Introduction: Analysis of Electronic Circuits

Reading Assignment: KVL and KCL text from EECS 211

Just like EECS 211, the majority of problems (hw and exam) in EECS 312 will be circuit analysis problems. Thus, a key to doing well in 312 is to thoroughly know the material from 211 !!

So, before we get started with 312 , let's review 211 and see how it applies to electronic circuits.

Q: I aced EECS 211 last semester; can I just skip this "review"??

A: Even if you did extremely well in 211 , you will want to pay attention to this review. You will see that the concepts of 211 are applied a little differently when we analyze electronic circuits.

Both the conventions and the approach used for analyzing electronic circuits will perhaps be unfamiliar to you at firstI thus imagine that everyone (I hope) will find this review to be helpful.

Electronic Circuit Notation

KVL and Electronic Circuit Notation

Analysis of Electronic Circuits

Even the quantities of current and resistance are a little different for electronic circuits!

Q: You mean we don't use Amperes and Ohms??

A: Not exactly!
Volts, Milli-Amps, Kilo-Ohms
Now let's try an example!
Example: Circuit Analysis using Electronic Circuit Notation

Electronic Circuit Notation

The standard electronic circuit notation may be a little different that what you became used to seeing in in EECS 211.

The electronic circuit notation has a few "shorthand" standards that can simplify circuit schematics!

Consider the circuit below:

Note the voltage values in this circuit (i.e., $V_{s}, v_{1}, v_{2}, V_{3}$) provide values of potential difference between two points in the circuit.

For example, from the voltage source we can conclude:

The electric potential at this point in the circuit is 5 volts greater than:
the electric potential at this point in the circuit.

Or the resistor voltage v_{3} means:

But remember, v_{3} could be a negative value!
Thus, the values of voltages are comparative-they tell us the difference in electric potential between two points with in the circuit.

As an analogy, Say John, Sally, and Joe work in a very tall building. Our circuit voltages are little like saying:
"John is 5 floors above Joe"
"Sally is 2 floors above Joe"
From this comparative information we can deduce that John is 3 floors above Sally.

What we cannot determine is on what floor John, Sally, or Joe are actually located. They could be located at the highest floors of the building, or at the lowest (or anywhere in between).

Similarly, we cannot deduce from the values $V_{s}, v_{1}, v_{2}, v_{3}$ the electric potential at each point in the circuit, only the relative values-relative to other points in the circuit. E.G.:
"Point R has an electric potential $5 V$ higher than point B "
"Point G has an electric potential v_{3} higher than point B "

> Q: So how do we determine the value of electric potential at a specific point in a circuit?

A: Recall that electric potential at some point is equal to the potential energy possessed by 1 Coulomb of charge if located at that point.

Thus to determine the "absolute" (as opposed to relative) value of the electric potential, we first must determine where that electric potential is zero.

The problem is similar to that of the potential energy possessed by 1.0 kg of mass in a gravitational field. We ask ourselves: Where does this potential energy equal zero?

The answer of course is when the mass is located on the ground!

But this answer is a bit subjective; is the "ground":
A. where the carpet is located?
B. where the sidewalk is located?
C. The basement floor?
D. Sea level?
E. The center of the Earth?

The answer is-it can be any of these things!

We can rather arbitrarily set some point as the location of ground. The potential energy is therefore described in reference to this ground point.

For tall buildings, the ground floor is usually defined as the floor containing the front door (i.e. the sidewalk)-but it doesn't have to be (just look at Eaton Hall!).

Now, having defined a ground reference, if we add to our earlier statements:
"Joe is 32 floors above ground"

We can deduce:
" John is 5 floors above
Joe-therefore John is on the $37^{\text {th }}$ floor"
"Sally is 2 floors above
Joe-therefore Sally is on the $34^{\text {th }}$ floor"

Q: So, can we define a ground potential for our circuit?

A: Absolutely! We just pick a point on the circuit and call it the ground potential. We can then reference the electric potential at every point in the circuit with respect to this ground potential!

Consider now the circuit:

Note we have added an "upside-down triangle" to the circuit-this denotes the location we define as our ground potential!

Now, if we add the statement:
"Point B is at an electric potential of zero volts (with respect to ground)."

We can conclude:

"Point R is at an electric potential of 5 Volts (with respect to ground)."
"Point G is at an electric potential of v_{3} Volts (with respect to ground)."

Note that all the points within the circuit that reside at ground potential form a rather large node:

Standard electronic notation simplifies the schematic by placing the ground symbol at each device terminal:

Note that all terminals connected to ground are likewise connected to each other!

Now, in the case where one terminal of a device is connected to ground potential, the electric potential (with respect to ground) of the other terminal is easily determined:

The electric potential at this point in the circuit is 5 volts greater than ground (ie., 5 volts).

This point is at ground potential (ie., zero volts).

For this example, it is apparent that the voltage source simply enforces the condition that the + terminal is at 5.0 Volts with respect to ground. Thus, we often simplify our electronic circuit schematics as:
$\xrightarrow{i_{1}} R_{1}=1 \mathrm{~K}$
$v_{s}=5 V \longrightarrow W_{V_{1}}$
$R_{2}=4 \mathrm{~K}\left\{_{-}^{+} v_{2}\right.$

Finally, we find that:

The electric potential at this point in the circuit is \boldsymbol{v}_{2} volts greater than ground potential (ie., v_{3}).

This point is at ground potential (ie. zero volts).

Thus, we can simplify our circuit further as:

This circuit schematic is precisely the same as our original schematic:

KVL and Electronic Circuit Notation

Consider this circuit:

We can apply Kirchoff's Voltage Law (KVL) to relate the voltages in this circuit in any number of ways.

Essentially, the first KVL equation is constructed using the convention that we add the circuit element voltage if we first encounter a plus (+) sign as we move along the loop, and subtract the circuit element voltage if we first encounter a minus (-) sign as we move along the loop.

For example:

$$
-5+v_{1}+\cdots
$$

But, we could also use the convention that we subtract the circuit element voltage if we first encounter a plus (+) sign as we move along the loop, and add the circuit element voltage if we first encounter a minus $(-)$ sign as we move along the loop!

For example:

$$
+5-v_{1}+\cdots
$$

This convention would provide us with the second of the two KVL equations for our original circuit:

$$
4-v_{R 1}-v_{R 2}-v_{R 2}+2=0
$$

Q: Huh?! What kind of sense does this convention make? We subtract when encountering a +? We add when encountering a - ??

A: Actually, this second convention is more logical than the first if we consider the physical meaning of voltage!

Remember, "the voltage" is simply a measure of potential energy-the potential energy of 1 Coulomb of charge.

If $1 C$ of charge were to be transported around the circuit, following the path defined by our KVL loop, then the potential energy of this charge would change as is moved through each circuit element.

In other words, its potential energy would go up, or it would go down.

The second convention describes this increase/decrease!

For example as our 1C charge moves through
5 V the voltage source, its potential energy is increases by 5 Joules (the potential is 5 V higher at the + terminal than it was at the minus terminal)!

This convention is the one typically used for electronic circuits. You of course will get the correct answer either way, but the second convention allows us to easily determine the absolute potential (i.e., with respect to ground) at each individual point in a circuit.

To see this, let's return to our original circuit:

The KVL from these loops are thus:

$$
\begin{aligned}
& +4-v_{R 1}-v_{4}=0 \\
& +v_{4}-v_{R 2}-v_{5}=0 \\
& +2+v_{5}-v_{R 3}=0 \\
& +4-v_{R 1}-v_{R 2}-v_{5}=0 \\
& +v_{4}-v_{R 2}-v_{R 3}+2=0
\end{aligned}
$$

Q: I don't see how this new convention helps us determine the "absolute" potenial at each point in the circuit?

A: That's because we have not defined a ground potential!

Let's do that now:

$$
+4-v_{R 1}-v_{R 2}-v_{R 3}+2=0
$$

$$
+4-v_{R 1}-v_{4}=0
$$

$$
+v_{4}-v_{R 2}-v_{5}=0
$$

The same results as before!

Now, we can further simplify the schematic:

Note that we were able to replace the voltage sources with a direct, simple statement about the electric potential at two points within the circuit.

Note the KCL equation we determined earlier:

$$
+4-v_{R 1}-v_{R 2}-v_{R 3}+2=0
$$

Let's subtract 2.0 from both sides:

$$
+4-v_{R 1}-v_{R 2}-v_{R 3}=-2
$$

This is the same equation as before-a valid result from KVL.

Yet, this result has a very interesting interpretation!

The value 4.0 V is the initial electric potential-the potential at beginning node of the "loop".

The values $v_{R 1}, v_{R 2}$, and $v_{R 3}$ describe the voltage drop as we move through each resistor. The potential is thus decreased by these values, and thus they are subtracted from the initial potential of 4.0.

When we reach the bottom of the circuit, the potential at that point wrtg (with respect to ground) must be equal to:

$$
+4-v_{R 1}-v_{R 2}-v_{R 3}
$$

But we also know that the potential at the "bottom" of the circuit is equal to -2.0 V ! Thus we conclude:

$$
+4-v_{R 1}-v_{R 2}-v_{R 3}=-2
$$

Our KVL equation!
In general, we can move through a circuit written with or electronic circuit notation with this "law":

The electric potential at the initial node (wrtg), minus(plus) the voltage drop(increase) of each circuit element encountered, will be equal to the electric potential at the final node (wrtg).

For example, let's analyze our circuit in the opposite direction!

Here, the electric potential at the first node is -2.0 volts (wrtg) and the potential at the last is 4.0.

Note as we move through the resistors, we find that the potential increases by v_{R} :

$$
-2+v_{R 3}+v_{R 2}+v_{R 1}=4
$$

Note this is the effectively the same equation as before:

$$
+4-v_{R 1}-v_{R 2}-v_{R 3}=-2
$$

Both equations accurately state KVL, and either will the same correct answer!

Now, we can use our new found knowledge to come to these correct conclusions, see if these results make sense to you!

$$
\begin{aligned}
& 4-v_{R 1}=v_{4} \\
& v_{4}-v_{R 2}=v_{5} \\
& -2+v_{R 3}=v_{5}
\end{aligned}
$$

$4-v_{R 1}-v_{R 2}=v_{5}$
$-2+v_{R 3}+v_{R 2}=v_{4}$

Analysis of

Electronic Circuits

In EECS 211 you acquired the tools necessary for circuit analysis. Fortunately, all those tools are still applicable and useful when analyzing electronic circuits!

Ohm's Law, KVL and KCL are all still valid, but (isn't there always a but?) the complicating factor in electronic circuit analysis is the new devices we will introduce in EECS 312.

In EECS 211 you learned about devices such as voltage sources, current sources, and resistors. These devices all had very simple device equations:

But (that word again!), in EECS 312 we will learn about electronic devices such as diodes and transistors. The device equations for these new circuit elements will be quite a bit more complicated!

$i_{D}=K\left[2\left(v_{G S}-V_{t}\right) v_{D S}-v_{D S}^{2}\right]$

$$
i_{D}=I_{S}\left(e^{v_{0} / n V_{T}}-1\right)
$$

As a result, we often find that both node and mesh analysis tools are a bit clumsy when analyzing electronic circuits. This is because electronic devices are non-linear, and so the resulting circuit equations cannot be described by as set of linear equations.
$\begin{aligned}-2 & =3 i_{1}+2 i_{2}-1 i_{3} \\ 1 & =2 i_{1}+1 i_{2} \\ 0 & =4 i_{1}-2 i_{2}+2 i_{3}\end{aligned} \Rightarrow\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{ccc}3 & 2 & -1 \\ 4 & 1 & 1 \\ 4 & -2 & 2\end{array}\right]\left[\begin{array}{l}i_{1} \\ i_{2} \\ i_{3}\end{array}\right]$

Not from an electronic circuit!

Instead, we find that electronic circuits are more effectively analyzed by a more precise and subtle application of:

Note the first two of these are circuit laws-they either relate every voltage of the circuit to every other voltage of the circuit (KVL), or relate every current in the circuit to every other current in the circuit.

$$
I_{1}+I_{2}+I_{3}=0 \quad V_{1}+V_{2}+V_{3}=0
$$

The last two items of our list are device equations-they relate the voltage(s) of a specific device to the current(s) of that same device. Ohm's Law of course describes the current-voltage behavior of a resistor (but only the behavior of a resistor!).

$$
V_{2}=I_{2} R_{2}
$$

So, if you:

1. mathematically state the relationship between all the currents in the circuit (using KCL), and:
2. mathematically state the relationship between all the voltages of the circuit (using KVL), and:
3. mathematically state the current-voltage relationship of each device in the circuit, then:
you have mathematically described your circuit-completely!

Peter
1.21
4.) Expand
$x-2$

$$
\begin{aligned}
& (a+b)^{n} \\
= & (a+b)^{n} \\
= & (a+b)^{n}
\end{aligned}
$$

$$
=(a \quad+\quad b)^{n} \text { you must unambiguously define each }
$$ and every voltage and current variable in your circuit!!!!!!!!!!

We do this by defining the direction of a positive current (with and arrow), and the polarity of a positive voltage (with a + and -).

Q: An absolute requirement in order to achieve what?

A: An absolute requirement in order to:

1. determine the correct answers.
2. receive full credit on exams/homework.

Q: But why must I unambiguously define each current and voltage variable in order to determine the correct answers?

A: The mathematical expressions (descriptions) of the circuit provided by KVL, KCL and all device equations are directly dependent on the polarity and direction of each voltage and current definition!

For example, consider a three current node, with currents I_{1}, I_{2}, I_{3}. We can of course use KCL to relate these values, but the resulting mathematical expression depends on how we define the direction of these currents:

Q: But that's the problem! How do I know which direction the current is flowing in before I analyze the circuit?? What if I put the arrow in the wrong direction?

A: Remember, there is no way to incorrectly orient the current arrows of voltage polarity for KCL and KVL. If the current or voltage is opposite that of your convention, then the numeric result will simply be negative.

For example, say that in a 3-wire node there is:

3 mA flowing toward the node in wire 1

2 mA flowing toward the node in wire 2
5 mA flowing away from the node in wire 3
Depending on how you define the currents, the numerical answers for I_{1}, I_{2} and I_{3} will all be different, but there physical interpretation will all be the same!

Remember, a negative value of current (or voltage) means that the current is flowing in the opposite direction (or polarity) of that denoted in the circuit.

So, without current arrows and voltage polarities, there is no way to physically interpret positive or negative values!

Now we know that with respect to KCL or KVL, the current/voltage conventions are arbitrary (it up to you to decide!).

However, we will find that the voltage/current conventions of electronic devices are not generally arbitrary, but instead have required orientations.

Q: Why is that?
A: The conventions are coupled to electronic device equations-these
 equations are only accurate when using the + specific voltage/current conventions!
$v_{D S}$ Thus, you must know both the device equation and the current/voltage convention for each electronic device. Furthermore, you must correctly label and uses these current/voltage
$v_{0}=K\left[2\left(v_{G S}-v_{f}\right) v_{o S}-v_{o s}^{2}\right]$ conventions in all circuits that contain these devices!

Volts, Milli-Amps. and Kilo-Ohms

Let's determine the voltage across a $7 \mathrm{~K} \Omega$ resistor if a current of 2 mA is flowing through it:

$$
v=(0.002)(7000)=1.4 V
$$

Or the resistance of a resistor if a current of 2 mA results in a voltage drop of 20 V :

$$
R=\frac{20}{0.002}=1000 \Omega
$$

Or the current through a $2 K \Omega$ resistor if the voltage drop across it is 4.0 V :

$$
i=\frac{4}{2000}=0.2 \mathrm{~mA}
$$

There's just one big problem with this analysis, and that problem is:

The correct answers are 14 Volts, $10 \mathrm{~K} \Omega$, and 2.0 mA .

The problem of course is all those decimal places! It is easy to get incorrect answers when resistances are in the kiloohms (or higher) and the currents are in the milli-amps (or smaller).

Unfortunately, that's exactly the situation that we have to deal with in electronic circuits!

Frequently, we find that in electronic circuits:

1. Voltages are in the range of 0.1 to 50 Volts.
2. Currents are in the range of 0.1 to 100 mA .
3. Resistances are in the range of $0.1 \mathrm{~K} \Omega$ to $50.0 \mathrm{~K} \Omega$.

Fortunately, there is an easy solution to this problem.

In electronic circuits, the standard unit of voltage is volts, the standard unit of current is milli-amps, and the standard unit of resistance is kilo-ohms.

This works well for Ohm's Law, because the product of current in milli-amps and resistance in $K \Omega$ is voltage in volts:

$$
v[V]=i[m A] \times R[K \Omega]
$$

And so:

$$
\begin{aligned}
& i[\mathrm{~mA}]=\frac{v[V]}{R[K \Omega]} \\
& R[K \Omega]=\frac{v[V]}{i[\mathrm{~mA}]}
\end{aligned}
$$

The trick then is not to numerically express currents in Amps, or resistances in Ohms, but instead to leave the values in mA and $K \Omega$!!!

For example, let's recompute our earlier examples in this way:

The voltage across a $7 \mathrm{~K} \Omega$ resistor if a current of 2 mA is flowing through it:

$$
v=2(7)=14 V
$$

Or the resistance of a resistor if a current of 2 mA results in a voltage drop of 20 V :

$$
R=\frac{20}{2}=10 \mathrm{~K} \Omega
$$

Or the current through a $2 \mathrm{~K} \Omega$ resistor if the voltage drop across it is 4.0 V :

$$
i=\frac{4}{2}=2.0 \mathrm{~mA}
$$

Not that these are all obviously the correct answers!!!!

Example: Circuit Analysis

using Electronic Circuit Notation

Consider the circuit below:

Determine the voltage v_{A}, and the current through each of the three resistors.

Solution

Our first task is to unambiguously label the currents and voltages of this circuit:

Now lets relate all the currents using KCL:

And relate all the voltages using KVL:

$$
10-v_{1}=v_{A} \Rightarrow v_{1}=10-v_{A}
$$

$$
v_{A}-v_{2}=5 \Rightarrow v_{2}=v_{A}-5
$$

$$
5-v_{3}=0 \Rightarrow v_{3}=5.0 \mathrm{~V}
$$

And finally, a device equation for each resistor:

$$
i_{1}=\frac{V_{1}}{R_{1}} \quad i_{2}=\frac{V_{2}}{R_{2}} \quad i_{3}=\frac{V_{3}}{R_{3}}
$$

The equations above provide a complete mathematical description of the circuit.

Note there are eight unknown variables $\left(i_{1}, i_{2}, i_{3}, i_{4}, v_{1}, v_{2}, v_{3}, v_{A}\right)$, and we have constructed a total of eight equations!

Thus, we simply need to solve these 8 equations for the 8 unknown values. First, we insert the KVL results into our device equations:

$$
\begin{aligned}
& i_{1}=\frac{v_{1}}{R_{1}}=\frac{10-v_{A}}{1}=10-v_{A} \\
& i_{2}=\frac{v_{2}}{R_{2}}=\frac{v_{A}-5}{1}=v_{A}-5 \\
& i_{3}=\frac{v_{3}}{R_{3}}=\frac{5}{1}=5.0 \mathrm{~mA}
\end{aligned}
$$

And now insert these results into our KCL equations:

$$
\begin{aligned}
i_{1} & =i_{2}+1 \\
10-v_{A} & =\left(v_{A}-5\right)+1
\end{aligned}
$$

and:

$$
\begin{aligned}
& i_{2}+i_{4}=i_{3} \\
& \left(v_{A}-5\right)+i_{4}=5
\end{aligned}
$$

Note the first KCL equation has a single unknown. Solving this equation for v_{A} :

$$
\begin{aligned}
& 10-v_{A}=\left(v_{A}-5\right)+1 \\
& \Rightarrow v_{A}=\frac{10+5-1}{2}=\frac{14}{2}=\underline{\underline{7.0 \mathrm{~V}}}
\end{aligned}
$$

And now solving the second KCL equation for i_{4} :

$$
\begin{aligned}
& \left(v_{A}-5\right)+i_{4}=5 \\
& \Rightarrow i_{4}=5-v_{A}+5=10-7=3.0 \mathrm{~mA}
\end{aligned}
$$

From these results we can directly determine the remaining voltages and currents:

$$
v_{1}=10-v_{A}=10-7=3.0 V
$$

$$
v_{2}=v_{A}-5=7-5=2.0 \mathrm{~V}
$$

$$
i_{1}=10-v_{A}=10-7=3.0 \mathrm{~mA}
$$

$$
i_{2}=v_{A}-5=7-5=2.0 \mathrm{~mA}
$$

