Radiation from the unburned zone yields a new flame island at intermediate flame radii.
The exclusion of radiation heat loss from unburned zone prevents correct prediction of the
flame regimes and their transitions.

The flame speed dependences on flame radius for Le = 0.8 and 1.2 are shown in figures 4(a)
and 5(a), respectively. For comparison, the results without radiation heat loss in the unburned
zone are shown in figures 4(b) and 5(b). The effects of Lewis number on the flame regime
and the flame transition can be found by comparing the results with figure 3. It can be seen
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Figure 2. The dependence of normalized radiation heat loss and flame propagating speed on flame radius for Le =
1 and h = 0.0197: (a), Hall − R and U − R; (b), Hin − R and Hout − R.
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Figure 3. Flame propagating speed as a function of flame radius for Le = 1.0 with different values of radiation heat
loss constants: (a), with heat losses in both the burned and unburned zones; (b), with heat loss only in the burned
zone.

that in a mixture at Le = 0.8, depending on the fuel concentration, there exists five different
flames: the flame ball, the outwardly propagating spherical flame, the planar flame, the self-
extinguishing flame (SEF) and the isolated self-extinguishing flame (ISEF). Because of the
Lewis number effect, the sub-limit SEF and ISEF can exist at much lower concentrations than
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Figure 4. Flame propagating speed as a function of flame radius for Le = 0.8 with different values of radiation heat
loss constants: (a), with heat losses in both the burned and unburned zones; (b), with heat loss only in the burned
zone.

the flammability limit of the planar flame. In addition, stationary flame balls start to appear at
small radiation heat losses. These results are consistent with the experimental observation [1,
12–15]. At Le = 1.2, figure 5(a) shows that neither flame ball nor sub-limit SEF or ISEF exist.
At large radiation heat loss or low fuel concentration, a flame does not exist because of the
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Figure 5. Flame propagating speed as a function of flame radius for Le = 1.2 with different values of radiation heat
loss constants: (a), with heat losses in both the burned and unburned zones; (b), with heat loss only in the burned
zone.

combined effect of radiation heat loss in the unburned gas and of the flame stretch. Obviously,
the predictions without inclusion of radiation heat loss in the unburned zone [figures 4(b),
5(b)] do not correctly predict this phenomenon. For example, figure 5(b) shows that flame
balls exist at all fuel concentrations. This is contrary to experimental observation.
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Figure 6. The dependence of critical Lewis number above which no solution exists for stationary flame ball for a
given heat loss constant.

The effects of radiation heat loss on the critical Lewis number below which a quasi-steady
state flame ball solution exists are shown in figure 6 for different radiation models. It is seen
that for a large radiation heat loss constant, stationary flame balls exist only for small Lewis
number, which is consistent with the experimental results in microgravity [1, 12–15]. The
importance of radiation heat loss in the unburned zone can also be observed. It is seen that the
effect of radiation heat loss on the critical Lewis number for flame ball is dominated by the
heat loss in the unburned zone. This conclusion is different from the previous studies in which
the radiation heat loss in the unburned region was often ignored. This is because the flame
ball size is very small and the diffusion zone is very broad at zero and small flame speed. As a
result, the radiation heat loss in the burned zone plays a negligible role in affecting the critical
Lewis number.

3.5 Effect of ignition energy on flame initiation

We now consider the case in which an external energy flux is deposited in the centre of
quiescent mixture and examine how the ignition energy affects the flame diagram and the
transition trajectory.

In the quasi-steady model, the ignition energy Q is modelled as a boundary condition
(related discussions are presented at the end of this section), that is

r2∂T/∂r |r=ε = −Q with ε → 0 (25)

The fuel mass fraction distribution is the same as that obtained in section 3.1 and the temper-
ature distribution in the burned gas region (0 ≤ r ≤ R) is given by

T (r ) = T0(r ) + Q · TQ(r ) (26)
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where T0(r ) is the solution in the case of Q = 0 [equations (12) and (13)] and TQ(r ) is the
temperature increase caused by the external ignition power

TQ(r ) =
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∫ R
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with
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2
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]−1

and

C2 = −C1 · G(−k1 R, U/k1 − U/k1)/F(k1 R, U/k1 − U/k1).

By using the jump relations given by equation (6), the flame speed equation can be obtained
as
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 is given by equation (14b) and
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The effect of ignition power and Lewis number on flame transition can be studied by solving
equation (28) numerically. Figures 7 to 9 show the flame speed as a function of flame radius
with different values of ignition power, radiation heat loss constant, and Lewis number. Figure
7(a) shows the results for Le = 1.0 and h = 0. The solid line ab shows the result of zero
ignition energy (Q = 0) which is the same as that in figure 3(a). In this case, the outwardly
propagating spherical flame only exists beyond a finite flame radius Rb = 1.0. When an
external energy is deposited, it is seen that the flame transition trajectory is changed. At a
low ignition energy of Q = 0.05, owing to the increase of flame temperature, the travelling
flame branch ab is extended to branch ac and the critical flame initiation radius is reduced to
Rc = 0.72. At the same time, a new branch (ignition kernel) de is formed at small radius and
quenches as it grows. Therefore, flame initiation is not successful. However, by increasing
the ignition power to Q = 0.092, a new ignition kernel branch fg starts to merge with the
travelling flame branch ag, indicating that an outwardly propagating spherical flame can be
successfully initiated via the flame transition curve fga. Therefore, we can define the critical
ignition power (QC = 0.092) above which the flame kernel branch always merges with the
travelling flame branch.

Figure 7(b) shows the results of non-adiabatic flame evolution diagram for Le = 1.0 and
h = 0.01. Unlike the adiabatic case, no flame ball solution exists and the outwardly propagating
spherical flame only exists at a much larger flame radius with a finite flame speed due to the
effects of radiation heat loss. When ignition energy is deposited, the new flame kernel branch
starts to merge with the travelling flame branch at Q = 0.107 and forms three new flame
branches, a fast flame transition branch dja and an isolated slow branch ic and an ISEF branch
egh. As the ignition power increases, the ISEF branch degenerates and the fast transition branch
becomes more monotonic, indicating a successful flame transition from ignition kernel to a
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Figure 7. Flame propagating speed as a function of flame radius with different values of ignition power for Le =
1.0: (a), h = 0.0; (b), h = 0.01.

travelling flame. Note that the radiation heat loss not only changes the flame bifurcation but
also significantly increases the critical ignition radius (from R f = 0.3 to 0.6) and the critical
ignition energy (from Q = 0.092 to 0.107). Therefore, the adiabatic model does not adequately
describe the flame initiation trajectory. This conclusion is different from that of a previous
study [22].
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Figure 8. Flame propagating speed as a function of flame radius with different values of ignition power for Le =
0.8: (a), h = 0.0; (b), h = 0.01.

The adiabatic and non-adiabatic flame trajectory with external ignition energy for Le = 0.8
and 1.2 are shown in figures 8 and 9. For the case of small Lewis number (figure 8), owing
to the Lewis number effect, the critical ignition radius becomes much smaller and the critical
ignition power decreases. Moreover, the radiation effect becomes weaker with the decrease of
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Figure 9. Flame propagating speed as a function of flame radius with different values of ignition power for Le =
1.2: (a), h = 0.0; (b), h = 0.01.

Lewis number. However, at a large Lewis number (figure 9), both the critical ignition radius
and the critical ignition power significantly increase. In particular, the adiabatic model [figure
9(a)] not only does not predict a correct flame bifurcation but also fails to predict the size of
critical ignition kernel. This conclusion has a significant implication for the gasoline spark
ignition process, particularly with CO2 recirculation.
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Figure 10. Critical ignition radius with respect to ignition power for adiabatic and non-adiabatic cases: (a), Le =
1.0; (b), Le = 1.2.

Figure 10 shows the comparison of the critical ignition radius for adiabatic and non-adiabatic
flames at Le = 1.0 and 1.2, respectively. For Le = 1.0, it is seen that for both cases, the critical
ignition radius decreases with the increase of ignition power. However, the critical ignition
radius for radiating flames is much greater than that of adiabatic flames. When the ignition
power is larger than the critical ignition power (Qa and Qb), the critical ignition radius goes
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to zero, which means that outwardly propagating spherical flame can be successfully initiated
from the centre. For Le = 1.2, the increase of the critical ignition radius owing to radiation
heat loss becomes more profound. In addition, the ratio of critical ignition power between the
radiative and adiabatic cases also becomes much larger.

The critical ignition power as a function of Lewis number for adiabatic and non-adiabatic
cases is shown in figure 11(a). It is seen that when Lewis number is smaller than 0.8, the
critical ignition power for adiabatic and non-adiabatic cases is nearly the same. However, as
the Lewis number increases the dependence becomes significantly different. For the adiabatic
mixture, the logarithm of critical ignition power only increases linearly with the increase of
Lewis number. However, for the radiative mixture, the dependence of the critical ignition
energy can be divided into three different regimes: a linear region at small Lewis numbers
(Le < 1); a nonlinear region at intermediate Lewis numbers (1 < Le < 1.6); and a linear
region at high Lewis numbers (Le > 1.6). The appearance of the nonlinear region is owing to
the coupling of the radiation heat loss from the unburned region and the Lewis number effect
[figure 11(b)]. Therefore, the radiation heat loss from unburned gas region significantly affects
the ignition energy. The present results have a strong relevance in ignition enhancement in
internal combustion engines involving natural gas and large hydrocarbon fuels (Le > 1).

Note that ignition is an essentially transient process. Depending on the relative magnitude of
characteristic times of external heating, chemical reaction, travelling acoustic wave and heat
conduction, there are fast-nondiffusive-ignition [25] and thermal-diffusive-ignition [26]. In
the current study, the constant density assumption is used and the acoustic effect is neglected
because its timescale is far shorter than the thermal diffusion timescale. Therefore, only the
thermal-diffusive-ignition is investigated here. It is reasonable because in the practical device
the initial flame kernel size is much smaller than the volume of combustion chamber so that the
pressure increase can be neglected. Unlike the work of Vázquez-Espı́ and Liñán [26], in which
the unsteady-diffusion-reaction equations similar to equation (1) were solved numerically and
radiation heat loss was not considered, here we present a general theory [equation (28)] based
on the quasi-steady assumption in which radiation heat loss is included. The shortcoming of
current analysis is that the ignition energy deposition is modelled as a boundary condition
[equation (25)]; while in practice it should be resolved in time and space. The employment of
such a steady state energy deposition is for the purpose to seek analytical solution. However,
this simplification does not prevent the model from producing qualitatively correct results. It
will be shown in the next section that the results from the current theoretical analysis based on
the quasi-steady assumption agree well with those from fully transient numerical simulations.

4. Numerical modelling of the unsteady effects

In order to confirm the validity of the quasi-steady state assumption used in the previous
analysis, we performed numerical simulations of the time-dependent flame initiation problem.
The non-dimensional form of equations (1a) and (1b) under constant density assumption is
solved numerically by means of an implicit finite volume method. To numerically resolve
the moving flame front, a ten-level adaptive grinding algorithm has been developed [27]. The
mesh addition and removal are based on the first and second order gradients of the temperature
and reaction rate distributions. Uniform grids of 0.00125–0.01 (length normalized by flame
thickness) are used in the reaction zone and kept moving with the flame front. The following
finite reaction rate is used in the numerical simulation

ω = 1

2Le
· Y · Z2 · exp

[
Z (T − 1)

σ + (1 − σ )T

]
(29)
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Figure 11. (a) Critical ignition power with respect to Lewis number for adiabatic and non-adiabatic cases; (b) small-
est flame radius with respect to Lewis number for adiabatic and non-adiabatic cases without ignition power.

The boundary conditions are the same as those given by equations (7a) and (7c). With an
initial uniform temperature and fuel mass fraction distribution of T (r ) = 1 − Y (r ) = 0, the
unsteady flame initiation problem is resolved.

To justify the validity of the quasi-steady state assumption used in theoretical analysis,
flame speeds at different flame radii predicted from theoretical analysis are compared with
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Figure 12. Comparison of flame propagating speeds predicted by numerical simulation and theoretical analysis for
Le = 1.0: (a), h = 0.0; (b), h = 0.01.

those from numerical simulations, in which the flame propagating speed is calculated from
the flame front history, i.e. U = dR/dt, where the flame front is defined as where the maximum
heat release appears. Figure 12 shows the results for Le = 1 without and with radiation heat
loss. It is seen that the results from theory agree reasonably well with those from the unsteady
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simulations. As with most other studies on flame dynamics, the unstable branches predicted
by theoretical analysis as labelled by egh and kc in figures 7(b) could not be recovered from
numerical simulations. Comparisons for other Lewis numbers without and with radiation heat
loss are also made. The qualitatively agreement is obtained.

Figure 13. The unsteady term (∂T/∂t), convection term (U∂T/∂r), diffusion term (∂(∂T/r2∂r)/r2∂r), and reaction
term (ω) in equations (3a) predicted from numerical simulation for flames at different flame radii with Le = 1.0 and
Q = 0.2:, (a), R = 5.0; (b), R = 0.5.
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In order to evaluate quantitatively the magnitude of the unsteady term, the numerical results
from unsteady simulation were transformed into the flame front attaching coordinate (in which
theoretical analysis was carried out). The magnitudes of unsteady term (∂T/∂t), convection
term (U∂T/∂r ), diffusion term (∂(∂T/r2∂r )/r2 ∂r ) and reaction term (ω) in equations (3a)
and (3b) are evaluated and compared in the transformed coordinate. The importance of the
unsteady effects is shown by comparing the unsteady term with other terms. Figure 13 shows
the distributions of the unsteady, convection, diffusion, and reaction terms in energy equation
(3a) for flames at different flame radii with Le = 1.0 and Q = 0.2. When the flame radius
is large, R = 5.0 in figure 13(a), the unsteady term is one order smaller than all other terms,
therefore it is negligible. For cases of larger flame radii, the unsteady term becomes much
smaller. Therefore it is reasonable to employ the quasi-steady state assumption. When the
flame radius is small, R = 0.5 in figure 13(b), the diffusion and reaction terms will dominate,
while the unsteady and convection terms are relatively small near the flame front. However, near
the centre where energy deposition exists, the unsteady term is very large and is balanced by the
convection term. This is because the energy deposition in the centre (modelled as a boundary
condition) is moving away from the flame front in the flame front attaching coordinate.

Furthermore, to investigate the effect of the timescale of energy deposition on the flame
trajectory, we compared the flame-front trajectories obtained from time-dependent numeri-
cal computations with different duration time (ts) at a given energy flux (Q). In numerical
simulation, the energy flux Q at the boundary [equation (7a)] is set to zero when the time is
greater than the duration time (ts). Figure 14 shows the results for Le = 1.0, h = 0.01 and Q
= 0.2. It is seen that the flame initiation fails when the duration is too small. However, when
ts ≥ 6.5 the flame-front trajectory (which is the same as that of ts = 6.5) is not affected by
the change of the timescale of energy deposition. Therefore in this case, the duration must be

Figure 14. Flame-front trajectories obtained from numerical computations with different duration time (ts) at a
given energy flux (Q = 0.2) for Le = 1.0 and h = 0.01.
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large than 6.5 (time normalized by flame thickness divided by planar flame speed) to make
the quasi-steady model consistent. Similar results were also presented in He [22].

5. Conclusions

An analytical solution to describe the flame regimes and transitions between the flame kernel,
the flame ball, the self-extinguishing flame, the outwardly propagating spherical flame and
the propagating planar flame is obtained. The present study extends the previous results by
bridging the theories of non-adiabatic stationary flame balls and travelling flames and allowing
rigorous consideration of radiation heat losses in both the burned and unburned zones. The
results show that the effects of radiation heat loss play a very important role on flame regimes,
transition, and critical ignition radius and power and therefore it should not be neglected.

It is shown that radiation heat losses from the unburned and burned zones play different
roles in affecting flame propagating speed. With the increase of flame radius, the radiation
heat loss from the burned zone increases, while the radiation heat loss from the unburned zone
decreases. As a result, there is a peak radiation loss at an intermediate flame radius, which
dramatically affects the flame regimes and critical flame initiation parameters. It is also found
that the radiation heat loss from the unburned zone results in a new flame regime: the isolated
self-extinguishing flame with two radiation extinction limits respectively at small and large
flame radius. In addition, it is shown that the critical Lewis number for the stationary flame
ball is dominated by the heat loss from the unburned gas.

The results also show that radiation heat loss significantly affects the transition history
of flame initiation with external energy deposition. The critical radius of successful flame
initiation for radiative flames is much larger than that of adiabatic flames. Furthermore, this
difference increases dramatically with the increase of the mixture Lewis number. It is shown
that, owing to the coupling of radiation heat loss and the Lewis number effect, the dependence
of the minimum ignition energy on Lewis number has three different regimes. At intermediate
Lewis numbers, the results show that the minimum ignition energy increases exponentially
with the increase of the Lewis number. The prediction agrees qualitative well with the un-
steady numerical simulations. These results could have a significant impact on technological
developments for ignition control of internal combustion engines.
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