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I. I NTRODUCTION

This course introduces active control and signal processing techniques in particular for vibration and noise control appli-

cations. One of the main objectives of this course is to assist students gain insights of practical engineering applications and

related control methods and electronic toolkits. Studentsare assumed to have a background in mathematics, physics, and

engineering, and have taken at least one preliminary courseof control.

Control is a science developed from engineering, in particular aerospace engineering, and maintains close relationships with

electronics and information technologies. However, nowadays a control student normally has little knowledge of any practical

engineering system and related physics. In addition, although the student may already know various control techniquesin

time-domain and frequency-domain, it is more than often that he has no idea of how to implement a control technique in a

practical system. Instead, most of the previous experiencestay in the numerical simulation stage.

To address the former issue, we select acoustics as the main physical topic in this course. Its control and measurement

techniques will be extensively studied during the course. The reasons to select acoustics, rather than any other practical topics,

are given below. Firstly, every student should be familiar with sound and therefore already prepare preliminary sense of the

topic. Secondly, acoustics has a close connection with fluidand vibration. Generally speaking, the techniques used in vibration

control and noise control are quite similar. On the other hand, a large part of noise is flow-induced, and fluid mechanisms

research has a long history in our department. Thirdly, acoustic problem is important and can find many practical applications.

Acoustic related problem, specifically, noise, is a lastingproblem that annoys human beings for generations. Prolonged exposure

to excessive levels of acoustic noise can cause permanent hearing loss, safety problems, and lower worker productivity. Finally,

nowadays, noise control and measurements employ electronics, in particularly, digital signal processor (DSP) extensively.

During this course, students are expected to grasp the most fundamental knowledge of the related electronic equipmentsand

techniques. Through some lab works, we hope to improve the hands-on experience of our students and address the later concern

raised in the previous paragraph.

Control technique was formally proposed in 1940s, and the so-called ’control’ actually implicitly denotes feedback control.

In other research topics, such as fluid mechanisms, the subject of control includes a much broader scope, which includes

passive control and active control. The latter can be categorised into feedforward control and feedback control, also known as

open-loop and closed-loop control, respectively. The focus of the course is on active control.

Machinery and engines are major noise sources, and much of this noise occurs in the low frequency range. Passive methods

used to reduce noise, such as earmuffs, are not especially effective at low frequencies due to the relatively long wavelength of

the sound. However, active noise control (ANC) has proven its effectiveness at these low frequencies. The underlying principle

of ANC is to generate a secondary sound wave to destructivelyinterfere with the unwanted noise, thereby reducing the net

sound pressure. Active noise control technology can be usedin a wide variety of situations, including car or airplane headrests,

automobile exhaust mufflers, and refrigerator fans. Headphones that employ ANC would be particularly useful for airport ramp

workers, aircraft carrier soldier, ambulance drivers, andmany others who operate on or near heavy machinery. Aside from

low-frequency noise control, another benefit is that the offending noise, in some cases, can be selectively eliminated,leaving

desired sounds such as speech and warning signals to be heardclearly.
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This course will describe the implementation of adaptive control and its applications for active noise control. Similar technique

should be able to find a usage in active vibration control and active flow control. The potential application fields are broad, which

include military, aerospace, automation, etc. In addition, the availability of rapid developing programmable DSPs make the

implementation of computationally-intensive adaptive algorithms feasible. The DSP related hardware and software techniques

are also introduced in this course. A couple of lab projects have been designed to enable students to grasp fundamental ideas

and gain hands-on experiences in embedded system design.

The nature of this course is theoretical with a specific engineering application in mind. The rest of this course will be

organised as follows. Firstly, related mathematics and physics will be lectured. The sections not only provide preparation

knowledge but could help students students to appreciate the beauty of mathematic methods in physical modelling. Secondly,

signal processing theory will be summarised, although a preliminary background of it has been assumed in this course. Thirdly,

DSP and peripheral hardware will be introduced. Students can conduct lab works thereafter. Fourthly, active control methods

will be lectured. And finally, if time permitted, more signalprocessing methods will be presented. The second and the third

parts are more practical. While the first, fourth, and final parts are theoretical. It is also worthwhile to point out that the writing

style of this note is not strictly formal with detailed description of academic contents. Only the very fundamental knowledge

will be given in this note for brevity. For more information of a topic of interest, we suggest students refer to numerous online

literatures that can be easily googled and downloaded. Of course, the classroom lecturing will also complete this note and

therefore don’t miss any classes!
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II. M ATHEMATICAL BACKGROUND

The physicist and Nobel Laureate Paul Dirac invented a calculus in the mid 30s of last century. The calculus uses mathematical

symbols, which however are not well defined. A rigorous theory of this calculus, so-called generalised function theory,was

later developed by Laurant Schwartz.

Physicists, and engineers, often work with an intuitive waysimilar to that of Dirac, knowing that their manipulations are

strictly informal in mathematics but work for practical applications. The intuitive approach is followed in this course as well.

A rigorous theory can be referred to the classical textbook written by Nobel.

A generalized functionf is a map ofX → R with X a good function space such thatf is continuous and linear. Ifφ ∈ X

is infinitely continuous differentiable and ifφ, together with all of its derivatives, vanishes faster at infinity than any power

function, the action off is written

f(φ) =< f, φ >

∫

R

f(x)φ(x)dx. (1)

A Dirac’s delta functionf = δ is defined by

< δ, φ >=

∫

R

δ(x)φ(x)dx = φ(0). (2)

The general idea about the integral treats a point mass from amathematical point. Letφ states a mass density. Then
∫

R
δ(x)φ(x)dx states that a point mass is the mass concentrated at a single point. Besides the delta function, other generalised

functions include functions with jumps, such as the maximum, or the step function.

Why are those generalised functions meaningful? Sinceφ is assumed to be a good function, then Dirac’s delta, the max-

function, the step function turn out to be difierentiable in ageneralised sense. For short, we can take the derivative of ajump

function. How is this possible?

Let f be a generalised function andφ ∈ X . For the derivative, one can have

< ḟ, φ >= − < f, φ̇ >, (3)

where˙ denotes ordinary differential operation. The equations issatisfied because< ḟ, φ >=
∫

R ḟφdx = −
∫

R fφ̇dx +

Boundary value= − < f, φ̇ >, where the boundary term vanishes sinceφ is a rapidly decreasing function. Hence, we exploit

the fact that operations, such as differentiation, FourierTransform, originally conducted on generalised functionsf can be

shifted to the functionsφ ∈ X , which can be differentiated.
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III. F UNDAMENTALS OF FLOW AND ACOUSTICS

A. Physical Background

(1)Fundamentals of fluid knowledge

Reynolds number Re =
U∞l

ν

(2)Fundamentals of sound knowledge

The speed of sound is340 m/s. The audible frequency range is20 Hz to 20, 000 Hz. The maximal sensible frequency to ear is

3, 000 Hz.

Wavelength: ..

Near field: ..

Far field: ..

The important definition of sound pressure level (SPL) is

Lp = 10 log10

(
prms

2

pref
2

)

= 20 log10

(
prms

pref

)

dB. (4)

Question: how to compute SPL from pressure? and vice versa?

B. Navier-Stokes Equations

The first principles behind the governing equations that describe fluid physics are: conservation of mass, conservationof

momentum, and conservation of energy, etc. These lead to a set of partial, nonlinear differential equations plus appropriate

boundary conditions and initial conditions.

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0, (5)

ρ

(
∂ui

∂t
+ uk

∂ui

∂xk

)

= − ∂p

∂xi
+

∂

∂xk

[

µ

(
∂ui

∂xk
+

∂uk

∂xi

)

+ δkiλ
∂ui

∂xi

]

(6)

= − ∂p

∂xi
+

∂σik

∂xk
.

The Einstein notation (Einstein summation convention) is used for the clarity of the equations. The energy equation follows the

assumption of homentropic, i.e. the entropys of the fluid is uniform and stationary throughout the fluid, namely s =contant.

We may assume that the pressure and density are related by an equation of the form

p = p(ρ, s). (7)

The details of symbols are below.
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p – thermodynamic pressure,N.m2.

µ andλ – 1st and 2nd coefficients of viscosity,kg/ms.

σik – viscous stress tensor.

δki – Kronecker delta,δki = 1 if k = i, 0 otherwise.

T – temperature,K.

R – gas constant,Nm/kgK,

= (Boltzman constant/mass of molecule =k/m).

Stokes hypothesis – λ + 2
3µ = 0.

State Equation – p = ρRT .

C. Euler Equations

Outside boundary the fluid at low mach number and high Reynolds number could be invisicd.

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0, (8)

ρ

(
∂ui

∂t
+ uk

∂ui

∂xk

)

= − ∂p

∂xi
+ ρgi (9)

ρcv

(
∂T

∂t
+ uk

∂T

∂xk

)

= −p
∂uk

∂xk
(10)

D. Acoustic Equation

The acoustic disturbance is assumed small compared to the mean flow (recall the sound pressure at 140 dB). That is,

p = p0 + p′, u = u0 + u′, etc. Furthermore, let us focus on the simplest case with a stationary flow, where (1)u0 = 0, (2) p0

andρ0 are constant, and (3)p′ = c2ρ′. The effect due to gravity can be omitted as well. As a result,Euler equations can be

linearised to

∂ρ′

∂t
+ ρ0

∂u′

k

∂xk
= 0, (11)

ρ0
∂u′

i

∂t
+

∂p′

∂xi
= 0. (12)

It is straight to obtain
∂2p′

∂t2
= c2∇2p′, (13)

where∇2 is the Laplacian operator,p′ is the sound pressure disturbance.

The simplest case is one-dimensional wave equation,

∂2p′/∂t2 = c2∂p′/∂x2. (14)

Following the method of functional separation of variables, the solution of the wave equation can be written in the form

of p′(x, y, z, t) = p′(x, y, z)e−jωt. For the one-dimensional case, in free space, following thecartesian coordinates ,p′(x) =
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Ae−jkx + Bejkx. Moreover, for the three-dimensional case thep′(x) = Ae−jkr + Bejkr . A and B depend on boundary

conditions, andk is the wavenumber. (Present examples of monopole and dipolesources here).

E. Green’s Function

(The prerequisite knowledge is generalized function.)

If there is a sound sourcef(x, y, z, t) the wave equation takes inhomogeneous form,

∂2p′

∂t2
− c2

0∇2p′ = f(x, t). (15)

For convenience of notation the Einsetin summation convention is used, that is,x denotes(x, y, z). The equation can be further

written in a simplified form

L p′ = f. (16)

The main idea of Green’s function is that given aG(x, s) satisfying

L G(x, s) = δ(x − s). (17)

The solutionp′(x) can be found by

p′(x) =

∫

G(x, s)f(s)ds. (18)

More specifically, for an impulse source appears atx0 (location) andτ (time), the inhomogeneous equation is

L G(x,x0, t, τ) = δ(x − x0)δ(t − τ). (19)

The corresponding Green’s function in a free space is

G(x,x0, t, τ) =
1

4π r
δ(t − τ − r

c0
), (20)

wherer = |x − x0|.

Now given the acoustic source has the form ofQ

p′(x, t) =
1

4π

∫ ∫
∞

−∞

Q(y, τ)G(x,y, t, τ)d3 ydτ. (21)

For the particular case in the free space:

p′(x, t) =
1

4π

∫ ∫
∞

−∞

Q(y, τ)

|x − y| δ
(

t − τ − |x − y|
c0

)

d3 ydτ =
1

4π

∫
∞

−∞

Q(y, t − |x − y|/c0)

|x− y| d3 ydτ. (22)

F. Acoustic Analogy

Multiplying Eq. (5) byui and add to Eq. (6), we have:

∂(ρui)

∂t
= −∂πik

∂xk
, (23)
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whereπik = ρuiuk + (p − p0)δik − σik.

The continuity equation can be written to:

∂(ρ − ρ0)

∂t
+

∂

∂xk
(ρuk) = 0. (24)

Eliminateρui by 1
∂t (Eq. (24))+ 1

∂xk

(Eq. (23)), and minus∇2[c2
0(ρ − ρ0)]:

(
1

c2
0

∂2

∂t2
−∇2)[c2

0(ρ − ρ0)] =
∂2Tik

∂xi∂xk
, (25)

where Lighthill’s stress tensorTij = πij − [c2
0(ρ− ρ0)]δij = ρuiuk + (p− p0)δij − σij − [c2

0(ρ− ρ0)]δij . If we restrict ourself

to a finite region of unsteady flow, andTij is assumed negligible outside the region. That is, viscous effect is omitted, hence

σik is removed. The sound speed outside the unsteady region is considered constant and equalsc0. The sound perturbations

everywhere almost satisfy(p − p0) − [c2
0(ρ − ρ0)] (the error is M2, M Mach number). As a result,Tij ≃ ρuiuk. Moreover,

outside the unsteady flow region,ρuiuk is negligible again, andTij ≃ 0. Therefore, only a small region with unsteady flows

can be considered as a sound source area.

G. Surface Effects

A surface immersed in the fluid could be defined by

S(x, t) = 0, (26)

while S(x, t) > 0 denotes the area outside the surface, and vice versa. Provided an observer moves along with the motion of

the surface, we can have
∂S

∂t
+ vi

∂S

∂xi
= 0. (27)

The generalised mass and momentum equations which account for the presence of the surface are derived. It is worthwhile to

mention that the fluctuation variables are of interest here,that is (ρ − ρ0)H(S) = ρ′H(S). The Navier-Stokes equations can

be rewritten to

∂[(ρ − ρ0)H(S)]

∂t
+

∂

∂xk
[ρukH(S)] = (ρ − ρ0)

∂H(S)

dt
+ ρuk

∂H(S)

∂xk

= (ρ − ρ0)δ(S)
∂S

dt
+ ρukδ(S)

∂S

∂xk

= (ρ0vi + ρ(uk − vi))
∂S

∂xk
︸ ︷︷ ︸

Q

δ(S), (28)

∂[ρuiH(S)]

∂t
+

∂

∂xk
[(ρuiuk + pik)H(S)] = pik + ρui(uk − vk)

∂S

∂xk
︸ ︷︷ ︸

Fi

δ(S). (29)

Following the way that forms Lighthill’s wave equation previously, we can have

(
∂2

∂t2
− c2

0∇2)[(ρ − ρ0)H(S)] =
∂2

∂xi∂xk
[TikH(S)] − ∂

∂xi
[Fiδ(S)] +

∂

∂t
[Qδ(S)]. (30)
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For many applications the surfaceS is impermeable, that means the normal velocity ofv andu should be equal. In addition,

the normal unitn of the surfaceS is (∂S/∂xi)/|∇S|, we can have

ρ(ui − vi)
∂S

∂xi
= ρ|∇S|ni(ui − vi) = 0, (31)

ρui(ui − vi)
∂S

∂xi
= ρui|∇S|ni(ui − vi) = 0, (32)

Only ρ0vi survives inQ, andpij survives inF .

The farfield noise related to the monopole sourceQ can be described by

p − p0 =
1

4πx

∂

∂t

∫

V

[Qδ(S)](y, τ) × δ(t − τ − |x − y|
c0

)dydτ

=
1

4πx

∂

∂t

∫

S

ρ0vn(y∗, τ)δ(t − τ − |x − y∗|
c0

)dy∗dτ

=
1

4πx

∂

∂t

∫

S

ρ0vn(y∗, t − τ − |x − y∗|
c0

)dy∗

=
1

4πx

∂

∂t

∫

S

ρ0vn(y∗, t − τ − x

c0
)dy∗, (33)

wherex → ∞, ∂/∂t ∼ u/l, dy ∼ b2, u is the characteristic velocity of turbulence,b is the characteristic length of the surface.

Hence,p = p0 at x is on the order ofv2, wherev is the characteristic speed of turbulence. Remind previously in Lighthill’s

analogy without the presence of the surface,p = p0 at x is on the order ofv4.
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IV. FUNDAMENTALS OF SIGNAL PROCESSING

* Reference material: “Introduction to Fourier analysis and generalised functions” by M. J. Lighthill

A. Convolution

The definition of the convolution is:

(f ∗ g)(t)
def
=

∫
∞

−∞

f(τ) · g(t − τ) dτ =

∫
∞

−∞

f(t − τ) · g(τ) dτ, (34)

where∗ denotes the operation of convolution.

The discrete version is:

(f ∗ g)[n]
def
=

∞∑

m=−∞

f [m] · g[n − m] =

∞∑

m=−∞

f [n − m] · g[m]. (35)

B. Autocorrelation

The definition of autocorrelation below is proposed from theangle of signal processing.

Rff (t) = (f ⋆ f)(t) = f∗(−t) ∗ f(t) =

∫
∞

−∞

f∗(τ) · f(t + τ) dτ. (36)

wheref∗ is the complex conjugate off , ⋆ denotes correlation and∗ represents convolution.

C. Cross-correlation

The definition of cross-correlation below is proposed from the angle of signal processing.

Rfg(t) = (f ⋆ g)(t) = f∗(−t) ∗ g(t) =

∫
∞

−∞

f∗(τ) · g(t + τ) dτ. (37)

For discrete functions, the definition is

(f ⋆ g)[n]
def
=

∞∑

m=−∞

f∗[m] g[n + m]. (38)

D. Fourier Series

For aT -periodic functionf(t) that is integrable on[−T/2, T/2], there is

f(t) =
a0

2
+

∞∑

n=1

[an cos(nx) + bn sin(nx)], (39)

where

an =
1

T

∫ T/2

−T/2

f(t) cos(nωt) dt, n > 0, (40)

bn =
1

T

∫ T/2

−T/2

f(t) sin(nωt) dt, n > 1. (41)

ω = 2πf = 2π/T .
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The other well known representation of the Fourier series is:

f(t) =

∞∑

n=−∞

cneinωt, (42)

where

cn =
1

T

∫ T/2

−T/2

f(t)e−inωt dt. (43)

Note:
∫ T/2

−T/2

e−inωte−imωt dt = 0, n 6= m, (44)

which is termed orthogonality. It can be shown that the basicelements (sinusoid waves etc) of a Fourier series satisfy this

condition. This properties is sued to prove Fourier series relation. In addition, It is easy to see that the Fourier integral above

can be regarded as the formal limit of the Fourier series as the period approaches infinity.

Example:∆T (t) denotes the sampling operator, which has the form of

∆T (t) = T ·
∞∑

n=−∞

δ(t − nT ), (45)

which can be represented by Fourier series

∆T (t) =
∞∑

n=−∞

einωt. (46)

In summary, a periodical signal is presented by Fourier series as a sum of simpler components (sinusoid and cosines) whose

frequencies are related and whose amplitude are chosen to represent the signal. On the other hand, the sufficient condition to

guarantee the existence and convergence of Fourier series is Dirichlet condition, which states that if a periodical signal x(t) is

piecewise continuous and has a left and a right hand derivatives in this interval then its Fourier series converges and the sum

is x(t). Here a signal is considered as piecewise continuous if it iscontinuous on all but at a finite number of points. More

specifically,x(t) should have only finite number of minima and maxima, finite number of discontinuities. The other important

thing in Fourier analysis is Gibbs phenomenon, which describes a peculiar manner whenx(t) is approximated by a partial

sum of Fourier series. A considerable error can be found in the vicinity of a discontinuity irrespective of how many termsare

included.

E. Fourier Transform

For an integrable functionf(t) (i.e.
∫
∞

−∞
|f(t)| dt < ∞), the definition of the Fourier transform is

F (ω) =

∫
∞

−∞

f(t) e−iωt dt. (47)

The definition of the inverse Fourier transform is

f(t) =

∫
∞

−∞

F (ω) eiωt dω. (48)

It is important to grasp the importance of the above equations. One tells us how the ’energy’ off(t) is continuously
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distributed in the frequency domain. On the other hand, it shows how the waveform may be synthesised from an infinite set

of exponential functions, each weighted by the relevant value of F (ω).

One example: for a rectangular pulserect(t/T ) , which is

rect(t) = ⊓(t) =







0 if |t| > 1
2T

1
2 if |t| = 1

2T

1 if |t| < 1
2T .

(49)

Then the Fourier transform pair issin(ωT )
ωT .

The other example: for Dirac delta functionδ(t), its Fourier transform pair isH(ω) =
∫
∞

−∞
δ(t) e−iωt dt = 1. While its

inverse Fourier transform pair isδ(t) =
∫
∞

−∞
H(ω) eiωt dω =

∫
∞

−∞
eiωt dω. Given F (ω) =

∫
∞

−∞
f(t) e−iωt dt, we can have

X(ξ) by multiply e−jξt and integrate

∫
∞

−∞

f(t) e−iξt dt =

∫
∞

−∞

(∫
∞

−∞

F (ω)ejωtdω

)

e−iξt dt

=

∫
∞

−∞

F (ω)

(∫
∞

−∞

ej(ω−ξ)tdt

)

dω

=

∫
∞

−∞

F (ω)δ(ω − ξ) dω (50)

= F (ξ).

One important properties of Fourier transform is Parseval’s theorem, which is

∫
∞

−∞

|x(t)|2dt =

∫
∞

−∞

|X(f)|2df (51)

F. Discrete-Time Fourier Transform

For a discrete setf [n] = f(nT ), the DTFT off [n] is:

F (ω) =
∞∑

n=−∞

f [n] e−iωn, (52)

whereω = 2πfT ∈ [−π, π) denotes the continuous normalized radian frequency variable, and1/T is sampling rate. The

inverse DTFT one is:

f [n] =
1

2π

∫ π

−π

F (ω)eiωn dω. (53)

G. Discrete Fourier Transform

The DFT for a sequence withN numbers is:

Xk =

N−1∑

n=0

x[n]e−
2πi

N
kn k = 0, . . . , N − 1. (54)

The inverse DFT is given by:

x[n] =
1

N

N−1∑

k=0

Xke
2πi

N
kn n = 0, . . . , N − 1. (55)
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H. Laplace Transform

F (s) = L{f(t)} =

∫
∞

0

e−stf(t) dt. (56)

Make sure that you know the difference between Laplace transform and Fourier transform.

V. I MPORTANT ELEMENTS

A. Causality

Given h(t) is the impulse response of a system, we can have

h(t) = 0, ∀ t < 0. (57)

B. Relationships

f(x) ↔ F (ω)

f(x − a) ↔ e−iaω f̂(ω)

f(ax) ↔ 1

|a| f̂
(ω

a

)

dnf(x)

dxn
↔ (iω)nf̂(ω) (58)

C. Convolution Theorem

The convolution theorem states:

F{f ∗ g} = F{f} · F{g}, (59)

F{f · g} = F{f} ∗ F{g}, (60)

whereF{f} denotes the Fourier transform off .

D. Aliasing

Provided the sampling rate isfs = 1/Ts, the sampling signalx[n] of x(t) is

x[n] = x(nTs) = x(t) · ∆Ts(t) = x(t) · Ts

∞∑

n=−∞

δ(t − nTs), (61)

which can be further represented using Fourier series

x[n] = x(t) ·
∞∑

n=−∞

einωst. (62)

whereωs = 2πfs.
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Applying continuous Fourier transform on Eq. (63),

F{x[n]} =

∫
∞

−∞

x[n] e−iωt dt

=

∞∑

n=−∞

[

∫
∞

−∞

x(t)einωst e−iωt dt]

=

∞∑

n=−∞

X(ω − nωs) (63)

E. Application of Fourier Transform-Spectral Analysis

F. Application of Fourier Transform-FFT

G. Application of Fourier Transform-Pseudospectral
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VI. FUNDAMENTALS OF ACTIVE CONTROL THEORY

This section introduces the fundamentals of active controland beyond.

A. Introduction

Active control involves driving a number of actuators to create a sound or vibration signal out of phase with that generated

by the vehicle, thus attenuating it by destructive interference. Here the term of vehicle can denote a car, an aircraft orany

machine. The successful application of active control requires that there is both a good spatial and a good temporal matching

between the field due to the actuators, or secondary sources,and that due to the vehicle. In other words, active control needs

a clear physical insight of the original noise, and imposes high requirement for a linear actuator and a suitable active control

algorithm.

The requirement for spatial matching gives rise to clear limits on the upper frequency of active noise control, due to the

physical requirement that the acoustic wavelength must be small compared with the zone of control. The requirement for

temporal matching requires a signal processing system thatcan adapt to changes in the vehicle speed and load. Both the

physical limitations and the signal processing control strategies will be described in this report, together with a description

of some of the practical systems that have found their way into production at the time of writing. Active noise and vibration

control can provide a useful alternative to passive noise and vibration control, particularly at low frequencies and onvehicles

with particular problems. Although active control has beenexperimentally demonstrated in vehicles for over 20 years,it is

only recently that the levels of integration within the vehicles electronic systems have allowed the cost to become affordable,

particularly due to the rapid development of digital processor techniques. Active control may now allow a reduction in the

weight of conventional passive methods of low frequency noise control, helping the push towards lighter, more fuel efficient,

vehicles.

B. Preparation

1) Method of Lagrangian Multipliers∗: In mathematical optimization, the method of Lagrange multipliers provides a strategy

for finding the maxima and minima of a function subject to constraints.

For instance, consider the optimization problem:

maximisef(x, y) subject tog(x, y) = c. (64)

We introduce a new variable (λ) called a Lagrange multiplier, and study the Lagrange function defined by

Λ(x, y, λ) = f(x, y) + λ ·
(

g(x, y) − c
)

. (65)

∗ Referred wikipedia.
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2) Operations on Matrices:

∂bT θ

∂θ
= b, (66)

∂θTAθ

∂θ
= 2Aθ. (67)

whereA is a symmetrical matrix.

3) The Matrix Inversion Formula:Provided

A = B−1 + CD−1CT , (68)

we can have

A−1 = B + BC(D + CTBC)−1CTB. (69)

4) Independent and Uncorrelated:

C. Wiener Filters

1) Introduction: A Wiener filer can restore a corrupted signal based on a statistical approach. Specifically, given a signal

s(t), which is sampled by an ADC and is unavoidable corrupted by a noisen(t), a Wiener filter,a(t), can be constructed to

filter out the noise and obtain an estimated signalx(t) using the following convolution:

y(t) = a(t) ∗ (x(t) + n(t)), (70)

wherex(t) + n(t) can be denoted byw(t). Definee(t) = (x(t + α)− y(t)), whereα is the delay between measurements, we

have

e2(t) = x2(t + α) − 2x(t + α)y(t) + y2(t). (71)

Remind that

y(t) =

∫
∞

−∞

a(τ) [x(t − τ) + n(t − τ)] dτ, (72)

and

Rff (τ) = E
[
f(t)f(t − τ)

]
, (73)

we can have

E(e2) = Rxx(0) − 2
∫
∞

−∞
a(τ)x(t + α)w(t − τ) dτ + E(

∫
∞

−∞
a(τ)w(t − τ) dτ )2

= Rxx(0) − 2
∫
∞

−∞
a(τ)Rwx(τ + α) dτ +

∫
∞

−∞

∫
∞

−∞
a(τ)a(θ)Rww(τ − θ) dτ dθ.

(74)

A Wiener filter can be designed by findinga(t) = arg min(E(e2)), whereai is a value at whichE(e2) is minimised, in

other words,argmin f(x) := {x | ∀y : f(y) > f(x)}.
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2) Implementations:Due to causality,w(t + τ)(τ > 0) is unknown,a(τ) = 0 when τ < 0. In addition, only a discrete

filter with finite length can be implemented. A discrete Wiener filter with N th length is discussed below.

y[n] =

N∑

i=0

aiw[n − i], (75)

where the values ofai can be obtained by

ai = arg min E{e2[n]}. (76)

E{e2[n]} = E{(y[n] − x[n])2}

= E{y2[n]} + E{x2[n]} − 2E{x[n]y[n]}

= E{
( ∑N

i=0 aiw[n − i]
)2} + E{x2[n]} − 2E{∑N

i=0 aiw[n − i]x[n]}.

(77)

Calculate its derivatives we have

∂
∂ai

E{e2[n]} = 2E{
(∑N

j=0 ajw[n − j]
)
w[n − i]} − 2E{x[n]w[n − i]} i = 0, . . . , N

= 2
∑N

j=0 E{w[n − j]w[n − i]}aj − 2E{w[n − i]x[n]}.
(78)

Assuming that bothw[n] and x[n] are stationary, the autocorrelation ofw[n] and the cross-correlation betweenw[n] and

x[n] can be defined as below:

Rww[m] = E{w[n]w[n + m]} Rwx[m] = E{w[n]x[n + m]}. (79)

The derivatives ofE{e2[n]} therefore is:

∂

∂ai
E{e2[n]} = 2

N∑

j=0

Rww[j − i]aj − 2Rxw[i] i = 0, . . . , N (80)

Letting the derivatives to zero for the minimisation ofE{e2[n]}, we have

N∑

j=0

Rww[j − i]aj = Rxw[i] i = 0, . . . , N (81)

which can be written in a complete form (matrix form):












Rww[0] Rww[1] · · · Rww[N ]

Rww[1] Rww[0] · · · Rww[N − 1]

...
...

. . .
...

Rww[N ] Rww[N − 1] · · · Rww[0]












︸ ︷︷ ︸

T












a0

a1

...

aN












︸ ︷︷ ︸

A

=












Rxw[0]

Rxw[1]

...

Rxw[N ]












︸ ︷︷ ︸

V

(82)

whereT is a symmetric Toeplitz matrix (that is, if theij th element of the matrixM is mij , then we havemij = mi−1,j−1),

it must be positive definite and invertible. HenceA = T−1V . Eq. (82) is the Wiener-Hopf equation.
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3) Practical issues:Firstly, the expectations ofRww[m] andRws[m] are actually computed by

Rww[m] =
1

N

N∑

j=0

(w[n]w[n + m]) Rws[m] =
1

N

N∑

j=0

(w[n]s[n + m]). (83)

It also works for slowly varyingRww andRws, but an appropriate ofN should be chosen, based on the sampling rate and

the varying procedure.

The computational complexity of the Wiener filter isO(N2).

D. Least Mean Squares Filter

1) Introduction: The method of steepest descent is used in designing an LMS filter. The core problem is to find a coefficient

vectorh(n) which minimizes a cost function:

C(n) = E
{
|e(n)|2

}
, (84)

where e(n) = [h(n) − ĥ(n)] ∗ x(n) + v(n), h(n) denotes the unknown system,v(n) is the interference particularly in

measurements, and̂h(n) are the coefficients of the LMS filter.

∇C(n) = ∇E {e(n) e∗(n)} = 2E {∇(e(n)) e∗(n)} (85)

where∇e(n) = ∂e(n)/∂ĥ(n) = −x(n). Note the Einstein notation (or Einstein summation convention) is used here. Hence,

∇C(n) = −2E {x(n) e∗(n)} (86)

Keep in mind that∇C(n) points towards the steepest ascent of the cost function. Theoptimal coefficients of̂h can therefore

be found by

ĥ(n + 1) = ĥ(n) − µ

2
∇C(n) = ĥ(n) + µ E {x(n) e∗(n)} . (87)

By far LMS is the most commonly used adaptive filering algorithm, due to the following reasons:

(1) the algorithm is fast;

(2) the algorithm is the first one of its kind;

(3) its computational cost is small (to be discussed in next section);

(4) recursive algorithm, can work adaptively, that is, real-time;

(5) track slow changes in the signal statistics.

2) Practical issues:Firstly, how to obtainE {x(n) e∗(n)}?

Secondly, what is the computational cost of the LMS algorithm?

TABLE I: The computational cost of LMS

Operations * ĥ(n + 1)
multiplication M M

(Note: addition cost is omitted here. Why?)
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3) Variant of LMS: NLMS:Normalised LMS filter converges fast as its input range is limited to a normalised range.

E. Recursive Least Squares Filter

1) Introduction: Given the input samplesu(N) and the desired responsed(N), design a linear filter

y(n) =
M∑

k=0

wku(n − k). (88)

Searchwk recursively to minimise the sum of error squares

E(n) =
n∑

i=0

β(n, i)e(i)2. (89)

whereE(n) is the cost function,e(i) the error signal that is

e(i) = d(i) − y(i) = d(i) −
M∑

k=0

wku(i − k). (90)

β(n, i) is the forgetting factor that reducing the influence of old data, usually takes the form of

β(n, i) = λn−i 0 < λ < 1. (91)

The cost functionE(n) is minimised when all its partial derivatives is equal to zero

∂E(w)

∂wm
=

n∑

i=0

λn−ie(i)
∂e(i)

∂wm
=

n∑

i=0

λn−ie(i)u(i − m) = 0. (92)

Replacee(n) with the definition of the error signal

n∑

i=0

λn−i

[

d(i) −
M∑

k=0

wku(i − k)

]

u(i − m) = 0. (93)

Rearranging the previous equation yields

M∑

k=0

wk

[
n∑

i=0

λn−i u(i − k)u(i − m)

]

=
n∑

i=0

λn−id(i)u(i − m), (94)

which can be expressed in a matrix form

Rx(n)wn = rdx(n). (95)
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2) Algorithm:

x(n) =












x(n)

x(n − 1)

...

x(n − p)












(96)

α(n) = d(n) − w(n − 1)Tx(n) (97)

g(n) = P(n − 1)x∗(n)
{
λ + xT (n)P(n − 1)x∗(n)

}−1
(98)

P(n) = λ−1P(n − 1) − g(n)xT (n)λ−1P(n − 1) (99)

w(n) = w(n − 1) + α(n)g(n) (100)

F. Kalman Filter

1) Lemma: best linear unbiased estimator:Suppose unknownθ is linearly related to a noisy inputb by

b = Aθ + e e ∼ N(0, V ). (101)

The BLUE of θ is

b = (AT V −1A)−1AT V −1b. (102)

2) Derivation: In Kalman filter, we have two inputs at each time instancet, one being the prediction from previous

estimations

x̂−

t = xt + e−t , e−t ∼ N(0, Q), (103)

and the other from the present measurement (innovation?)

yt = Cxt + vt, vt ∼ N(0, R). (104)

Combine these two together we have





x̂−

t

yt




 =






I

C




 xt +






e−t

vt











e−t

vt




 ∼ N(0,






Q 0

0 R




) (105)

Applying BLUE we have

x̂t = Pt






I

C






T 




Q 0

0 R






−1 




x̂−

t

yt




 , (106)

where

Pt =












I

C






T 




Q 0

0 R






−1 




I

C












−1

. (107)
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x̂t = Pt(Q
−1x̂−

t + CT R−1yt)

Pt = (Q−1 + CT R−1C)−1.

Kt = [P−

t − P−

t H ′

t(HtP
−

t H ′

t + Rt)
−1HtP

−

t ]H ′

tR...... − HtP
−

t H ′

t]R
−1
t

= P−

t C′(CP−

t C′ + R)−1,

Pt = P−

t − P−

t H ′

t(HtP
−

t H ′

t + Rt)
−1HtP

−

t

= P−

t − KtHtP
−

t

= (I − KtHt)P
−

t .

G. Counterparts in Control

Adaptive control involves modifying the control law used bya controller to cope with the fact that the parameters of the

system being controlled are slowly time-varying or uncertain. For example, as an aircraft flies, its mass will slowly decrease

as a result of fuel consumption; we need a control law that adapts itself to such changing conditions. Adaptive control is

different from robust control in the sense that it does not need a priori information about the bounds on these uncertain or

time-varying parameters; robust control guarantees that if the changes are within given bounds the control law need notbe

changed, while adaptive control is precisely concerned with control law changes. Adaptive control includes gain scheduling

and Model Reference Adaptive Controllers (MRAC). The latter is the focus here.

MRAC method is firstly proposed in MIT at 1950s for agile aircraft control design. The MIT method is explained briefly

below. Given a processy = kG(s)u, wherek is a constant and unknown,u is the control input, the desired response is

ym = k0G(s)uc, a controller should be designed to minimise the differencebetweeny andym through adjustingu. Suppose

u = θuc, a cost function can be constructed, it isJ(θ) = 0.5e2, wheree = y−ym = kG(s)θuc−k0G(s)uc. As aforementioned,

it is reasonable to adjust the parameterθ in the direction of the negative gradient ofJ :

dθ

dt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
. (108)

We also have
∂e

∂θ
= kG(s)uc =

k

k0
ym. (109)

Hene the MIT rule of adaptive control is
dθ

dt
= −γyme. (110)
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VII. B EAMFORMING

p =
1

4πr
e−jωr/cp0. (111)

p1 =
1

4πr1
e−jωr1/cp0. (112)

p2 =
1

4πr2
e−jωr2/cp0. (113)

p0 =
1

2
(4πr1e

jωr1/c

︸ ︷︷ ︸

w1

p1 + 4πr2e
jωr2/c

︸ ︷︷ ︸

w2

p2). (114)

A. Sound field model

The notations generally appeared in literature [1], [2] areadopted below. Given a microphone array withM microphones,

the outputx(t) denotes time domain measurements of microphones,x ∈ RM×1 and t denotes time. For a single signal of

interests(t) ∈ R1 in a free sound propagation space, using Green’s function for the wave equation, we can have

x(t) =
1

4πr
s(t − τ), τ =

r
C

. (115)

where C is the speed of sound,r ∈ Rm×1 are the distances between the signal of interests and microphones, andτ is

the related sound propagation time betweens and microphones. For most aeroacoustic applications beamforming is generally

conducted in frequency domain. [3] The frequency domain version of Eq. (115) is:

X(jω) =
1

4πr
S(jω)e−jωτ = a0(r, jω)S(jω), (116)

wherej =
√
−1, a is the steering vector,ω is angular frequency,(jω) and (r, jω) can be omitted for brevity,X andS are

counterparts in frequency domain, and we can simply write Eq. (116) asX = a0S.

The situation becomes more complex for a practical case, forwhich the array output vector can be given by

X = a0S + I + N, (117)

whereI is the interference from coherent signals and/or reflections, N denotes the collective error from facility background

noise and sensor noise. It is worthwhile to note that the signal of interest (S), interference (I) and noise (N) are of zero-mean

signal waveforms and generally assumed statistically independent for the simplicity.

Let RX , RIN and RS denote theM × M theoretical covariance matrix of the array output vector, interference-plus-noise
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covariance and signal of interest covariance matrices, respectively, we can have

RX = E {XX∗} , (118)

RIN = E {(I + N)(I + N))∗} , (119)

RS = E
{
σ2a0a∗

0

}
, (120)

where(.)∗ stands for conjugate transpose,E {.} denotes the statistical expectation, andσ2 = E
{
|S|2

}
is the variance ofS.

In practical aeroacoustic measurements,N denotes background noise and can be measured without the presence of any test

model. The measurements ofX can be conducted thereafter with the placement of a test model within the test section. The

statistics of the signal of interest,σ2, can be estimated by beamformers, and a suitable beamforming method with narrow main

lobe and small side lobes can reduce interference from unknown I.

The covariance matrixR is unavailable in practical applications and normally is approximated by the sample covariance

matrices, which are

R̂X ≈ 1

K

K∑

k=1

XX∗, (121)

R̂IN ≈ 1

K

K∑

k=1

NN∗, (122)

R̂S ≈ R̂X − R̂IN , (123)

where (̂.) denotes approximations, andK is the number of sampling blocks that is preferably larger than the number of

microphonesM to maintain full rank ofR̂.

B. Conventional beamforming

A narrowband beamformer output for each frequency bin of interest can be written by

Y = W∗X, (124)

whereY is beamformer output andW ∈ CM×1 is beamformer weight vector. For the conventional beamformer of delay-and-

sum type, the beamformer weight vector is achieved by minimizing the approximation error

min
W

‖W∗X − S‖ , (125)

whose solution isWopt = (a0a∗

0)
−1a0 that yields the following estimation ofσ2:

σ̂2 = W∗

optR̂SWopt = a∗0(a0a∗0)
−1R̂S(a0a∗0)

−1a0. (126)
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C. Adaptive beamforming

The fundamental idea behind Capon beamforming is to obtainWopt through maximizing the signal-to-interference-plus ratio

(SINR),

SINR =
W∗RSW

W∗RIN W
, (127)

and maintaining distortionless response toward the direction of signal of interest. [1], [4] In other words, the expected effect

of the noise and interferences should be minimized, thus leading to the following linearly constrained quadratic problem: [5]

min
W

W∗RIN W subject toW∗a0 = 1. (128)

The solution can be easily derived with Lagrange multiplier[6] , that is Wopt = αR−1
IN a0, whereα is a constant that equals

(a∗

0R−1
IN a0)

−1. In practical aeroacoustic applications the covariance matrix is replaced by the sampling covariance matrix. We

can have

σ̂2 = Ŵ
∗

optR̂SŴopt, whereŴopt =
R̂

−1

X a0

a∗

0R̂
−1

X a0

, (129)

Eq. (129) is different from the classical form of adaptive beamforming,

σ̂2 = Ŵ
∗

optR̂XŴopt, whereŴopt =
R̂

−1

X a0

a∗

0R̂
−1

X a0

, (130)

whose solutions contain both background noise and the desired signal. Hence, Eq. (130) is not adopted in this work. In addition,

the covariance matrice of the desired signalR̂X and the noisêRIN can be approximated using Eqs. (122)-(123), respectively.

One could also propose an adaptive beamforming algorithm asbelow

σ̂2 = Ŵ
∗

optR̂SŴopt, whereŴopt =
R̂

−1

IN a0

a∗0R̂
−1

IN a0

. (131)

In this work we found this algorithm fails to generate satisfactory results for practical data. The potential reason could be the

mismatches in background noise covariance matrices. That is, R̂IN in Eq. (131) is achieved without the presence of any test

model. The installation of a test model, however, could alter the background noise covariance matrix. As a result, the following

of this work adopts Eq. (129) to implement the adaptive beamforming method.

It is worthwhile to emphasize that the present problem [Eq. (128)] is originally proposed for rank-one signal (point source)

cases. However, practical aeroacoustics normally consistof distributed coherent noise sources and theR̂X has a full rank.

Direct using the Eq. (129) [the solution of Eq. (128)] for acoustic imaging could be arguable. Hence, specific modifications

of R̂X have been conducted for the practical data and details can befound in Sec.??.

D. Robust adaptive beamforming

The main objective of this paper is to investigate the performance of the adaptive beamforming for practical aeroacoustic

applications. In previous works we have already demonstrated that conventional beamforming with delay-and-sum approach is

independent of sample data and has been applied for various aeroacoustic cases. [7]–[9] The adaptive beamforming method,
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however, is well known for its great sensitivity to any mismatches, perturbations and data errors. A systematic solution has

been proposed to improve the robustness of adaptive beamforming with respect to any mismatches in steering vectors. [1],

[10] In this work the array is placed outside of free stream and should have little mismatch in steering vector (detailed setup is

given in the next section). It is therefore assumed that maincomputational errors of an adaptive beamformer should comefrom

the ill-condition of sample matrices. Regularization method can be used to mitigate the ill-conditioning by adding a constant

to diagonal elements of sample matrices. This is the so-called diagonal loading technique, which is one of the most popular

approaches for robust adaptive beamforming. The regularized problem can be described by

min
W

W∗RIN W + ǫW∗W subject toW∗a0 = 1, (132)

where the diagonal loading factorǫ imposes a penalty to avoid inappropriately large array vector W. The loaded version of

Eq. (129) is

σ̂2 = Ŵ
∗

optR̂SŴopt, whereŴopt =
(R̂X + ǫIM )−1a0

a∗

0(R̂X + ǫIM )−1a0

, (133)

whereIM is M × M identity matrix. It is easy to see that the diagonal loading ensures the invertibility of the loaded matrix

R̂X + ǫIM regardless of ill-condition of̂RX .

The choose of the diagonal loading factorǫ follows a somewhat ad hoc way. A couple of empirical criteriafor ǫ with respect

to the so-called white noise gain parameter have been given previously. [11] The latter parameter, however, still lacksexplicit

relationship or clear physical meaning. An iterative procedure is used in this work to tuneǫ, which is set toλ×max [eig(R̂X)],

eig (.) denotes the eigenvalues of a matrix. The diagonal loading parameterλ can be iteratively chosen between0.01 and0.5.

A smaller λ normally produces an image with better resolution, but the computation is also easy to blow. For the following

practical case we found the value ofλ can be quickly determined within a couple round of iterations. The diagonal loading

approach is hence used in the rest of this paper for its simpleimplementation.

In summary the beamforming algorithm for a narrowband frequency range is conduced as follows.

Step 1: Compute sample covariance matricesR̂X and R̂S , and compute eigenvalues ofR̂X .

Step 2: Given an observed plane, which hasN gridpoints, construct steering vectora0 for each gridpoint.

Step 3: Calculate the diagonal loading factorǫ with an initial guess ofλ = 0.01. ǫ = λ × max [eig(R̂X)].

Step 4: Repeat conductingN times of adaptive beamforming equation [Eq. (133)] for eachgridpoint, and an acoustic image

can be produced.

Step 5: Check the image quality. The whole computation is done if thequality is satisfactory. Otherwise double the value

of λ and repeat steps 3-5.
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VIII. D IGITAL SIGNAL PROCESSOR∗

A. Introduction

According Wikipedia, a digital signal processor (DSP) is a specialized microprocessor with an optimized architecturefor the

fast operational needs of digital signal processing. It hasthe following characteristics: a) Real-time digital signal processing

capabilities. DSPs typically have to process data in real time, i.e., the correctness of the operation depends heavily on the time

when the data processing is completed. (Think of the definition of real time)

b) High throughput. DSPs can sustain processing of high-speed streaming data, such as audio and multimedia data processing.

(Think of MP3)

c) Deterministic operation. The execution time of DSP programs can be foreseen accurately, thus guaranteeing a repeatable,

desired performance. (Real time again, and software dependent)

d) Re-programmability by software. Different system behaviour might be obtained by re-coding the algorithm executed by the

DSP instead of by hardware modifications.

DSPs appeared on the market in the early 1980s. Over the last 15 years they have been the key enabling technology for

many electronics products in fields such as communication systems, multimedia, automotive, instrumentation and military.

B. History

DSPs appeared on the market in the early 1980s. Since then, they have undergone an intense evolution in terms of hardware

features, integration, and software development tools. DSPs are now a mature technology. This section gives an overview of

the evolution of the DSP over their 25-year life span; specialized terms such as Harvard architecture, pipelining, instruction

set or JTAG are used. The reader is referred to the following paragraphs for explanations of their meaning.

In the late 1970s there were many chips aimed at digital signal processing; however, they are not considered to be digital

signal processing owing to either their limited programmability or their lack of hardware features such as hardware multipliers.

The first marketed chip to qualify as a programmable DSP was NECs MPD7720, in 1981: it had a hardware multiplier and

adopted the Harvard architecture (more information on thisarchitecture is given in Section 3.1). Another early DSP wasthe

TMS320C10, marketed by TI in 1982. Figure 3 shows a selectivechronological list of DSPs that have been marketed from

the early 1980s until now.

During the market development phase, DSPs were typically based upon the Harvard architecture. The first generation

of DSPs included multiply, add, and accumulator units. Examples are TIs TMS320C10 and Analog Devices (ADI) ADSP-

2101. The second generation of DSPs retained the architectural structure of the first generation but added features suchas

pipelining, multiple arithmetic units, special address generator units, and Direct Memory Access (DMA). Examples include

TIs TMS320C20 and Motorolas DSP56002. While the first DSPs were capable of fixed- point operations only, towards the end

of the 1980s DSPs with floating point capabilities started toappear. Examples are Motorolas DSP96001 and TIs TMS320C30.

It should be noted that the floating-point format was not always IEEE-compatible. For instance, the TMS320C30 internal

calculations were carried out in a proprietary format; a hardware chip converter [6] was available to convert to the standard
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IEEE format. DSPs belonging to the development phase were characterized by fixed-width instruction sets, where one of each

instruction was executed per clock cycle. These instructions could be complex, and encompassing several operations. The width

of the instruction was typically quite short and did not overcome the DSP native word width. As for DSP producers, the market

was nearly equally shared between many manufacturers such as Fujitsu, Hitachi, IBM, NEC, Toshiba, Texas Instruments and,

towards the end of the 1980s, Motorola, Analog Devices and Zoran.

During the market consolidation phase, enhanced DSP architectures such as Very Long Instruction Word (VLIW) and Single

Instruction Multiple Data (SIMD) emerged. These architectures increase the DSP performance through parallelism. Examples of

DSPs with enhanced architectures are TIs TMS320C6xxx DSPs,which was the first DSP to implement the VLIW architecture,

and ADIs TigerSHARC, that includes both VLIW and SIMD features. The number of on-chip peripherals increased greatly

during this phase, as well as the hardware features that allow many processors to work together. Technologies that allow

real-time data exchange between host processor and DSP started to appear towards the end of the 1990s. This constituted

a real sea change in DSP system debugging and helped the developers enormously. Another phenomenon observed during

this phase was the reduction of the number of DSP manufacturers. The number of DSP families was also greatly reduced,

in favour of wider families that granted increased code compatibility between DSPs of different generations belongingto the

same family. Additionally, many DSP families are not general- purpose but are focused on specific digital signal processing

applications, such as audio equipment or control loops.

C. Architecture Features

DSP is different from general purpose processors. It was designed and optimised specifically for digital signal processing.

Architecture features include:

• Hardware modulo addressing, allowing circular buffers to be implemented;

• Driving multiple arithmetic units may require memory architectures to support several accesses per instruction cycle;

• Separate program and data memories (Harvard architecture), and sometimes concurrent access on multiple data busses;

• Special SIMD (single instruction, multiple data) operations;

• Use VLIW techniques so each instruction drives multiple arithmetic units in parallel;

• Special arithmetic operations, such as fast multiply-accumulates (MACs). Many fundamental DSP algorithms, such as

FIR filters or the Fast Fourier transform (FFT) depend heavily on multiply and accumulate performance;

• Bit-reversed addressing, a special addressing mode usefulfor calculating FFTs;

• Deliberate exclusion of a memory management unit. DSPs frequently use multi-tasking operating systems, but have no

support for virtual memory or memory protection. Operatingsystems that use virtual memory require more time for

context switching among processes, which increases latency.

∗ The material in ”Digital signal processor fundamentals andsystem design” by M. E. Angoletta is extensively referred in

this section. The related contents on wikipedia is also usedhere. The former document will be provided in class.
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