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Abstract

The flame regimes of ignition and flame propagation as well as transitions between different flame
regimes of n-heptane-air mixtures in a one-dimensional, cylindrical, spark assisted homogeneously charged
compression ignition (HCCI) reactor are numerically modeled using a multi-timescale method with
reduced kinetic mechanism. It is found that the initial mixture temperature and pressure have a dramatic
impact on flame dynamics. Depending on the initial temperature gradient, there exist at least six different
combustion regimes, an initial single flame front propagation regime, a coupled low temperature and high
temperature double-flame regime, a decoupled low temperature and high temperature double-flame regime,
a low temperature ignition regime, a single high temperature flame regime, and a hot ignition regime. The
results show that the low temperature and high temperature flames have distinct kinetic and transport
properties as well as flame speeds, and are strongly influenced by the low temperature chemistry. The
pressure and heat release rates are affected by the appearance of different flame regimes and the transitions
between them. Furthermore, it is found that the critical temperature gradient for ignition and acoustic
wave coupling becomes singular at the negative temperature coefficient (NTC) region. The results show
that both the NTC effect and the acoustic wave propagation in a closed reactor have a dramatic impact
on the ignition front and acoustic interaction.
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1. Introduction

Recent concerns over energy sustainability
calls for the need to develop advanced engine
technologies to achieve improved energy conver-
sion efficiency and reduced emissions [1,2]. These
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technologies include homogeneous charge com-
pression ignition (HCCI) [3–5] and spark assisted
HCCI (SAHCCI) [6,7] engines as well as low-
temperature combustion (LTC) engines [8–11].
Unfortunately, the difficulties in combustion and
emission control in these advanced engines remain
a major challenge. At temperatures below 1500 K,
increased CO emissions reduce the engine effi-
ciency. On the other hand, for temperatures above
1800 K, HCCI engines are limited by NOx emis-
sions and knocking [12]. Therefore, the control
of combustion processes such as ignition and
flame propagation is critical for efficient engine
development. To achieve this goal, the SAHCCI
as well as thermal and concentration stratification
techniques [13,14] have been developed. However,
the combustion process of SAHCCI engines are
strongly influenced by the complexity of low tem-
perature chemistry and the variation of transport
properties, particularly near the negative tempera-
ture coefficient (NTC) region. In addition, many
practical engine fuels exhibit two-stage ignition
phenomena [15,16]. Therefore, understanding of
unsteady combustion regimes at near HCCI con-
ditions involving the NTC chemistry, transport
process, and acoustic wave compression is
important.

A number of studies have been conducted to
understand ignition and flame propagation in
HCCI/SAHCCI combustion using experiments
[7,17] and analyses with simplified models [18–21].
Different combustion regimes such as spontane-
ous ignition, flame deflagration, and detonation
have been observed. The criteria for the occur-
rence of these combustion regimes have been stud-
ied using hydrogen/air mixtures or global kinetic
models [22–26]. The results show that the initial
temperature and species gradients play an impor-
tant role in affecting flame regimes. Unfortu-
nately, few studies have been conducted to
understand the mechanism of flame transition
involving large hydrocarbon fuels. Moreover, the
two-stage low temperature ignition (LTI) and
hot ignition regimes at NTC region play a domi-
nant role in affecting the flame regimes and transi-
tion to auto-ignition. However, due to the
complexity of large chemical kinetic mechanisms
for large hydrocarbon fuels, the flame dynamics
near the NTC region at SAHCCI/HCCI condi-
tions has not been well understood. Recently, in
order to understand the flame transition from def-
lagration to auto-ignition, Martz et al. [21] used a
separated ignition and flame propagation model
coupled with SENKIN and PREMIX codes
[27,28] and a skeletal iso-octane mechanism. It
was concluded that transport had little effect on
reaction front propagation when ignition had
occurred. Unfortunately, due to the limitation of
the use of the separated ignition and flame propa-
gation model, the transport effect of initial igni-
tion kernel and the acoustic wave couplings with
flame front evolution and chemical kinetics were
not considered. More importantly, the use of a
skeletal iso-octane mechanism may exclude the
observation of important combustion regimes
caused by the low temperature chemistry.

The goal of this paper is to simulate the differ-
ent regimes of ignition, flame propagation, and
detonation transition of combustion at HCCI
and SAHCCI conditions of n-heptane-air mix-
tures by using a one-dimensional, cylindrical
SAHCCI reactor and a multi-timescale (MTS)
method with a reduced kinetic mechanism gener-
ated automatically by the path flux analysis
method.
2. Numerical models

To model SAHCCI and HCCI combustion, we
consider simplified, unsteady flame kernel propa-
gation in a one-dimensional (1D), non-adiabatic
closed cylinder (Fig. 1). Although turbulence is
important in HCCI combustion, we limit our
focus to understand laminar combustion regimes.
The SAHCCI reactor height is 8 mm with a radius
of 4 cm. All the wall temperatures are fixed at
500 K. Both the top and bottom surfaces of the
reactor are subject to convective heat losses with
a constant Nusselt number (Nu) of 4.36 [29].
Symmetric boundary conditions are assumed at
the centerline of the reactor. To model the effects
of low temperature chemistry on combustion
regimes, we use n-heptane as the fuel. A detailed
kinetic model for n-heptane with 1034 species
[30,31] is used. The path flux analysis method
[32] is used to generate a reduced mechanism with
128 species and 565 elementary reactions. As
shown in Fig. 2a, the reduced mechanism with
128 species is sufficiently comprehensive to repro-
duce both the ignition delay time at the NTC
region. The governing equations of the one-
dimensional, unsteady, compressible, multi-
component, reactive flow are modeled by using
the ASURF code developed at Princeton Univer-
sity [33]. The code was extensively tested for
ignition time and flame speeds of hydrogen, meth-
ane, propane, and n-heptane/air mixtures using
CHEMKIN-II package [28]. The MUSCL-
Hancock scheme [34] is adopted to enable shock
capturing capability. The detailed transport and
kinetic models are computed using the hybrid
multi-timescale (HMTS) method [35]. Unless
otherwise stated, the initial pressure and equiva-
lence ratio are 20 atm and 0.4, respectively. Unless
otherwise stated, the initial temperature distribu-
tion is uniform and varied between 600 and
1100 K. To initiate flame propagation, a hot ker-
nel of 1400 K with a radius of 1 mm was initially
created at the centerline of the SAHCCI reactor.
The grid size is adapted at each time step with a
minimum grid size of 10 lm located at the flame



Fig. 1. Schematic of the one-dimensional cylindrical
SAHCCI/HCCI reactor.
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Fig. 2b. Dependence of ignition delay time of n-
heptane-air mixtures at equivalence ratio of 0.4 on the
initial temperature.
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front. The grid size effect on the flame trajectory
and laminar flame speed are tested for stoichiom-
etric n-heptane/air mixture at atmospheric pres-
sure with the minimum grid sizes of 16 and
4 lm, respectively. The difference in flame front
trajectory is found to be negligible.
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Fig. 3. The transient pressure histories at the centerline
of the SAHCCI reactor of n-heptane-air mixtures at
equivalence ratio of 0.4 for initial temperatures at 1000,
700, and 600 K, respectively.
3. Results and discussion

3.1. Effects of initial temperature on flame regimes
and transition to ignition

Figure 2b shows the dependence of ignition
delay time on temperature of n-heptane-air mix-
tures at equivalence ratio of 0.4. It is seen that
with the increase of pressure, the NTC region
shifts to higher temperatures. At 20 atm, the
NTC region is between 850 and 940 K.

Figure 3 shows the pressure histories at the
centerline of the SAHCCI reactor for tempera-
tures at 1000, 700, and 600 K. At 1000 K, which
is above the NTC temperature (Fig. 2b), hot
ignition occurs at 5 ms and causes strong acoustic
wave oscillations in the reactor. However, at
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Fig. 2a. Comparisons of predicted ignition delay time
using full and reduced mechanisms (95 and 128 species)
generated by path flux analysis for stoichiometric
n-heptane-air mixtures at 1 and 30 atm, respectively.
700 K, Fig. 3 shows that there is a two-stage
pressure rise at 10 and 14 ms, respectively. At
600 K, the auto-ignition delay time is very long
and the pressure in the reactor does not change
noticeably within 40 ms.

The evolution histories of the flame front
(defined as the location of the maximum chemical
heat release rate) for initial temperatures of 1000,
600, and 700 K in the 1D SAHCCI reactor are
plotted in Figs. 4a and 4b. In Fig. 4a, it is seen
that at 1000 K, a quasi-steady-state flame propa-
gates at the speed of 1 m/s before the occurrence
of the hot ignition at 5 ms. For temperature at
600 K, the combustion is dominated by laminar
flame propagation. The laminar flame speed is
about 5.4 cm/s. The large flame speed difference
originates from the change of the high tempera-
ture flame (HTF) at 1000 K and the low tempera-
ture flame (LTF) at 600 K. Here, the HTF and
LTF are, respectively, governed by the high tem-
perature and low temperature kinetic mechanisms
with different species concentrations.



0.00 0.01 0.02 0.03

0.2

0.4

0.6

0.8

1.0

Fl
am

e 
lo

ca
tio

n 
(c

m
)

Time (s)

 600 K
 1000 K

n-heptane
φ=0.4, p=20 atm

Fig. 4a. Transient history of flame fronts at the max-
imum heat release rate in the SAHCCI reactor at
T = 1000 and 600 K, respectively.
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However, at 700 K, Fig. 4b shows a completely
different flame trajectory. After the initial flame
kernel evolution, there exist two different flame
structures, the HTF and the LTF. Before
t = 6.3 ms, the HTF and LTF are coupled and
the coupled flame structure propagates at a speed
of 15.3 cm/s. At 6.3 ms, the LTF starts to decouple
from the HTF and propagates at a much faster
flame speed (27.5 cm/s) than the HTF. In this case,
the species concentrations in from of the LTF have
changed dramatically due to the progress of the low
temperature reactions. As the low temperature
ignition chemistry proceeds further, the LTF prop-
agation speed increases with time – indicating a
strong coupling between ignition and flame propa-
gation. At time around 10 ms, the low temperature
ignition (LTI) occurs. After LTI is completed at
10.5 ms, the LTF disappears and leads to a single
HTF propagation regime. The single HTF propa-
gates at a speed around 25.6 cm/s until the hot igni-
tion occurs at 14 ms. Therefore, at near NTC
region, there exist many different flame regimes;
their burning rates and their transitions to ignition
are dependent on the transport properties and
detailed chemical kinetics.

3.2. Effects of initial temperature and chemical
kinetics on flame structures

To examine the flame structures of the LTF and
HTF, Fig. 5a and b show the distribution of heat
release rates of the six different flame regimes for
initial temperature of 700 K. Figure 5a shows that
the early ignition initiated by the hot spot
(1400 K) in the center of the reactor results in a sin-
gle flame kernel propagation at 0.1 ms. However, at
3.0 ms, the single reaction zone splits into two reac-
tion zones, a weak LTF zone and a strong HTF.
This is the coupled double-flame structure shown
in Fig. 4b. At 9.3 ms, the LTF and HTF decouple
and the LTF becomes stronger and propagates fas-
ter than HTF. At 10.35 ms, Fig. 5b shows that the
LTI occurs in front of the LTF. This is the transi-
tion from the LTF to the low temperature ignition
regime. As a result, the strength of the LTF
decreases as the LTI proceeds. At 12.70 ms, the
LTI ends and the LTF disappears. Therefore, there
is only one HTF front located at r = 0.35 cm. At
14.30 ms, Fig. 5b shows that the hot ignition in
front of the HTF develops and leads to the transi-
tion to the hot ignition regime.

The corresponding temperature distributions of
Fig. 5 are shown in Fig. 6. Figure 6a shows clearly
that at the coupled LTF and HTF regime before
6.3 ms, there is only one temperature front. How-
ever, at the decoupled double-flame regime
between 6.3 and 10 ms, the temperature distribu-
tion shows that there are two distinct flame fronts
and each flame front has a different flame propagat-
ing speed. The different flame speeds between LTF
and HTF originate from the differences in their
activation energies and transport properties. At
10.35 ms, LTI occurs and results in a propagating
HTF before the hot ignition starting at 14.80 ms.

The structure of the decoupled double-flame
regime in Figs. 4a,b and 5 at t = 9.3 ms for initial
temperature of 700 K is plotted in Fig. 7. Figure
7a shows that at the LTF front (x = 0.4 cm), n-
heptane decomposes completely and leads to the
rapid increase of HO2 and H2O2. On the other
hand, at the HTF front, the concentrations of
HO2, H2O2, and CO decrease, resulting in rapid
formation of H2O and CO2. Therefore, we can
use the production and destruction of H2O2 as a
criterion to distinguish the onsets of low tempera-
ture flame and high temperature flame, respec-
tively. Figure 7b shows the typical intermediate
hydrocarbon species in the LTF zone. It is
observed that a large amount of aldehydes
(CH2O, CH3CHO, and C2H5CHO) are formed
at the LTF zone. In addition, flux analysis shows
that small olefins (C2H4, C3H6) are formed from
the decomposition of the alkyl radicals,
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C7H14O2-5 and nC7ket24 after isomerization and
decomposition of C7H14OOH and O2C7H14OOH
[15]. Since the flame propagation is affected by
the fuel chemistry and the transport of major spe-
cies, the dual flame structure shows that the oxida-
tion and transport properties of olefins and
aldehydes formed in the LTF will affect dramati-
cally the HTF flame chemistry and speed and
makes completely different from that of LTF. As
such, both the low temperature chemistry and
the transport affect significantly the flame regimes
and heat release rates of SAHCCI combustion.

3.3. Diagram of critical temperature gradient for
flame front and acoustic wave coupling

In practical SAHCCI and HCCI engines, the
temperature distribution is not always uniform.
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Therefore, the chemical kinetics will not only con-
tribute to the formation of new flame regimes but
also affects the coupling between ignition/flame
fronts and acoustic waves. For simple fuels such
as hydrogen without low temperature chemistry,
the critical temperature gradient at which the
auto-ignition front speed becomes equal to the
sonic speed of the unburned mixture decreases
monotonically with the decrease of temperature
[22,23]. However, the existence of the NTC region
for the gasoline and diesel fuels will make the tem-
perature dependence of the critical temperature
gradient completely different. Figure 8 shows the
critical temperature gradient dependence on the
initial mixture temperature. The critical tempera-
ture gradient is calculated by equating the acous-
tic speed of the mixture to the propagation speed
(a) of the ignition front,

a ¼ @T
@r

����
c

� @sig

@T

� ��1

ð1Þ

The temperature gradient of ignition delay time
and the acoustic speed are evaluated by using
CHEMKIN [27]. Unlike that at high and low tem-
perature regions, the critical temperature gradient
becomes singular (negative and positive infinities)
at the NTC region. This is caused by the negative
temperature dependence of the ignition delay time
on temperature in the NTC region. The appearance
of infinite critical temperature gradient for ignition
front and acoustic wave coupling reveals that the
NTC effect promotes supersonic auto-ignition
and decouples ignition front and acoustic wave
coupling at low temperature gradients. Figure 9
shows the time history of ignition flame front with
an initial temperature gradient of 400 K/m (linear
temperature distribution from 866 to 850 K in the
radial direction) in the reactor. The small noise near
4 ms is due to the sensitivity of the location of the
maximum heat release rate to kinetic mechanism
in a uniformly distributed mixture. Although this
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Fig. 8. The effect of NTC chemistry on the singular
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temperature gradient is much greater than the crit-
ical temperature gradients before and after the
NTC regions (Fig. 8), Figure 9 shows that in the
NTC region no ignition to detonation transition
is observed. Instead, only supersonic low tempera-
ture ignition front (t = 0.5 ms) and high tempera-
ture ignition front (t = 4.9 ms) are observed. In
addition, both the low temperature ignition and
the acoustic wave propagation (the front oscilla-
tion in Fig. 9) in the closed reactor reduce the initial
temperature gradient. As a result, the occurrence of
spontaneous ignition is promoted and the transi-
tion to detonation is suppressed.

4. Conclusion

The ignition, flame propagation, and ignition
front and acoustic wave coupling of n-heptane-air
mixtures in a one-dimensional, cylindrical SAHCCI
reactor are numerically modeled at NTC conditions
using a multi-timescale method. It is found that at
near NTC temperatures, there are six different
combustion regimes, an initial single flame front
propagation regime, a coupled LTF and HTF
double-flame regime, a decoupled LTF and HTF
double-flame regime, a low temperature ignition
regime, a single HTF regime, and a hot ignition
regime. Both the transport and low temperature
chemical kinetics affect the flame regimes, flame to
ignition transition, pressure history, and chemical
heat release rates. It is also found that the critical
temperature gradient for ignition front coupling
with acoustic waves become singular at the NTC
region. The NTC effect promotes the formation of
supersonic auto-ignition and decouples the acoustic
wave-ignition front coupling at low temperature
gradients.
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