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A new on-grid dynamic multi-timescale (MTS) method is presented to increase significantly the compu-
tation efficiency involving multi-physical and chemical processes using detailed and reduced kinetic
mechanisms. The methodology of the MTS method using the instantaneous timescales of different spe-
cies is introduced. The definition of the characteristic time for species is examined and compared with
that of the computational singular perturbation (CSP) and frozen reaction rate methods by using a simple
reaction system. A hybrid multi-timescale (HMTS) algorithm is constructed by integrating the MTS
method with an implicit Euler scheme, respectively, for species with and without the requirement of
accurate time histories at sub-base timescales. The efficiency and the robustness of the MTS and HMTS
methods are demonstrated by comparing with the Euler and VODE solvers for homogenous ignition
and unsteady flame propagation of hydrogen, methane, and n-decane–air mixtures. The results show that
both MTS and HMTS reproduce well the species and temperature histories and are able to decrease com-
putation time by about one-order with the same kinetic mechanism. Compared to MTS, HMTS has
slightly better computation efficiency but scarifies the stability at large base time steps. The results also
show that with the increase of mechanism size and the decrease of time step, the computation efficiency
of multi-timescale method increases compared to the VODE solver. In addition, it is shown that the inte-
gration of the multi-timescale method with the path flux analysis based mechanism reduction approach
can further increase the computation efficiency. Unsteady simulations of outwardly propagating spher-
ical n-decane–air premixed flames demonstrate that the multi-timescale method is rigorous for direct
numerical simulations with both detailed and reduced chemistry and can dramatically improve the com-
putation efficiency.

� 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
1. Introduction

Recent concerns over energy sustainability, energy security, and
global warming have presented grand challenges to develop non-
petroleum based low carbon fuels and advanced engines to achieve
improved energy conversion efficiency and reduced emissions
[1,2]. Transportation contributes to about one-third of the global
carbon emissions. Therefore, it is urgently needed to develop alter-
native fuels and predictive combustion modeling capabilities to
optimize the design and operation of advanced engines for trans-
portation applications.

Combustion is a multi-scale physical and chemical process. It
involves various time and length scales ranging from atomic exci-
tation to turbulent transport [3]. Even with the availability of high-
performance supercomputing capability at petascale and beyond,
ion Institute. Published by Elsevier
the multi-physics and multi-timescale nature of combustion pro-
cesses remain to be a great challenge to direct numerical simula-
tions of practical reaction systems [4].

At first, the kinetic mechanisms for hydrocarbon and synthetic
bio-fuels typically consist of tens to hundreds of species and hun-
dreds to thousands of reactions. The large number of reactive spe-
cies requires an enormous computation power and data storage
capacity. It has been shown that even with a simple mechanism
the majority of the CPU time for a CFD simulation is spent on the
computation of the chemistry and species diffusion [5]. It is well
known that the CPU time of a typical full Jacobian matrix decom-
position based implicit algorithm (e.g. a stiff ordinary differential
equation solver (VODE) [6]) is proportional to the cube of the spe-
cies number. The ratio of computing time for reactions will become
even larger as the size of the mechanism increases. Secondly, the
broad range of length and timescales of transport and kinetic reac-
tions create problems of grid resolution and stiffness in direction
numerical simulation. An explicit algorithm such as the Euler
Inc. All rights reserved.
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scheme will have to use the smallest timescale based on the finest
grid and fastest reaction group [6, 7], leading to a dramatic increase
of computation time. Thirdly, the multi-physical non-linear cou-
pling between continuum regime (e.g. flow with small concentra-
tion/temperature gradients) and non-continuum regime (e.g.
particle and molecular dynamics) and the statistical coupling be-
tween mean values and sub-grid statistical values requires accu-
rate resolutions of the time histories of variables with different
time and length scales (Fig. 1). For an example, a nanosecond
non-equilibrium plasma assisted combustion needs to calculate
electron energy distributions and quenching of excited species in
nanoseconds and combustion in a few seconds.

In order to make numerical simulations of reactive flow compu-
tationally affordable, various mechanism reduction methods have
been developed to generate reduced kinetic mechanisms by
decreasing the number of species while keeping the mechanism
reasonably comprehensive [5]. The first approach for reducing
the mechanism size is the sensitivity and rate analysis [8–10].
Although this method is very effective in generating compact re-
duced mechanisms, it provides neither the timescales of different
reaction groups nor the possible quasi-steady state (QSS) species
and partial equilibrium groups without good human experience.
The second approach is the reaction Jacobian analysis which in-
cludes the computational singular perturbation (CSP) method
[11–13] and the Intrinsic Low Dimensional Manifold (ILDM) [14].
This approach can effectively identify the timescales of different
reaction groups, QSS species, or low dimensional manifolds. How-
ever, it requires significant computation time to conduct Jacobian
decomposition and mode projection. This type of method is there-
fore not suitable to be used in direct numerical simulation. To
achieve more efficient calculations of fast mode species, a third ap-
proach, the parameterization method, was proposed. The In Situ
Adaptive Tabulation (ISAT) [15], Piecewise Reusable Implementa-
tion of Solution Mapping (PRISM) [16], High Dimensional Model
Representation (HDMR) [17], and polynomial parameterizations
[18] are the typical examples of this category. However, for non-
premixed turbulent combustion involving a large kinetic mecha-
nism with a broad temperature distribution, the constraints for
validity of low dimensional manifolds, large time consumption in
table buildup, and the difficulties in data retrieval from table look-
up lead to decreased advantage of ISAT in comparison to direct
integration [19]. In order to achieve efficient reaction model reduc-
tion, a fourth method is presented to use the reaction rate or reac-
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Fig. 1. Multi-scale nature of combustion pro
tion path relations as a measure of the degree of interaction among
species. Bendsten et al. [20] adopts a reaction matrix (P) with each
of whose elements Pij defined as the net production rate of species i
from all reactions involving j to establish a skeletal reaction path
way (or mechanism). The set of important species is selected by
going through the reaction matrix following the path that connects
one species to another that is most strongly coupled with it. The
skeletal mechanism is then completed by including a number of
reactions such that for each of the selected species, a certain per-
centage of the total production or consumption rate (threshold va-
lue) of that species is kept in the skeletal mechanism. Similar
strategies are used in the Directed Relation Graph (DRG) method
[21], the Directed Relation Graph method with Error Propagation
(DRGEP) [22], and the path flux analysis method [23]. Although
the DRGEP and PFA methods considerably improve the effective-
ness of mechanism reduction, the size of reduced mechanism for
a typical jet fuel surrogate is still too large to be used directly in
large scale numerical simulations.

Recently, it has been recognized that no matter what kind of
mechanism reduction methods discussed above are used, the size
of the reduced comprehensive mechanisms capable to reproduce
low temperature ignition delay time remain very large. Although
the introduction of QSS and sensitivity analysis can remove further
a few species, the validity of QSS assumption for a given species is
questionable in the entire simulation domain where temperature
and pressure are beyond the pre-specified QSS conditions due to
turbulent transport. Recently, although the on-the-fly QSS assump-
tion can be used to resolve the issue of the QSS assumption, rigor-
ous selection and efficient solution of QSS species remain as a
challenging issue [4,5]. More importantly, when the transient
information of short timescales is needed for the modeling of phys-
ical processes in larger timescales in a multi-physics problem, the
application of the on-the-fly QSS is also limited.

Therefore, the question becomes: are there any simple and
alternative methods which can efficiently integrate a multi-time-
scale problem and retain the transient information of species and
physical processes at different timescales. A convenient way to ob-
tain time accurate solution of various reaction groups is the Euler
method. However, an explicit Euler method needs a time-marching
step smaller than the smallest timescale in a physical process [7].
For stiff combustion processes, the smallest timescale can be
10�12 s or smaller, which makes the explicit Euler method only
limited to small scale direct numerical simulations. To resolve
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the stiffness of combustion problems, an implicit approach such as
the ordinary differential equation (VODE) solver [6,24–26] is often
used. Curtiss and Hirschfelder [25] and Gear [26] provided the first
pragmatic definition of stiff equations as those for which certain
implicit methods, particularly backward difference formulas
(BDF), perform better than explicit ones. The VODE solver [6] is
popularly utilized in the combustion community to handle de-
tailed chemistry. However, for an unsteady problem, an implicit
solver for detailed chemistry is often computationally expensive,
even for the simulation of one-dimensional propagating spherical
methane/air flames with detailed chemistry [27]. The situation be-
comes even worse for large hydrocarbons which have hundreds of
species in the oxidation mechanisms. More importantly, when an
implicit VODE solver is used, the time histories of species and vari-
ables with fast timescales are lost although many fast variables in
combustion change smoothly. Therefore, in addition to the need of
development of a rigorous kinetic mechanism reduction method, it
is also necessary to develop an efficient, robust, and accurate
numerical method which can retain the time-accurate information
of variables of fast timescales for a stiff and multi-physics reactive
flow.

Recently, several different multi-scale methods have been
developed for numerical integration of stiff ODEs. For example,
the heterogeneous multi-scale method (HMM) [28,29] is a general
framework for the numerical approximation of multi-timescale
problems and was developed for solving ODEs containing different
timescales [30,31]. Savcenco et al. [32] proposed a multirate time
stepping method by using prediction and time dividing and dem-
onstrated an improved computation efficiency for stiff ODEs. How-
ever, this approach does not suit for combustion modeling with a
detailed mechanism in which the timescales range several orders.
A new strategy to predict the timescales and to avoid the full inte-
gration of ODEs at the smallest time step is necessary. To the
authors’ knowledge, there have been no studies of multi-timescale
methods for any realistic chemical kinetic reactions.

In this paper, we present a dynamic multi-timescale method
(MTS) and a hybrid multi-timescale method (HMTS) for the mod-
eling of unsteady reactive flow with both detailed and reduced ki-
netic mechanisms of hydrocarbon fuels and to demonstrate the
improved computation efficiency and robustness. In the following,
at first, the mathematical models of MTS and HMTS methods will
be introduced. Secondly, a comparison of the characteristic time
for species predicted by the present method, the CSP projection
method, and the frozen reaction rate method will be made using
a simple reaction system. Thirdly, the computation efficiency and
accuracy of the MTS and HMTS methods will be demonstrated
through the comparisons with the conventional Euler and VODE
solvers from the simulations of auto-ignition of hydrogen, meth-
ane, and n-decane/air mixtures with detailed mechanisms. Finally,
the multi-timescale method is used to simulate unsteady spherical
flame propagation of the n-decane–air mixtures with both reduced
and detailed mechanisms. The increased robustness and computa-
tion efficiency of the present method for the modeling of unsteady
propagating flames with both detailed and reduced mechanisms
are demonstrated.
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Fig. 2. Characteristic timescale of species for homogeneous n-decane ignition at
time of 0.1, 0.2, and 0.3 ms, respectively.
2. The multi-timescale method

In recent years, on-grid operator-splitting schemes have been
used in reactive flow simulations and the stiff source term due to
chemical reactions are treated by the so called point implicit or
fractional-step procedure [33,34]. In this method, for a given time
step, on each grid a non-reaction flow is solved in the first frac-
tional step and the stiff ODEs associated with detailed chemical
reactions are solved in the second fractional step for a homoge-
neous reaction system. The present study is to develop an efficient
and accurate MTS and HMTS algorithms to integrate the stiff ODEs
on each computation grid with detailed and reduced kinetic
mechanisms.

To demonstrate the multi-timescale nature of a reactive flow
with detailed chemistry, in this study, homogenous ignition of
hydrogen/air, methane/air and n-decane/air at a constant pressure
is simulated. For hydrogen/air combustion, the C1 mechanism [35]
is employed. For methane/air mixtures, the GRI-MECH 3.0 mecha-
nism [36] of 53 species and 325 reactions is used. For n-decane/air
mixtures, the high temperature mechanism for surrogate jet fuels
[37] which consists of 121 species and 866 reactions is utilized.
Fig. 2 show the timescales of species during homogeneous ignition
of the stoichiometric n-decane/air mixture initially at T = 1400 K
and P = 1 atm at t = 0.1, 0.2, and 0.3 ms, respectively. Before the
thermal runaway, for example, at t = 0.1 ms, the characteristic
times for most species estimated by using the present definition
(Eq. (5) in the next section) are in the range of 10�4–10�10 s. How-
ever, after the thermal runaway, for example, at t = 0.2 or 0.3 ms,
the range of timescale distribution changes to 10�7–10�13 s. It is
confirmed that an explicit Euler integration of the ODEs will not
be able to converge unless the time step is about 10�13 ns. There-
fore, the reactive system is intrinsically dynamic and multi-time-
scale and the characteristic time of different species spans a wide
range, leading to the difficulty of the conventional explicit Euler
solver and the QSS assumption for any pre-specified species.

In order to efficiently solve the multi-timescale problem in a
reactive flow without introducing pre-specified QSS assumptions
and keeping the simplicity of the Euler scheme, we will present
here a multi-timescale (MTS) method. The basic idea of the mul-
ti-timescale (MTS) method is shown in Fig. 3a. First of all, in each
simulation a base time step, tbase, is specified based on the interest
of the physical problem and the information needed at sub-time
scale to construct models at the physical timescale of interest.
Then, based on the base time step and the estimated characteristic
time of each species (note that as described in the following sec-
tion, this present scheme does not need an accurate estimation
of the characteristic time of species), all the species will be divided
into different groups according to their timescales. At each time
step of tbase, from the fastest group (DtF) to the slowest group
(DtS), all the groups are calculated with their own time steps by
using a first-order explicit Euler scheme until a converging
criterion with both absolute and relative errors is met. The first-
order Euler scheme has an accuracy of O(Dt) and can be easily
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parallelized on each grid. Note that by using a Runge–Kutta meth-
od, higher-order schemes can be constructed [7,27].

In some cases such as high temperature ignition, one only has
interest in the phenomena of large timescales and the transient
time histories of certain physical processes or reaction groups
may not be needed. Therefore, time accurate integration for the
short timescale species or groups by using an explicit Euler scheme
is not necessary and a larger time step together with an implicit
Euler scheme can be applied more efficiently. As shown in
Fig. 3b, for example, if the time histories of the fast groups are
not needed, the integration of these selected groups will be re-
placed by using an implicit Euler scheme. For the rest of groups,
the explicit Euler scheme is still applied. This algorithm is called
the hybrid multi-timescale (HMTS) method. It combines the expli-
cit Euler scheme with an implicit Euler scheme for integration of
species with short characteristic time. Note that, the selection of
the implicit Euler scheme for species groups is not limited by the
timescale, but by the interest of the need for accurate time history
of the reaction groups.

In the MTS method, the time step for integrating each species
group has to be smaller than the characteristic time of any species
in this group to ensure the convergence of the explicit Euler meth-
od [7]. At the same time, although it is necessarily to be accurate
but needs to be closer to the true local timescale so that the com-
putation efficiency can be maximized. However, for HMTS, the
groups which use the implicit Euler method will be integrated by
using the base time step (tbase) directly.

In the following, we briefly summarize the implementation of
the on-grid dynamic MTS and HMTS methods for combustion mod-
eling involving detailed or reduced kinetic mechanisms. For exam-
ple, for an adiabatic and homogeneous system on each
computation grid, the governing equations for mass conservation
and energy conservation in an adiabatic and constant pressure pro-
cess can be written as,

dYi

dt
¼ xiðT;Y1; Y2; . . . YNSÞWi=q; ð1Þ

dT
dt
¼ �

XII

i¼1

hixiðT;Y1; Y2; . . . YNSÞ=qcp ð2aÞ

or

hðT;Y1; Y2; . . . YNSÞ ¼ h0 ð2bÞ

where t is the time, T the temperature, q the density, and cp is the
heat capacity. Yi, xi, and hi are, respectively, the mass fraction, the
net production rate, and the enthalpy of species i. Ns is the total
number of species. For a constant volume process, the energy equa-
tion can be replaced by the conservation of the internal energy,

eðT;Y1;Y2; . . . YNSÞ ¼ e0 ð3Þ

where e0 is the initial internal energy per unit volume of the
mixture.

In the conventional Euler method, the conservation equations
are solved explicitly by using a single time step smaller than the
minimum characteristic time of all species. Although the Euler
method is widely used in direct numerical simulations, the compu-
tation efficiency is very low due to the strong constraint in time
step [7]. As shown in Fig. 2, in order to calculate the ignition of
n-decane, the time step for the explicit Euler method has to be
smaller than 10�13 s. On the other hand, in an implicit method such
as the VODE solver [6], the governing equation is solved implicitly
by using a Jacobian decomposition. As shown below, although this
approach is robust for larger time steps, the computation efficiency
using this method for unsteady flow simulations is very low be-
cause of the huge cost of matrix inversion.

In the MTS method, as shown in Fig. 3a, unlike the conventional
Euler method, the conservation equations for all species are inte-
grated with their own characteristic timescales. In order to find
the characteristic time of each species, the net production rate,
xk, in the governing equation of each species can be divided into
two parts, a creation rate, Ck, and a destruction rate, Dk,

dYk

dt
¼ CkðT;q;Y1;Y2; . . . Yk�1;Ykþ1; . . . YNSÞ

� DkðT;q; Y1;Y2; . . . YNSÞ ð4Þ

where

DkðT;q; Y1;Y2; . . . YNSÞ ¼ Yl
kFkðT;q;Y1;Y2; . . . Yk�1;Ykþ1; . . . YNSÞ;

l P 1

All the reactions involving the participation of the kth species as
a reactant are included in Dk. From a linear analysis, a characteris-
tic time, sk, for the destruction of species k can be approximately
estimated as,

sk ¼ �
@

@Yk

dYk

dt

� �� ��1

¼ @Dk

@Yk

� ��1

ð5Þ

A further discussion of the validity of the definition of charac-
teristic time of species in Eq. (5) will be made in the following sec-
tion by using a skeletal reaction scheme.

In the numerical simulation process, the base time step tbase is
chosen from the interest of the physical phenomenon (e.g. turbu-
lent mixing, transient ignition, or plasma discharge). At the same
time, the characteristic time of all species can be estimated from
Eq. (5). Since many species may have the same or similar time-
scales, these species can be grouped as one integration group. By
defining that each neighboring group has a difference of timescale
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in one-order, the number of timescale groups, Nm, and the group
index of the kth species Nk can be obtained as,

Nm ¼ Log10
Dtbase

smin

� �� �
þ 1 ð6Þ

Nk ¼ Log10
Dtbase

sk

� �� �
þ 1 ð7Þ

Note that the member of groups and the number of groups are
varied at each base time step and grid in order to include the rapid
change of the characteristic time of certain species. Therefore, for
example, for a constant pressure system the species in the Nth
group will be solved explicitly using the characteristic time of
Nth group by using,

Ynþ1;mþ1
k ¼ Ynþ1;m

k þ Dtn
xkWk

q
ð8Þ

Tnþ1;mþ1 ¼ Tnþ1;m þ Dtn
�
PII

i¼1hixiWi

qcp

 !
ð9Þ

where Wi is the molecular weight of the ith species. The superscript
and subscript n means the nth time step, and m is the mth iteration.
Normally, for Euler integrations of each group, only a few steps (e.g.
4–5 steps) are needed to meet the convergence criteria (an absolute
error of ATOL = 1.0 � 10�13 and a relative error of RTOL = 1.0 �
10�4). Note that to improve the accuracy, in the integration of the
faster modes, the slower modes are updated as well. The values of
the converged fast groups are then fixed until the convergence of
all the slow species is reached at the end of the base time step.
Therefore, MTS has a similar form to the conventional explicit Euler
method except that each species in different groups is integrated
with a different time step. In fact, in the limiting case when all spe-
cies are integrated at the smallest time step, MTS method automat-
ically reduces to the conventional Euler method. However, as
shown later, MTS allows integration of a much larger base time step
and is more robust and computationally efficient than the conven-
tional Euler method.

In the HMTS method, the species selected for implicit integra-
tion are solved by using an iterative implicit Euler scheme. In this
method, by using Eqs. (2) and (4) the species iteration and energy
equation for a constant pressure system is written as,

Ynþ1;mþ1
k ¼ ðYn

k þ DtCnþ1;m
k Þ=ð1þ DtEnþ1;m

k Þ
hðTnþ1; Ynþ1

1 ;Ynþ1
2 ; . . . Ynþ1

NS Þ ¼ h0
ð10Þ

where Ek = Dk/Yk. At a given time step of n, the species in Eq. (10) are
solved iteratively until the convergent thresholds ATOL and RTOL
are met. After the initial implicit steps for hybrid species, the MTS
method will continue to integrate the governing equation to the
specified based time step. Therefore, HMTS is a two-step approach.
In one limit, if no group is chosen to be solved implicitly, it reduces
to the MTS method. In the other limit, if all groups are chosen to be
solved implicitly, it becomes a fully implicit method. Therefore, the
HMTS is a general method which includes Euler, MTS, and the fully
implicit methods in three limiting cases, respectively. In the follow-
ing comparisons between MTS, HMTS, and the VODE solver, the
same base time step and relative and absolute error thresholds
are used for all schemes. In the VODE solver, the first-order time
integration and numerical Jacobian are employed.

3. Results and discussion

3.1. Comparison of the estimations of species timescale

In the present multi-timescale method, as shown in Eq. (5), we
need to define a characteristic time for each species for the explicit
Euler integration. Unfortunately, strictly speaking, although the
characteristic time of each independent reaction mode can be
determined from the CSP analysis, the characteristic time of each
species does not exist because each species is involved in several
independent modes. Fortunately, our method does not require an
accurate determination of the timescales of species. Instead, only
an approximate timescale is needed for the purpose of the efficient
and convergent integration of the explicit Euler method at a small
integration time step. Of course, a better determination of the char-
acteristic time of species will increase the computation efficiency.
In the following, we will use a simple example to demonstrate the
effectiveness of timescale estimation in Eq. (5) by comparing it
with the CSP method and the ‘‘frozen” reaction rate representation
method.

We first discuss the estimation of species timescale by using the
CSP method. For a reactive system with Ns species, there exist Ns
linearly independent or conjugate reaction modes, and the time-
scales for all reaction modes can be determined from the eigen-val-
ues of the reaction Jacobian [11,13]. A pair of conjugate modes will
involve two coupled reaction modes with the same oscillatory and
growth or decay timescales. The timescale of each reaction group
can be obtained by using the CSP method. By using a species vec-
tor, y, and the reaction vector x, Eq. (1).can be rewritten as

gðyÞ � dy
dt
¼ x ¼ S � FðyÞ ð11Þ

where S and F(y) the stoichiometric coefficient matrix and the rate
vector of elementary reactions, respectively, and x is the mass pro-
duction rate weighted by density. By taking a time derivative of Eq.
(11), we can obtain

dg
dt
¼ J � g ð12Þ

where J = dg/dy is the time-dependent Jacobian matrix with all real
components. Assuming J is a constant in a small time interval and
using the decomposition of J = AKB, the time evolution of each
reaction mode, f, can be given as

df
dt
¼ Kf; f � Bg ð13Þ

where A is the matrix of basis vectors and B is the inverse matrix of
A. In Eq. (13), if A is an ideal basis matrix, K reduces to a diagonal
matrix and its Ns diagonal elements are the eigen-values (kk) of the
Ns reaction modes. The timescale of each reaction mode is the in-
verse of the corresponding eigenvalue,

sk � 1=kk ð14Þ

To estimate the characteristic time of a species, Lam [11] pro-
posed using a radical pointer based on the Ns diagonal elements
of the projection matrix of each species to the mth reaction mode,

Q m ¼ Diag½am � bm� ð15Þ

By extending the concept of radical pointer, the characteristic time
of the kith species can be approximately defined as [13],

sk � 1
XN

m¼1

,
Q mðkÞkm ð16Þ

Unfortunately, the calculations of the reaction Jacobin, eigen-
values, and the projection matrix at each time step and on each
grid point are computationally expensive. It is not realistic to use
Eq. (16) to estimate the characteristic time of species in the present
multi-timescale method.

An alternative and simplest approximation of the reaction time-
scale of the kth species in a reaction system is using the reaction
rate directly [38],

sk ¼ Yk
dYk

dt

� �����
���� ¼ Yk

	 	
jxkWk=qj ð17Þ
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However, this approximation is based on a global ‘‘frozen”
reaction rate representation and ignores the dynamic equilibrium
of the chemical reactions. As a result, all species timescales be-
come to infinity at chemical equilibrium conditions (zero net
reaction rate). This is not reasonable because even at equilibrium
conditions, each species still has a finite timescale involving in a
dynamic chemical equilibrium. A small perturbation will drive
each species to move away from the equilibrium state at that
timescale.

In this study, as shown in Eq. (5), we use the gradient of the spe-
cies consumption rate in the species coordinate to define the spe-
cies timescale,

sk ¼ �
@

@Yk

dYk

dt

� �� ��1

¼ Yk

XII

i¼1

,
mkiDkiðT; Y1; Y2; . . . YNSÞ ð18Þ

For most elementary reactions, each species only involves in
reactions with other species. In this case (mk = 1), the timescale
can be estimated as,

sk ¼ Yk=DkðT;Y1;Y2; . . . YNSÞ ð19Þ

Eq. (19) is consistent with the definition of the lifetime of spe-
cies given in [39]. In fact, our simulation shows that the MTS
and HMTS work well for both Eqs. (18) and (19), implying that
the estimation of species timescale does not need to be
accurate.

To compare the above three methods and demonstrate the
effectiveness of the present method for the estimation of the char-
acteristic time of species, we consider the following simple (first-
order) reaction system from species A to species B and C: A!K1 C,
B!K2 C, and C!K3 B. The ordinary differential equations and the initial
boundary conditions can be written as

g � d
dt

YA

YB

YC

0
BBB@

1
CCCA ¼

�k1 0 0

0 �k2 k3

k1 k2 �k3

2
6664

3
7775

YA

YB

YC

0
BBB@

1
CCCA;

with

YA

YB

YC

0
BBB@

1
CCCA
,���������

t¼0

¼

1

0

0

0
BBB@

1
CCCA ð20Þ

The exact solutions for the mass fractions of A, B, and C are,
respectively,

YAðtÞ ¼ e�k1t ;

YBðtÞ ¼
k3

k2 þ k3
þ k3

k1 � k2 � k3
e�k1t

� k3

k2 þ k3
þ k3

k1 � k2 � k3

� �
e�ðk2þk3Þt ; ð21Þ

YCðtÞ ¼ 1� ½YAðtÞ þ YBðtÞ�

From the CSP method, the reaction Jacobian and the matrix of
base vectors are given as,

J ¼ dg
dY
¼
�K1 0 0

0 �K2 K3

K1 K2 �K3

2
64

3
75 ¼ AKB ð22Þ

where
K ¼
�K2 � K3 0 0

0 �K1 0
0 0 0

2
64

3
75; A ¼

0 K1�K2�K3
K3

0

�1 1 K3
K2

1 K2�K1
K3

1

2
664

3
775;

and B ¼

K1K3
ðK1�K2�K3ÞðK2þK3Þ

�K2
K2þK3

K3
K2þK3

K3
K1�K2�K3

0 0
K2

K2þK3

K2
K2þK3

K2
K2þK3

2
664

3
775 ð23Þ

The diagonal elements in K denote the eigen-values of the fol-
lowing three reaction modes,

f1 ¼
K3K1YA

K3 þ K2 � K1
þ K2YB þ K3YC

f2 ¼
K3K1YA

K3 þ K2 � K1
; ð24Þ

f3 ¼
dðYA þ YB þ YBÞ

dt
¼ 0

The corresponding timescales of the above three modes are,
respectively, 1/(K2 + K3), 1/K1, and infinity. The infinity timescale
of the third mode comes from the mass conservation of the reac-
tion system. In order to obtain the characteristic time of each spe-
cies, the radical pointers from the projection matrix of the three
reaction modes to three species are obtained from Eq. (15)
respectively,

Q 1 ¼ Diag½a1 � b1� ¼ 0;
K2

K2 þ K3
;

K3

K2 þ K3

� �

Q 2 ¼ Diag½a2 � b2� ¼ ½1; 0;0�; ð25Þ

Q 3 ¼ Diag½a3 � b3� ¼ 0 K3
K2þK3

K2
K2þK3

h i

Therefore, by using Eq. (16), the projected timescales for species A,
B, and C from the CSP analysis, are, respectively,

sA ¼ �1=f0� ½�ðK2 þ K3Þ� þ 1� ð�K1Þ þ 0� 0g ¼ 1=K1

sB ¼ �1=
K2

K2 þ K3
� ½�ðK2 þ K3Þ� þ 0� ð�K1Þ þ

K3

K2 þ K3
� 0


 �
¼ 1=K2 ð26Þ

sC ¼ �1
K3

K2 þ K3
� ½�ðK2 þ K3Þ� þ 0� ð�K1Þ þ

K2

K2 þ K3
� 0


 �
¼ 1=K3

To demonstrate validity of the present method for timescale
estimation, the comparison of the timescales predicted by the
above different methods using Eqs. (21), (18) and (26) for constant
reaction rates at K1 = 1, K2 = 10, and K3 = 100 are shown in Fig. 4. It
is seen that the present method predicts the same results as the
CSP projected species timescales. In addition, the timescales of spe-
cies A and B predicted by the present method are also in good
agreement with that of the first two CSP modes (Eq. (23)). The
timescale of the third mode from CSP is infinity. However, the pre-
dicted timescale for the third species in our method is finite, 1/K3.
The under-estimation of timescale will make the explicit Euler
method numerically stable although it may sacrifice some of the
computation efficiency. Overall, in this simple reaction system,
our definition of the timescales is consistent with the CSP results
from matrix decomposition. However, the present method will sig-
nificantly improve the computation efficiency of the timescales by
eliminating the necessity of the reaction Jacobian and its subse-
quent decomposition. In Fig. 4, it is also seen that the timescales
calculated from the global ‘‘frozen” reaction rate representation
in Eq. (17) are much larger than those predicted by either the
CSP method or the present method. Therefore, the use of the time-
scales defined in Eq. (17) in the multi-timescale method will ren-
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der the numerical simulation unstable. The divergence of MTS due
to over-estimated timescales using Eq. (17) is confirmed in our
numerical simulation.
3.2. Validation of MTS and HMTS for homogeneous ignition systems

The MTS/HMTS methods described above were tested and com-
pared with the explicit Euler and the implicit VODE solvers [6] for
homogeneous ignition and unsteady spherical flame propagation
in n-decane, methane, hydrogen–air mixtures. The relative and
absolute error thresholds (RTOL and ATOL) for VODE and MTS/
HMTS are, respectively, 1 � 10�4 and 1 � 10�13. Unless otherwise
stated, in the calculations of the HMTS method, only the fastest
one group was chosen for the implicit method.

Fig. 5 shows the comparison of the temperature, major species,
and radical concentrations calculated by MTS, HMTS, and the VODE
solver for homogeneous ignition of stoichiometric n-decane–air
mixture at initial pressure of P = 1 atm and initial temperature of
T = 1400 K. It is seen that both MTS and HMTS agree well with
the VODE method for all predictions. The corresponding quantita-
tive comparison of predicted temperature and mass fractions of
fuel, CO2, and OH by VODE, MTS, and HMTS are shown in Table 1
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Fig. 5. Time histories of temperature and species mass fractions during ignition
predicted by different integration schemes.
at pre-ignition, ignition, and after-ignition times. It is seen that
all methods predicted the same equilibrium temperature and spe-
cies concentrations (converged solution). The maximum differ-
ences in temperature and species between the above three
methods occurred near ignition due to the slight difference in the
predicted ignition delay time. Nevertheless, the maximum differ-
ence is within 2% and this difference disappears as the combustion
moves towards equilibrium.

To demonstrate the robustness of the HMTS for different selec-
tion of species for implicit solutions, the effect of the number of
species selected for implicit Euler solutions on the distributions
of fuel and OH are shown in Fig. 6a and b, respectively. In Fig. 6a
and b, HTMS-1, HTMS-3, and HTMS-5 denote, respectively, that
one, three, and five of the fastest groups for implicit Euler integra-
tion (see Fig. 3b). Note that each group may have more than one
species (see Fig. 2). The results show that the number of implicit
groups selected in the HTMS does not affect the distributions of
fuel and OH. Similar observation is also observed for other species
and temperature distributions. Therefore, from Figs. 5 and 6, we
can conclude that the HMTS is robust and accurate. In addition,
the number of implicit groups in HTMS can be specified dynami-
cally on each grid and at each time step depending on the level
in which the information of time accurate species history is
needed.

Fig. 7a shows the comparison of the dependence of ignition de-
lay time on temperature for the stoichiometric n-decane–air mix-
tures at 1 and 20 atmospheric pressures, respectively. The base
time step is 0.01 ls. The excellent agreement of MTS and HMTS
with the implicit VODE solver demonstrates that both MTS and
HMTS are accurate enough (with error less than 1%) to reproduce
ignition delay time in a broad temperature range. Fig. 7b shows
the comparison of predicted ignition delay time by different mod-
els as a function of equivalence ratio. It is also seen that both MTS
and HMTS reproduce well the ignition delay time compared to the
VODE solver. As shown later, the slight difference (about 1%) comes
from the difference in the fixed integration time step in MTS/HMTS
while the VODE solver takes a variable integration step.

Fig. 8 shows the comparisons of the normalized CPU time be-
tween MTS, HMTS, and the VODE solver for ignition of the stoichi-
ometric n-decane–air mixture at 1 atmospheric pressure and
different temperatures. It is seen that both MTS and HMTS in-
creases the computation efficiency about one-order in the entire
temperature range with the same kinetic mechanism. The HMTS
has a slightly better computation efficiency than the MTS. How-
ever, it loses the time accurate history of the selected fast modes
and has a narrower stability threshold of the base time step than
MTS. This is caused by the linear iteration of the implicit solver
embedded in the HMTS. Similar results were also obtained for n-
decane ignition at 20 atm and non-stoichiometric conditions.

For methane–air ignition, Fig. 9a shows the comparison of pre-
dicted ignition delay time as a function of initial temperature at 1
and 20 atm for different models. Again, it is seen clearly that both
MTS and HMTS agree very well with the VODE solver [6]. The CPU
time ratio between MTS/HMTS and VODE solver at 1.0 � 10�8 s
base time step is between 0.04 and 0.079, indicating an increase
of computation efficiency up to 20 times with the same detailed ki-
netic model.

For hydrogen–air ignition, Fig. 9b shows the comparison of the
predicted ignition delay time of the stoichiometric mixture at 1
atmospheric pressure as a function of the base time step for MTS
and VODE solver. Both schemes have the same absolute and rela-
tive control errors (see Table 2). The results show that the pre-
dicted ignition delay time agrees extremely well at small base
time steps. However, as the base time step increases larger than
1 ls, MTS predicted a slightly longer ignition delay time. This dif-
ference is due to the fixed integration time step in MTS. In the



Table 1
Quantitative comparison of time histories of temperature, fuel, CO2, and OH mass fractions predicted by different methods for initial temperature of 1400 K, fuel mass fraction of
0.0614, and pressure of 1 atm (corresponding to Fig. 5).

Time (ms) Temperature (K) C10H22 CO2 OH

0.02 VODE 1360 VODE 0.0215 VODE 6.54e�5 VODE 3.44e�5
MTS 1360 MTS 0.0214 MTS 6.65e�5 MTS 3.49e�5
HMTS 1360 HMTS 0.0214 HMTS 6.61e�5 HMTS 3.47e�5

0.2 VODE 2440 VODE 0.0000 VODE 0.0138 VODE 0.0872
MTS 2470 MTS 0.0000 MTS 0.0139 MTS 0.0893
HMTS 2460 HMTS 0.0000 HMTS 0.0139 HMTS 0.0887

0.4 VODE 2750 VODE 0.0000 VODE 0.112 VODE 0.0119
MTS 2750 MTS 0.0000 MTS 0.112 MTS 0.0119
HMTS 2750 HMTS 0.0000 HMTS 0.112 HMTS 0.0119
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Fig. 6. (a) Effect of the number of selected implicit groups in the HTMS method on
the time history of fuel consumption. (b) Effect of the number of selected implicit
groups in the HTMS method on the time history of OH.
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VODE solver, the internal integration time step is dynamically ad-
justed and a very small time step is used at near ignition. In fact, in
most direct numerical simulations the time step is much smaller
than 1 ls. In addition, MTS can be simply modified to take a vari-
able integration time steps at ignition conditions to improve the
prediction of ignition delay when a large base time step is taken.
However, this is not the focus of the present study.

Table 2 shows the comparison of the computation efficiency of
the VODE solver and MTS at different base time steps for stoichi-
ometric hydrogen, methane, and n-decane–air mixtures. The con-
ventional Euler scheme is not listed here because it is not stable
at most calculation conditions. Table 2 shows that with the de-
crease of the base time step, MTS has an increasing computation
efficiency compared to VODE. At the same time, it is also seen that
with the increase of the size of the kinetic mechanism, at the same
base time step, the relative MTS computation efficiency also in-
creases against VODE. When the MTS method is applied for n-hep-
tane ignition with 160 species, a similar increase of computation
efficiency is observed.
3.3. Validation of MTS and HMTS for unsteady propagating flames with
detailed and reduced kinetic mechanisms

In order to apply the MTS method to model unsteady flame
propagation, we integrated the MTS/HMTS method with the adap-
tive simulation of unsteady reactive flow code (ASURF) developed
at Princeton University by Chen et al. [27]. The code is able to mod-
el one-dimensional and two-dimensional unsteady combustion
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problems with adaptive grids and detailed chemistry. In this paper,
we used this code to demonstrate the effectiveness of the MTS/
HMTS methods for the modeling of unsteady, outwardly propagat-
ing flame using both detailed and reduced kinetic models. The base
time step is determined by the acoustic speed and the grid size
with CFL = 0.5.

The outwardly propagating, stoichiometric n-decane–air spher-
ical flame is initiated at the center in a spherical chamber with an
inner diameter of 1 m and pressure of 1 atm by a hot kernel with a
radius of 1 mm. The profile of the hot kernel is interpolated from
the structure of the corresponding one-dimensional steady state
propagating flames. Fig. 10a shows the comparison of the transient
flame trajectories (the location of maximum temperature gradient)
of stoichiometric n-decane/air spherical flame predicted by using
HMTS and the implicit VODE solver. The initial acceleration is
due to the auto-ignition by the hot kernel. The deceleration of
the flame is caused by the diffusion transport and the cooling of
the central kernel via thermal diffusion. The acceleration and con-
tinuously outward flame propagation is the onset of the quasi-
steady spherical flame structure. The comparison in Fig. 10a re-
veals that the present dynamic multi-timescale algorithm works
very well for unsteady flame simulation. Similar to the ignition
case, the HMTS significantly reduces the computation time and en-
ables the unsteady flame modeling with a detailed chemistry. On
the other hand, the VODE solver is too slow to be used to model
the entire spherical flame propagation with a detailed chemistry.

To further increase the computation efficiency, the MTS and
HMTS is integrated with a reduced mechanism. In the study, we
used a path flux analysis (PFA) based mechanism reduction ap-
proach [23] and obtained a reduced n-decane mechanism with
54 species from the original detailed mechanism with 121 species
and 866 reactions. Fig. 10b shows the evolution of flame trajecto-
ries. It is seen also that there is excellent agreement between the
HMTS and VODE solver in the simulation of flame trajectory with
the reduced mechanism. Moreover, the integration of MTS/HMTS
with the PFA generated reduced mechanism decreases the compu-
tation time by more than one-order and enables the detailed, un-
steady, and adaptive flame modeling of n-decane–air flames on a
notebook computer within a few hours. Therefore, the integration
of the dynamic MTS method with the PFA on-grid model reduction
is a promising approach for direct numerical modeling with de-
tailed chemistry. We will address this issue in our future
publications.
4. Conclusions

Combustion is a multi-scale problem in nature. An on-grid dy-
namic multi-time scale (MTS) method and a hybrid multi-time
scale (HMTS) method are developed to model multi-timescale
combustion problems with detailed and reduced kinetic mecha-
nisms. Comparisons of homogeneous ignition delay time, temper-
ature and species distributions of hydrogen, methane, and n-
decane–air mixtures in a broad range of temperatures, pressures,
and equivalence ratios show that both MTS and HMTS are robust
and accurate enough to reproduce the results of the VODE method
but can reduce computation time by one-order. The results also
show that HMTS has slightly better computation efficiency than
MTS but scarifies the stability at larger base time steps. In addition,
it is shown that the computation efficiency of multi-time scale
method increases with the increase of the kinetic mechanism size
and the decrease of base time step. Furthermore, numerical simu-
lations demonstrate that the multi-timescale method does not re-
quire accurate estimation of the species timescale and that the
present definition of species timescale is consistent with the pro-
jected timescale by the CSP method. For the HMTS method, it is
also shown that the selection of the species for implicit solutions
can be flexible and does not affect the numerical results. Applica-
tions of the multi-timescale method to the unsteady flame simula-
tions of outwardly propagating spherical n-decane–air flames
reveal that the multi-timescale method is promising and computa-
tionally efficient for direct numerical simulations of transient com-
bustion processes. The integration of the multi-timescale method
with the path flux analysis based mechanism reduction approach



Table 2
Comparison of computation efficiency for calculations of ignition delay time of hydrogen, methane, and n-decane air stoichiometric mixtures at different base time steps by using
the VODE solver and MTS (detailed mechanism).

No. Mechanism Base time step (s) Initial pressure (atm) Initial temperature (K) CPU time (s) CPU time saving (%)

VODE MTS

a1 H2 1.0e�6 1 1200 0.28 0.13 53.6
a1 H2 1.0e�6 1 1200 0.28 0.13 53.6
a2 H2 1.0e�7 1 1200 2.58 1.31 49.2
a3 H2 1.0e�8 1 1200 24.9 7.56 69.6
a4 H2 1.0e�9 1 1200 260 18.4 92.9
b1 CH4 1.0e�6 1 1400 123 25 79.7
b2 CH4 1.0e�7 1 1400 1269 181 85.7
b3 CH4 1.0e�8 1 1400 14,639 1029 93.0
c1 C10H22 1.0e�6 1 1400 86 14 83.7
c2 C10H22 1.0e�7 1 1400 773 125 83.8
c3 C10H22 1.0e�8 1 1400 7609 1049 86.2
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Fig. 10. (a) Comparison between HMTS and VODE solver for the modeling of
unsteady spherical flame trajectories of stoichiometric n-decane–air mixtures with
a detailed mechanism (121 species). (b) Comparison between HMTS and VODE
solver for the modeling of unsteady spherical flame trajectories of stoichiometric n-
decane–air mixtures with a reduced mechanism (54 species).
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further demonstrates that a significant increase the computation
efficiency can be achieved.
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