numerical methods - 17.1

17. LAPLACE TRANSFORMS

Topics:
* Laplace transforms
 Using tables to do Laplace transforms
* Using the s-domain to find outputs
* Solving Partia Fractions

Objectives:
* To be able to find time responses of linear systems using L aplace transforms.

17.2INTRODUCTION

L aplace transforms provide a method for representing and analyzing linear sys-
tems using algebraic methods. In systems that begin undeflected and at rest the Laplace’s
can directly replace the d/dt operator in differential equations. It is asuperset of the phasor
representation in that it has both a complex part, for the steady state response, but also a
real part, representing the transient part. As with the other representations the Laplace sis
related to the rate of change in the system.

D=s (if theinitial conditions/derivatives are all zero at t=0s)

S=0+jw

Figure17.1 TheLaplaces

The basic definition of the Laplace transform is shown in Figure 17.2. The normal
convention is to show the function of time with a lower case letter, while the same func-
tion in the ss<domain is shown in upper case. Another useful observation isthat the trans-
form starts at t=0s. Examples of the application of the transform are shown in Figure 17.3
for astep function and in Figure 17.4 for afirst order derivative.
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F(s) = j:f(t)e‘Stdt

where,
f(t) = thefunctionintermsof timet

F(s) = thefunctioninterms of the Laplace s

Figure17.2 The Laplace transform

Aside: Proof of the step function transform.
For f(t) = 5,

F(s) = jo f(tye dt = jo 5¢ St = _ge-st

o [ 5 —sm} [ 5e
= ——e —_—] —
0 S S

Figure17.3  Proof of the step function transform
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Aside: Proof of thefirst order derivative transform
Given the derivative of afunction g(t)=df(t)/dt,

G(s) = L[g(t)] = L[ad;[f(t)} = j:(d/dt)f(t)e‘S‘dt

we can use integration by parts to go backwards,

Ibudv = uv|2— .[bvdu
a

a

[ @dyr(e ot
0

therefore,

—st

du = df(t) v=e

c
|

= f(t) dv = —Se_Stdt

st

0 j:f(t)(—s)e‘Stdt = f(ne . - j:(d/dt)f(t)e‘Stdt

—St

O jw () f(t)edt = [f(H)e " —f(t)e +sj°°f(t)e‘3‘dt
0 0

0 L[dgtf(t)} = _1(0) + SL[f(1)]

Figure17.4  Proof of the first order derivative transform

The previous proofs were presented to establish the theoretical basisfor this
method, however tables of values will be presented in alater section for the most popular
transforms.

17.2 APPLYING LAPLACE TRANSFORM S

The process of applying Laplace transformsto analyze alinear system involvesthe
basic steps listed below.
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1. Convert the system transfer function, or differential equation, to the s-domain by
replacing 'D’ with’s’. (Note: If any of theinitial conditions are non-zero these
must be also be added.)

2. Convert the input function(s) to the s-domain using the transform tables.

3. Algebraically combine the input and transfer function to find an output function.

4. Use partial fractions to reduce the output function to simpler components.

5. Convert the output equation back to the time-domain using the tables.

17.2.1 A Few Transform Tables

Laplace transform tables are shown in Figure 17.5, Figure 17.7 and Figure 17.8.
These are commonly used when analyzing systems with Laplace transforms. The trans-
forms shown in Figure 17.5 are general properties normally used for manipulating equa-
tions, and for converting them to/from the s-domain.
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TIME DOMAIN FREQUENCY DOMAIN
f(t) f(s)
Kf(t) KL[f(t)]

(1) + Fy(t)—F5(t) + ..

df(t
dt

d2f(t

dt?
d"f(t
dt”

t
jof(t)dt

f(t—a)u(t—a),a>0

e (1)

f(at),a>0

t(t)
t"f(t)

(1)
t

£,(S) + f,(s)—F4(s) + ...

sL[f(t)] (0" )

S2LIf(1)] —sf(0™ )—m(%)

SLIF(0)] =" (07 )_Sn—Zm:t;) -

L[f(t)]

S

e SLIf(1)]

f(s—a)

3
—df(s)

ds
(i)

ds”

J'f(u)du

S

Figure17.5 Laplace transform tables

_d" (o
dt"
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L[X+T7%+8x=9] = where, 70) = 1
X(0) = 2
X(0) = 3

Figure17.6  Drill Problem: Converting a differential equation to s-domain

The Laplace transform tables shown in Figure 17.7 and Figure 17.8 are normally
used for converting to/from the time/s-domain.




numerical methods - 17.7

TIME DOMAIN FREQUENCY DOMAIN
o(t) unit impulse 1
A step A
S
t ramp 1
2
S
2 2
t 3
S
|
tn' n>0 n!
n+1
S
ot exponential decay 1
s+a
sin(wt) w
2. 2
ST +W
S
cos(wt) >
ST+W
te—at 1 ,
(s+a)
_ !
t2e at 2! .
(s+a)

Figure17.7  Laplace transform tables (continued)
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TIME DOMAIN FREQUENCY DOMAIN
e sin(wt) +§
(sta) " +w
e_atcos(oot) Lzaé
(s+ta) " +w
e Msin(wt) +§
(s+ta) +w
e_at[Bcosoot + (C - aB) sinwt} _Bs+C
w (s+ a)2 + 2
_ complex conjugate
2|Ale * cos(Bt + 0) A LA ,
s+a-Bj s+a +pj
_ complex conjugate
2t|Ale O‘tcos(Bt +0) A 5 + A >
(sta-=Bj)” (sta+Bj)
(c—a)e™ ~(c-b)e™ s+c
b-a (s+a)(s+b)
e—at_e—bt 1
b-a (s+a)(s+b)
Figure17.8  Laplace transform tables (continued)
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f(t) = 5sin(5t + 8)

f(s) = L[f(1)] =

Figure 17.9  Drill Problem: Converting from the time to s-=domain

6

fs) = s*sv7

+

n ol

f(t) = L [f(9)] =

Figure 17.10 Drill Problem: Converting from the s-domain to time domain

17.3MODELING TRANSFER FUNCTIONSIN THE ssDOMAIN

In previous chapters differential equations, and then transfer functions, were
derived for mechanical and electrical systems. These can be converted to the s-domain, as
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shown in the mass-spring-damper example in Figure 17.11. In this case we assume the
system starts undeflected and at rest, so the’D’ operator may be directly replaced with the
Laplace’s . If the system did not start at rest and undeflected, the’ D’ operator would be
replaced with a more complex expression that includes the initial conditions.

7
F = MD’x + K Dx+ K.x

Kd ‘ s
F(t 2
y #x Xi(t—%:MD +K D +K,
Y] EG) ¢
# - L[X(t) o = M Kas K,

ASIDE: Here’'D’ issimply replaced with’s". Although thisis very convenient, it is
only valid if the initial conditions are zero, otherwise the more complex form,
shown below, must be used.

n — n _
L d f(t _ SnL[f(t)] _Sn—lf(o— )_Sn—2df§0 )_ _d f(0 )
dt" dt dt"

Figure17.11 A mass-spring-damper example

Impedances in the s-domain are shown in Figure 17.12. As before these assume
that the system starts undeflected and at rest.

Device Time domain s-domain Impedance

Resistor V(t) = RI(t) V(s)

RI(S) Z =R
Capacitor | V(t) = (—1:j I(dt | V(s) = @KSQ z-1
Inductor V(t) = Ldgtl(t) V(s)

Lsl(s) Z=1ls

Figure 17.12 Impedances of electrical components
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Figure 17.13 shows an example of circuit analysis using Laplace transforms. The
circuit is analyzed as a voltage divider, using the impedances of the devices. The switch
that closes at t=0s ensures that the circuit starts at rest. The calculation result is atransfer

_9:( R Q
Vi \PRALC+sLR+

function.
r Il I I I BN IS B BN B B B B B B B B B B B B B B B B B B B B B B B . 1
! ™™ !
1 o L @ O 1
1 1
I t=0sec I
1 . 1
Vi _ +
I R I
I c Vo I
| 1
1 1
1 1
| |
1 ® O 1
1 1
| Treat the circuit as a voltage divider, |
1 1
| . 1 |
VI{
1 1 ( R Q 1
! DC+ 3 VilT+pe R !
! Vo= ) R\ i(DZRZLC+D|_R+R) !
: DL+(;1 DLR+(1+DCR) :
I DC+ 2 I
1 Vv 1
1 1
| 1
[ 9 o

Figure17.13 A circuit example

At this point two transfer functions have been derived. To state the obvious, these
relate an output and an input. To find an output response, an input is needed.

17.4 FINDING OUTPUT EQUATIONS

Aninput to a system is normally expressed as a function of time that can be con-
verted to the s-domain. An example of this conversion for a step function is shown in Fig-
ure 17.14.
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Apply aconstant force of A, starting at time t=0 sec.
(*Note: aforce applied instantly isimpossible but assumed)

Ft) =0fort<0

=Afort>=0 Perform Laplace transform using tables

F(s) = LIF(1)] =

wI>
‘----

Figure17.14 Aninput function

In the previous section we converted differential equations, for systems, to transfer
functions in the s-=domain. These transfer functions are aratio of output divided by input.
If the transfer function is multiplied by the input function, both in the s-=domain, the result
isthe system output in the s-domain.

r-------------------------------1
Given, X(s) _ 1
F(S)  Ms®+K s+K,

F(S) = g

Therefore, «(s) 1 A
X = (F(S)) "9 = [Ms2 +Kys+ Kjg

I
I

I

I

I

I

I

I

Assume, |
300008 I

m I
K. = 20000 I
m I

I

I

I

I

I

o

M = 1000kg
A = 1000N
1
(s2 +3s+2)s

ax(s) =

r---------
)
o
I

Figure17.15 A transfer function multiplied by the input function

Output functions normally have complex forms that are not found directly in trans-
form tables. It is often necessary to simplify the output function before it can be converted
back to the time domain. Partial fraction methods allow the functions to be broken into
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smaller, smpler components. The previous examplein Figure 17.15 iscontinued in Figure
17.16 using a partial fraction expansion. In this example the roots of the third order
denominator polynomial, are calculated. These provide three partial fraction terms. The
residues (numerators) of the partial fraction terms must till be calculated. The example
shows a method for finding resides by multiplying the output function by aroot term, and
then finding the limit as s approaches the root.

Wy s—=Lt -1 __A, B C
(32+33+2)s (s+1)(s+2)s s s+1 s+2

A= Imld e < 2
Slirrll[(s+ 1)(mgﬂ =-1

JmJ s+ 2 rayeran)] = 5

o8]
1

C

Aside: the short cut above can reduce time for simple partial fraction
expansions. A simple proof for finding ‘B’ above is given in this box.

[
1
1
i
i
1
1
i
1
1
1
i
1
1
i
| 1 A B C
I (s+1)(s+2)s s s+l s+2
1

1 A B C
: (s+ l)[m} = (s+ 1)[gj|+(s+ 1)|iS+_lj|+(S+ 1)|:ST2i|
1
1
i
1
1
i
i
1
1
i
i
1
]

1
(s+2)s

= (s+ 1)[2} +B+(s+ 1)[5_%2}

S|LTT11[(S +12)S} - lerrll[(s * I)E\H * SlirrllB * SIerll[(s +1) [STCZH

Iim[ }: limB = B
s--1l(s+2)s] s_ -
1 05 - 5

x(s) = ——— = 92
("+3s+2)s S S+l s+2

Figure 17.16 Partia fractionsto reduce an output function

After simplification with partia fraction expansion, the output function is easily
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converted back to afunction of time as shown in Figure 17.17.

| |
I 170.5 =1 7,05 I
I X1 =L [s} v [S+1}+L [S+2} 1
| |
" x(t) = [05] +[(~1)e"] +[(0.5)e ] "
I _ —t ot I
1 X(t) = 0.5—-e +0.5e 1
‘ Il N I BN BN BN B BE B B B B B D B B B B BE BE D BE BE B B B B B B B . ‘

Figure 17.17 Partial fractionsto reduce an output function (continued)

17.5INVERSE TRANSFORMSAND PARTIAL FRACTIONS

The flowchart in Figure 17.18 shows the general procedure for converting a func-
tion from the s-domain to a function of time. In some cases the function is simple enough
to immediately use atransfer function table. Otherwise, partial fraction expansion is nor-
mally used to reduce the complexity of the function.



numerical methods - 17.15

Start with afunction of 's'.
NOTE: This does not apply
for transfer functions.

simplify the
function

function be
simplified?

Use partial fractions to
break the function into
smaller parts

»‘

Match the function(s) to
the formin the table
and convert to atime
function

Y

Figure 17.18 The methodology for doing an inverse transform of an output function

Figure 17.19 shows the basic procedure for partial fraction expansion. In cases
where the numerator is greater than the denominator, the overall order of the expression
can be reduced by long division. After this the denominator can be reduced from a polyno-
mial to multiplied roots. Calculators or computers are normally used when the order of the
polynomial is greater than second order. Thisresults in a number of terms with unknown
resides that can be found using a limit or algebra based technique.



numerical methods - 17.16

start with afunction that
has a polynomia numerator
and denominator

order of the
numerator >=
denominator?

uselong division to
reduce the order of the
numerator

Find roots of the denominator
and break the equation into
partia fraction form with
unknown values

2w

use limits technique. use algebra technique
If there are higher order
roots (repeated terms)
then derivatives will be
required to find solutions

Figure 17.19 The methodology for solving partial fractions

Figure 17.20 shows an example where the order of the numerator is greater than
the denominator. Long division of the numerator is used to reduce the order of the term
until itislow enough to apply partial fraction techniques. This method is used infrequently
because this type of output function normally occurs in systems with extremely fast
response rates that are infeasible in practice.
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553+352+85+6
S +4

X(s) =

This cannot be solved using partial fractions because the numerator is 3rd order
and the denominator is only 2nd order. Therefore long division can be used to
reduce the order of the equation.

55+ 3

S+4 | 5°+35°+85+6
553+205

35— 125+6
352 + 12

—-12s-6
This can now be used to write anew function that has areduced portion that can be
solved with partial fractions.

1256 g, 126 AL B
s“+4 S+4 ST s-2

X(s) = 5s+3+

Figure17.20 Partia fractions when the numerator islarger than the denominator

Partial fraction expansion of athird order polynomial is shown in Figure 17.21.
The s-squared term requires special treatment. Here it produces partial two partial fraction
terms divided by s and s-squared. This pattern is used whenever there is aroot to an expo-
nent.
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i e Canlervrl i
s infS( ] - imf) - E
L oe S GE - imfa))  mpete

Figure17.21 A partia fraction example

Figure 17.22 shows another example with aroot to an exponent. In this case each
of the repeated rootsis given with the highest order exponent, down to the lowest order
exponent. The reader will note that the order of the denominator is fifth order, so the
resulting partial fraction expansion hasfive first order terms.

5
F(s) =
52(s+ 1)3

-A,B, +
S

2 (S+1)3 (S+1)2+(s+1)

I

I

I

5 _A C D E I
3

52(s+ 1) S :

ol

Figure 17.22 Partia fractions with repeated roots

Algebratechniques are a reasonable aternative for finding partial fraction resi-
dues. The example in Figure 17.23 extends the example begun in Figure 17.22. The equiv-
alent forms are ssimplified algebraically, until the point where an inverse matrix solution is
used to find the residues.
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5 _A,B,_C . D E

— +
Hs+1)° & S (s+1)° (s+1)” T

2
_ A(s+1)°+Bs(s+1)°+Cs’ + Ds’(s+ 1) + ES’(s+ 1)

3
sz(s+1)

_s'(B+E)+s(A+3B+D +2E)+s°(3A+3B+C+D+E) +s(3A+B) + (A)

32(s+1)3
01001/|A| |0 Al |o1001] |0
13012/|B] |0 Bl 13012 |0 |-15
33111||c| =10 cl=133111] |o| = |5
31000|/|D| |0 D| |31000 |0 10
10000/ |E] |5 E| 10000 |5 |15

5 =§2+—£5+ 5 ,_10 15

— +
Sis+1)’ & S (s+1)° (s+1? (5D

I
I
I
[
I
I
[
[
I
I

5 [
I
I
I
[
I
I
[
[
I

ol

Figure 17.23 Solving partial fractions algebraically

For contrast, the examplein Figure 17.23 isredone in Figure 17.24 using the limit
techniques. In this case the use of repeated roots required the differentiation of the output
function. In these cases the algebra techniques become more attractive, despite the need to
solve simultaneous equations.
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5 _A,B,_C __D E

———— +
HKs+1)°’ & S (s+1)° (s+1)® D

A = lim Ls)sz} - Iim[
S—»O_ 82(S+1) s-0

B = lim _Q(Ls)sz} - |im[ﬁ(%ﬂ - Iim[ﬂ} - 15

(s+51)3} =5

s—>0_dS 82(S+1) s_ oLds (S+1) s—>0(5+1)4
C = lim [(%)(w 1)3} = lim [52} -5

s -1 S(S+1) s--llg

_ . rid/ s A o 1d57_ o r1-2(5)] .
D= sILrTll[llds(Sz(S+1)3)(S+1)} sll_,rrll[l!dssz} lerTll[ll 53} 10

_ o [1dy s S| o [1d257_ (1307 _
- im 3 G e = im 5] - m[3F] - s
s(s+1)” S (s+1)" (s+1)

Figure17.24 Solving partia fractions with limits

Aninductive proof for the l[imit method of solving partial fractionsis shownin

Figure 17.25.
=8B D, fl
52(s+1) s S (s+1)° (s+1) (s+1)
[im S :AZ+E+ ¢ 3t D 5+ E}
S (s+1)° (s+1)? (5+1)

3 2 + 3+ 2+
s- -1 Sis+1)’ S (s+1)° (s+1)? (s¥1)

5 _A,B, _C D E)}

Iim|==

5 _A(s+1)°, B(s+1)°
s -1 82 S S

+C+D(s+1)+E(s+ 1)2}
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For C, evaluate now,
5 _ A(=1+1)° B(=1+1)°
2 2 _
(-1) (1) 1

2

+C+D(=1+1)+E(-1+1)

5_ _ A©0)°, BO)
-»°  (-=p* 1

For D, differentiate once, then evaluate
‘d(g _As+1)° B(s+1)°
S

+C + D(0) + E(0)* C=5

lim | =
2 2
S—»—l_dt S S

lim =2(5) = A(— 2(s+1)° 4 3Ast Dzj + B(— (s+1)’ + 3(52 1)2j +D+2E(s+ 1)}

+C+D(s+1)+E(s+ 1)2H

51| 3 3 2 2

=20) _[p = 10

For E, differentiate twice, then evaluate (the termsfor A and B will be ignored to save
space, but these will drop out anyway).

r 3 3
Slirrll_(gi) 2(5% = A(SSJ; DN B(S; L o+ D(s+1) +E(s+ 1)2H
rrd\y(=2(5
SIerll_(a-J(JS;):A(...)+B(...)+D+2E(s+1)ﬂ
|iml_‘—3(%(§D:A(...)+B(...)+2E}
S——iL S
20 - ag) +B(0) + 26 E=15
(-1)

Figure 17.25 A proof of the need for differentiation for repeated roots

17.6 EXAMPLES

17.6.1 Mass-Spring-Damper Vibration

A mass-spring-damper system is shown in Figure 17.26 with a sinusoidal input.
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| Given, |
1 1 1
I nX(s) - M I
F(s) K, K
1 2, M, Ds 1
I REVAARY I
1 Component values are, 1
I _ ,N Ns I
1 M = 1kg Ks = 2;1 Kyg = OISE 1
| |
I The sinusoidal input is converted to the s-domain, I
| |
| F(t) = 5cos(6t)N 1
I OF(s) = 57— I
1 s +6 1
| This can be combined with the transfer function to obtain the output function, 1
| 1 |
| _ X(8)) _ 5s 1 |
x(s) = F(9)( 2] = (22
: F(s) $*+67 (s +05s5+2 :
: Ox(s) = > 525 :
I (s"+36)(s +0.5s5+2) '
' A B C D '
1 = 1
" OX(S) = 56 T 5-6 5025+ 139 * 5-0.25—1.39] "
‘ Il BN BN BN B I B B B B B B B B B B B B B B BN B B B BN BE B B B B . ‘

Figure17.26 A mass-spring-damper example

Theresiduesfor the partial fraction in Figure 17.26 are cal culated and converted to
afunction of timein Figure 17.27. In this case the roots of the denominator are complex,
so the result has a sinusoidal component.
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A= Iim [ (s+ 6j)(55) } _ _30j
s-—6il(s—6j)(s+6j)(s°+05s+2)] (-12))(36-3j+2)
OA = 732 x107°003.05
OB = A = 732x10°0-3.05

Continue on to find C, D same way

732 x 10°03.05 , 732 10°0-3.05 N

Hx(s) = S+ 6j S—6j

Do inverse Laplace transform

x(t) = 2(73.2x 10)e " cos(6t —3.05) + ...

Figure 17.27 A mass-spring-damper example (continued)

17.6.2 Circuits

It isnot necessary to develop atransfer functionsfor asystem. The equation for the
voltage divider is shown in Figure 17.28. Impedance values and the input voltage are con-
verted to the s-domain and written in the equation. The resulting output function is manip-
ulated into partial fraction form and the residues calculated. Aninverse Laplace transform
is used to convert the equation into a function of time using the tables.
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R = 10°Q
o "\ —8—O
V, = 3cost +
s —— Vo
C=10 F | -
L O
Asnormal, relate the source voltage to the output voltage using component valuesin
the s-domain.
Zc 3s -1
= V(s) = Zz = R Zc = =
Vo VS(ZR* Zc) () S+1 R ©sC

Next, equations are combined. The numerator of resulting output function must be
reduced by long division.

1

V. = 3s sC | _ 3s _ 3s

° S£+1Re ic (+1)(L+SRC)  (s°+1)(s10°107° + 1)
S

The output function can be converted to a partial fraction form and the residues calcu-

|ated.
v, = . 3s :A§+B+ C =A52+AS+BS+B+CSZ+C
(SS+1)(s+1) s+1 S+l (s +1)(s+1)
V= — 3s =52(A+C);rs(A+B)+(B+C)
(s"+1)(s+1) (s"+1)(s+1)

B+C=0 0B=-C
A+C=0 0OA=-C
A+B=3 0O-C-C=3 Ooc=-15 0OA=15 0OB=15
_ 155+ 15 -15
F+1 s+l

VO

Figure 17.28 A circuit example
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The output function can be converted to afunction of time using the transform tables,
as shown below.

V(1) = L_l[VO(s)] _ L_1[1'55+ 15, —1.5} _ L_l[1'55+ 1.5} + L_l[_l'S}

$+1 st $S+1 s+l

1

2
s +1

OV,(t) = 1.5L_1[%}+1.5L_1[
C+1

OV, (t) = 1L5cost + 1.5sint—1.5¢ "

OV (t) = /152 + 1.523in(t ¥ atan(%) _ 156"

1.

} _156"

U -t
4) —1.5e

V(D) = 2.12Lsin(t +

Figure 17.29 A circuit example (continued)

17.7 ADVANCED TOPICS

17.7.1 Input Functions

In some cases a system input function is comprised of many different functions, as
shown in Figure 17.30. The step function can be used to switch function on and off to cre-
ate a piecewise function. Thisis easily converted to the s-domain using the e-to-the-s
functions,
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f(t)
A
5
t
| | > seconds
0 1 3 4
f(t) = 5tu(t) -5(t—1)u(t—1) -5(t-3)u(t—3) + 5(t—4)u(t—4)
—S —3s —4s
f(s) = §2_5e2 _5e2 +5e2
S S S S

Figure 17.30 Switching on and off function parts

17.7.2 Initial and Final Value Theorems

Theinitial and final values an output function can be calculated using the theorems
shown in Figure 17.31.

X(t - ) = lim [sX(s)] Final value theorem
-0

i 1s , 1 1 1
OX(t = ) = lim [ ————— = lim | -———| = _ 1
¢ ) SITO[(52+3S+2)S} slino[52+3.s+ 2} (0)°+3(0)+2 2
x(t > 0) = lim [sx(s)] Initial value theorem
Dx(tao):nm[zl(s) }: _ 1 _1_,
S-®L(s"+3s+2)s ((0)” + 3() + 2) 0

Figure17.31 Fina and initial values theorems
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17.8 AMAP OF TECHNIQUESFOR LAPLACE ANALYSIS

The following map is to be used to generally identify the use of the various topics
covered in the course.

Some input
disturbancein

System Model
(differential equations)
terms of time

aplace Transforry

Transfer
Function

Input described with
L aplace Equation

We can figure
out from plots

Substitute
Root-Locus

for stability

Output Function
(Laplace form)

|

Bode and Phase Plots Phasor Transform
- Straight line
- Exact plot ~we__ *

Output Function
(Laplace terms)
Partial Fraction

Equations for gain and ph
at different frequencies

Approximate equations for
steady state vibrations

Steady state

Time based
frequency response

response
equation

Figure 17.32 A map of Laplace analysis techniques
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* Transfer and input functions can be converted to the s-domain
* Output functions can be calculated using input and transfer functions
* Output functions can be converted back to the time domain using partial frac-

tions.

17.10 PRACTICE PROBLEMS

1. Convert the following functions from time to |aplace functions using the tables.

a)
b)
c)
d)
€)
f)
9)
h)
i)
j)
k)

L[5]

L[

]

L[5e™

L[5te™Y

L[5t]

L[4t7]

L[ cos(5t)]
L[3(t—1)+e * )
L[5e > cos(5t)]
L[5€ >cos(5t + 1)]
L[sin(5t)]
L[sinh(3t)]
L[t*sin(2t)]

d,2 -3t
L[dtte }

0)

p)
q)

L[X + 5% + 3x], X(0) = 8,x(0) = 7

d .
L d—tsm(6t)}

L (tdgg 3t2}
L _jo ydt}

L[3t3(t—1) + e

L[u(t—1) —u(t—2)]
L[e 2 u(t—2)]

L[e Dt —1)]

L[5 + u(t—1) —u(t—2)]
L[cos(7t+2) + et_?’]
L[cos(5t + 1)]

L[6e > cos(9.2t + 3)]
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2. Convert the following functions below from the laplace to time domains using the tables.

a)

b)

c)

d)

€)

f)

el 9

1) h>

S%} j)

(s+§;§+4ﬂ k)
6

S+ 6}

L1 E (1- e—4.55)}
K
L—1‘ 4+ 3j 4—3j }
[S+1-2] s+1+2]
L—1'§4+ 26 }
Lls™ s +9
L—1 - 6 }
LS"+55+6
L—1' - 6 }
L4s™ + 20s+ 24

3. Convert the following functions below from the laplace to time domains using partial fractions

and the tables.
3) L_l[
by L7
o LT
d LT
) L_l[
) L‘l[

S+2
(s+3)(s+4)}

]

]

]

— |
52+53
9s? + 65+ 3 }

53+532+4s+6

[s®+95% +6s+ 3}
_33+532+4s+6
-1 93+4}
(s+3)°
L—1‘ 39s+4 3}
LsT(s+3)
afs?+ 25+ 1]
_32+33+ 2]
1[s?+3s+5]
I 2632+6 |
-1|S +2s+3

_32 +2s+1]

4. Convert the output function below Y (s) to the time domain Y (t) using the tables.

12

3

5
= =4+ +
Y(s) <

CL+4q4 St2-3]

S+2+3j
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5. Convert the following differential equations to transfer functions.
a) 5X+ 6X + 2x = 5F

b) y+8y = 3x
c) y—y+5x =0

6. Given the transfer function, G(s), determine the time response output Y (t) to a step input X(t).

G(s) = 5%2 = )YT% X(t) = 20 Whent>=0

7. Given the following input functions and transfer functions, find the response in time.

Transfer Function I nput
X(s) _ S+2 m _

9 F(s) (s+3)(s+ 4)(N) F(t) = 5N
X(s) _ S+2 m _

) Fe T (s+3)(s+4)(N) X(t) = 5m

8. Do the following conversions as indicated.
a) L[5e_4tcos(3t +2)] =

b) LI~ +5t(u(t-2)-u())] =

d)3 d = Yo=1 Yo
L[(d_t) y+2(d_t)y+y:| - where at t=0 0 0
Vo' =3 Yo" =4

N2>
I
N

d) |__1|: 1+ + 1—j :|:
S+3+4] s+3-4j
-1 1 3
e L [s+ + }:
S*2 44s+40

9. Convert the output function to functions of time.

) $*+45°+ 45+ 4
53+4s
b) 32+4

s +10s° + 355 + 505 + 24

10. Solve the differential equation using Laplace transforms. Assume the system starts unde-
flected and at rest.

6+400+200+20 = 4
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17.11 PRACTICE PROBLEM SOLUTIONS

f)
9)

h)

)

K)

s +25

-1

3.3,¢

52 s s+1
5(s+3)
(s+3)2+52
2501 250-1

s+3-5 s+3+5
_ s+

32+65+34
5

s’ +25

x) C0s(2)s—sin(2)7 e

Y

05 05
s—3 s+3
2 2
—4 + 16s _125s"-16
2 2 2 37 2 3
(s"+4) (s"+4) (s +4)
2s
(s+3)°
(szx— 7s—8) + 5(sx—7) + 3x

6s
s°+36

—S —2S
e
S
4-2s

e
S+ 2

2-5
€

s+1
5 —S —2S

5 ,e
s+3 s

3

3

_ —O.416S—6.37+ e

$*+49 s-1 $*+49
scosl—5sinl
$*+25
303 300-3 _ s( )+

s—-1

+ —_
Z) s+27-92) s+27+92] @,i545+91093



—t
a €

b) 5e"
c) 6t
d) 3t°

3t —At
e —e +2e

f) J6sin(./6t)

12-12e"

8.34¢ " + 2(0.99)

—0.3t
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cos(1.13t + 1.23)

9)
h)

)
k)

5-5u(t-4.5)
2(5)e_(1)tcos(2t + atan(—i—i))
£+ 2sin(3t)

—2t -3t
6e = —6e

156 %' — 156

9)
h)
)
D a()-e”

K) 6—539 + 0.834cos(t + 0.927)

t

) &(t) +2te

y(t) = 5+ 6sin(2t) + 2(3)e * cos(3t - 0)

X_ _ 5
F 552+65+2
y_ _3_
X s+ 8
y_ =5
X s—-1
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6.
y(t) = 4040
7.
5 5 3t 5 4t
9 5*3% 3
b) (58(t) + 30—5e )N
8.
3 —4t at o =4 B =3
L[5e “cos(3t+2)] = L[2|Ale " cos(Bt+ 0O B B
| (3t+2)] = L[2|Ale ' cos(Bt + 0)] s B3
A = 25c0s2 + 2.5jsin2 = —1.040 + 2.273j
A ARG 1,040 +2.273] | ~1.040-2.273]
s+a-j s+a +fj s+4-3j S+4+ 3|
b)
L[e 2 +5t(u(t—2) —u(t))] = L[€ 2] +L[5tu(t—2)] = L[5tu(t)]
1 oy 5 _ 1 _ _ o5
= S—+2+5L[tu(t 2)] 2 = S—+2+5L[(t 2)u(t—2) + 2u(t—2)] 2
_ 1 )
= =5 *BLI(t-2)u(t-2)] +10L[u(t-2)] -2
1 —2s —2s 5
= 5 +5e L[t] +10eL[1] -3
—2S —2S
_ 1 +5e2 +10e _§2
S+2 S S S
c)

3
(dgg y = 53y+ 16% + 25t + 3¢°
dy 1 0
@)y = Sy+en
3
(S yra§)yey] = yris+2s+3) 4+ 1+ )

= y(53+s+ 1)+(32+23+ 4)



d)
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1 1 +j l—j i A Acomplex conjugate.
- + -| = L - -
[s+3+41 s+3—4J [s+a—[31 s+a+fj }
-1 T
A = J1?+1% = 1140 O = atan(T) = a=3 B

= 2|A|e_mcos([3t+6) = 2.282e_3tcos(4t—£)

Lt [s +

_d .
= S8 +e

1

+

3

s+2

S+4si+4s+4

3
S +4s

=1

2
+4-S—-|-4-=

3
S +4s

= 1+1'+
S

3s
2

S +4

2t

1 3
g ]
52+4s+40} s+2 % + 4s+ 40

adEES(t) ety L[;}

(s+2)°+36

+0.56 2'sin(6t)

_d

= 230+ e 2ty o.5|_[

1

6
(s+2)°+36

3,2
S+ 4s ‘ S +4s"+4s+4

A, Bs+C _

2
S sT+4

1+

—(s3 + 45s)

457 + 4

1+ s?(A+ B) +S(C) + (4A)

3
S +4s

= §(t) + 1 + 3cos(2t)

w O >

|

w O -
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b) 52+4 _ A 4 B C D
410+ 3557 +50s+24 S+l s+2 s+3 s+4
A= lim s +4 ) _5
s -1\(s+2)(s+3)(s+4) 6
. S +4 Y
B= Ilim - °
s-—2\(s+1)(s+3)(s+4) -2
- i S+4 _ 13
C= Ilim = =2
s--3\(s+1)(s+2)(s+4 2
D = lim | s +4 ) -2
s -a\(st1)(s+2)(s+3) -6
5 -2t 13 -3t 10 -4t
27t + 388t 10
6e 4e 2e 3e
10.

B(t) = —66 (10 e > — 3216 + 1.2166 > ¥ + 2,00

17.12 ASSIGNMENT PROBLEMS

1. Prove the following relationships.

a) L[f(é}} - aF(as) d)  limf(t) = limsF(s)

b Lif(an] = ZF(3) e  limi(t) = lim sF(s)
d

Q) L[e ¥f(t)] = F(s+a) f) L[tF(D)] = —F(s)
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2. The applied force ‘F isthe input to the system, and the output is the displacement ‘x’.

a) find the transfer function.

b) What is the steady state response for an applied force F(t) = 10cos(t + 1) N ?
¢) Give the transfer function if ‘x’ isthe input.
d) Find x(t), given F(t) = 10N for t >= 0 seconds using L aplace methods.

3. Thefollowing differential equation is supplied, with initial conditions.
y+y+7y = F y(0) =1 y(0) = 0

F(t) =10 t>0

a) Solvethe differential equation using cal culus techniques.

b) Write the equation in state variable form and solve it numerically.

¢) Find the frequency response (gain and phase) for the transfer function using the
phasor transform. Roughly sketch the bode plots.

d) Convert the differential equation to the Laplace domain, including initial condi-
tions. Solve to find the time response.

4. Given the transfer functions and input functions, F, use L aplace transforms to find the output of
the system as a function of time. Indicate the transient and steady state parts of the solution.

2

2o B F = 5sin(62.82t)
F (D +200m)
L= DD +2m F = 5sin(62.82t)

(D + 200m)°
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2
X - D(Dram F = 5sin(62.82t)
F (D +200m)
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