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Viscous-Inviscid Analysis of Transonic and Low
Reynolds Number Airfoils

Mark Drela* and Michael B. Gilest
Massachusetts Institute of Technology, Cambridge, Massachusetts

A method of accurately calculating transonic and low Reynolds number airfoil flows, implemented in the
viscous-inviscid design/analysis code ISES, is presented. The Euler equations are discretized on a conservative
streamline grid and are strongly coupled to a two-equation integral boundary-layer formulation, using the
displacement thickness concept. A transition prediction formulation of the e9 type is derived and incorporated
into the viscous formulation. The entire discrete equation set, including the viscous and transition formulations,
is solved as a fully coupled nonlinear system by a global Newton method. This is a rapid and reliable method for
dealing with strong viscous-inviscid interactions, which invariably occur in transonic and low Reynolds number
airfoil flows. The results presented demonstrate the ability of the ISES code to predict transitioning separation
bubbles and their associated losses. The rapid airfoil performance degradation with decreasing Reynolds number
is thus accurately predicted. Also presented is a transonic airfoil calculation involving shock-induced separation,
showing the robustness of the global Newton solution procedure. Good agreement with experiment is obtained,
further demonstrating the performance of the present integral boundary-layer formulation.

Nomenclature
CD = dissipation coefficient, (l/peul)^T(du/dri)dTrj
Cf = skin-friction coefficient, 2rwall/pew2

CT = shear stress coefficient, rmax/peul
hQ = stagnation enthalpy
H = shape parameter, d*/6
H* — kinetic energy shape parameter, 0*/6
II** = density shape parameter, d**/6
Hk = kinematic shape parameter, f [ 1 - (u/ue) ] dr/

+ l ( u / u e ) [ l - ( u / u e ) ] d i i
Me = boundary-layer edge Mach number
n = transition disturbance amplification variable
Ree = momentum thickness Reynolds number, peued/^e
p = pressure
q =speed
ue = boundary-layer edge velocity
ur = wall shear velocity, Vrwall/p
5* = displacement thickness, {[ 1 - (pu/peue) ] dy
d** = density thickness, \ ( u / u e ) [ \ - ( p / p e ) ] d r j
£,r/ =thin shear layer coordinates
B = momentum thickness, j (pu/peue) [ 1 — (u/ue) ] dr]
0* = kinetic energy thickness, \(pu/peue) [1 - ( u 2 / u l ) ] d r j
^e = boundary-layer edge viscosity
p = density
pe = boundary-layer edge density
r = shear stress

I. Introduction

E FFECTIVE airfoil design procedures require a fast,
robust analysis method for on-design and off-design

performance evaluation. For a given time and cost schedule,
a fast analysis method obviously permits more detailed op-
timization than a slower method of comparable accuracy and
thus results in a better final design.
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The various airfoil analysis and/or design algorithms that
have been developed in the past decade have employed one
of two distinct approaches: the full Reynolds-averaged
Navier-Stokes approach and the interacted viscous-inviscid
zonal approach.

As a rule, the Navier-Stokes approach is too slow for
routine design work and has not yet shown any accuracy ad-
vantages over the much faster zonal approaches. Typical
zonal approaches, such as the GBK code of Garabedian,
Bauer, Korn,1 and the GRUMFOIL code of Melnik, Chow,
and Mead,2 use a full-potential formulation for the inviscid
flow and an integral boundary-layer formulation for the
boundary-layer and wake regions. The viscous and inviscid
flows are strongly coupled, usually through a wall transpira-
tion boundary condition on the inviscid flow. The interacted
zonal approaches are reasonably fast and accurate for tran-
sonic flows and are generally preferred for transonic airfoil
analysis.

The applicability of any interacted viscous-inviscid analysis
method to low Reynolds number flows (chord Re < 1 million)
critically depends on the boundary layer and transition
prediction formulations employed in the method. Accurate
representation of both laminar and turbulent separated flow
is a must since transitional separation bubbles and their
losses must be accurately calculated if accurate drag predic-
tions are to be obtained. The transition prediction algorithm
must likewise be reliable since it affects the termination point
of any transitional separation bubble and hence determines
the bubble's size and associated losses.

Transitional bubble calculations have previously been
reported by several workers. Gleyzes, Cousteix, and Bonnet3

employ an incompressible integral boundary-layer formula-
tion with entrainment closure and couple this to some
unspecified inviscid (presumably potential) solver for a
model geometry. Vatsa and Carter4 employ a localized ap-
proach to calculate the transitional bubbles near an airfoil
leading edge. The bubble solution is treated as a perturbation
on a base solution obtained from the GRUMFOIL code.

The present airfoil analysis formulation, implemented in the
transonic airfoil/cascade analysis/design code ISES,5'7 incor-
porates features aimed at computational economy, minimal
user intervention, and good prediction accuracy for a wide
range of Mach and Reynolds numbers. The steady Euler equa-
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tions in integral form are used to represent the inviscid flow,
and a compressible lag-dissipation integral method is used to
represent the boundary layers and wakes. The viscous and in-
viscid flows are fully coupled through the displacement
thickness. The design capabilities of the ISES code were
presented earlier in Drela6 and in Giles and Drela7 and are fur-
ther demonstrated in the companion paper.8 The present
paper is aimed at describing and demonstrating the viscous-
inviscid analysis capability of the code, particularly for the
difficult cases of transonic and low Reynolds number flows.

A novel feature of the ISES code, and one that makes it par-
ticularly suitable for very strongly interacting flows, is the
solution technique used to solve the coupled viscous-inviscid
equations. Instead of iterating between the viscous and in-
viscid solvers via some approximate interaction law, the entire
nonlinear equation set is solved simultaneously as a fully
coupled system by a global Newton-Raphson method. This is
a very stable calculation procedure, even for such difficult
cases as those with shock-induced separation.

The simultaneous coupling concept was first described in
Drela, Giles, and Thompkins.9 Since that time, numerous
changes have been made to the viscous formulation to im-
prove its performance for transonic airfoil flows and to make
the method applicable to low Reynolds number flows as well.
Originally, the laminar boundary-layer portions were repre-
sented by Thwaites' method, and the turbulent portions were
represented by Green's entrainment method. Neither formula-
tion is valid for separated flow. Although Green's method has
been extended to separated flows by Melnik and Brook,10 it is
not possible to derive a valid Thwaites' method for separating
flow since it is a one-equation method. Difficulties were also
encountered in the transition formulation used at that time,
due to the fundamentally different character of the Thwaites
and Green formulations. All the above problems were resolved
by switching to a two-equation dissipation-type closure for
both the laminar and turbulent portions, with a lag equation
added to the turbulent formulation. A free transition predic-
tion method similar to that of Gleyzes, Cousteix, and Bonnet3

was formulated and incorporated into the global Newton solu-
tion scheme.

The calculations to be presented are entire airfoil drag
polars at low Reynolds numbers for wide angle of attack
ranges, and one transonic case with shock-induced separation.
The polars, surface pressure distributions, and boundary-layer
parameters are compared with experimental data.

II. Inviscid Euler Formulation
The inviscid part of the flowfield is described by the steady-

state mass, momentum, and energy conservation laws in in-
tegral form:

<£> p(q-n)dl = Q
J dV

& (p(q-n)q+pn)dl = (
J 9 V

(1)

(2)

(3)

where the integration is around a closed curve dV with
normal n.

These equations are discretized in conservation form on an
intrinsic grid, in which one family of grid lines corresponds
to streamlines. The discrete equations are presented in the
companion paper.8

III. Boundary Conditions
The boundary conditions required to close the discrete

Euler equations are very simple (see Fig. 1). At a solid sur-
face, only the position of the adjacent streamline needs to be

specified. The surface pressure is a result of the calculation,
and no pressure extrapolation to the wall is required. For a
viscous case, the surface streamline is simply displaced nor-
mal to the wall by a distance equal to the local displacement
thickness.

On the outermost streamlines of the domain, the pressure
corresponding to a uniform freestream plus a compressible
vortex, source, and doublet is specified. This far-field
singularity expansion is derived in Drela.6 The strength of
the far-field vortex is determined by the trailing-edge Kutta
condition as in a potential solver. The source strength is
determined from the far viscous and shock wakes. The two
doublet components are determined by minimizing the devia-
tion of the discrete streamlines from the direction of V$,
with $ denoting the analytic velocity potential of the
freestream, vortex, source, and doublet combination. The in-
clusion of the doublet in the far-field expansion greatly
reduces the sensitivity of the solution to the distance of the
outer domain boundary as shown in Giles and Drela.8

At the inlet and outlet faces of the domain, the streamline
angle corresponding to the flow angle of the freestream,
vortex, source, and doublet combination is specified at each
streamline position. The inlet plane also requires the stagna-
tion density to be specified at each streamline.

IV. Boundary-Layer Formulation
Governing Equations

An important computational requirement that dictates the
type of viscous formulation employed in the present design/
analysis method is the capability to represent accurately flows
with limited separation regions. In order that transition be
represented in a well-posed and analytically continuous man-

compressible vortex & source
& doublet

Fig. 1 Isolated airfoil boundary conditions.

Fig. 2 Jumps at bubble reattachment.
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ner, compatibility between the laminar and turbulent formula-
tions is required. And, of course, computational economy
(meaning as few additional viscous variables as possible) is very
important in the context of the global Newton solution
procedure.

To meet the above requirements, a two-equation integral
formulation based on dissipation closure was developed for
both laminar and turbulent flows. A transition prediction
formulation based on spatial amplification theory is incor-
porated into the laminar formulation, and an extra lag equa-
tion is included in the turbulent formulation to account for
lags in the response of the turbulent stresses to changing
flow conditions. Two-equation dissipation methods have been
previously used by numerous workers, notably Le Balleur11

and Whitfield.12 A characteristic of two-equation methods is
that, if properly formulated, they adequately describe thin
separated regions. One-equation methods such as Thwakes'
(given in Cebeci and Bradshaw13) cannot be used to represent
separated flows since they uniquely tie the shape parameter to
the local pressure gradient which is, in fact, a nonunique rela-
tionship in separating flows.

The present formulation employs the following standard
integral momentum and kinetic energy shape parameter
equations.

d0
——

0
(4)

Equation (5) is readily derived by combining the standard in-
tegral momentum equation (4) and the kinetic energy thickness
equation (6) below.

(6)

Closure
To close the integral boundary-layer equations (4) and (5),

the following functional dependencies are assumed:

H* = H*(Hk,Me,Ree), H** = H**(Hk,Me) (7)

Cf = Cf(Hk,Me,Red), CD = CD(Hk,Me,Ree) (8)

Here, Hk is the kinematic shape parameter defined with the
density taken constant across the boundary layer. In effect, the
correlations in Eqs. (7) and (8) are defined in terms of the
velocity profile shape only and not the density profile. The
definition of Hk used here is that derived by Whitfield14 for
adiabatic flows in air:

Hi, = -//-0.290M2,
1+0.113M2, (9)

Laminar Closure
The relations (7) and (8) can be determined if some profile

family is assumed. For laminar flow, the present formulation
employs the Falkner-Skan one-parameter profile family to
derive the following relationships:

H* = \. 515 + 0.076
/A __ TT \ 2

k)

= 1.515 + 0.040

H<4

Hk>4 (10)

Cf

'~2~
.01977

(1.4-Hk)2

= -0.067 + 0.022^1- L ^ V , Hk>lA (11)

-p = 0.207 + 0.00205(4 -Hk)55, Hk<4

= 0.207-0.003 -, Hk>4 (12)

An expression for the density thickness shape parameter H* *
has been derived by Whitfield14 for turbulent flows. Here it is
used for laminar flows as well. This is justified on the grounds
that H** has a fairly small effect in transonic flows and is
neglibile at low subsonic speeds.

Turbulent Closure
The turbulent closure relations in the present formulation are

derived using the skin-friction and velocity profile formulas of
Swafford.15

+ 0.0001l[tanh(4-^)-l]

where

(14)

(15)

u UT s
ue ue 0.09

arctan(0.09y+)

where
Cf s = -

(16)

(17)

Here, a and b are constants determined implicitly by
substituting Eq. (16) into the standard momentum and
displacement thickness definitions.

Using Eq. (16), the following relationship between //*,
Hk, and Ree has been derived:

1.6 \ (H0-Hk)16

= 1.505+-Refi

Hk>H0 (18)

where

Ree<400

= 3+-
400

(19)
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The dissipation coefficient CD is expressed as a sum of a
wall layer and a wake layer contribution.

(20)

The shear coefficient CT is a measure of the shear stresses in
the wake layer, and Us is an equivalent normalized wall slip
velocity defined by the following relation:

//* / 4 Hk-l\
Us~ 2 V 3 H )

(21)

Each of the two terms in the CD definition (20) consists of a
stress and a velocity scale. The skin-friction coefficient Cf
depends only on the local boundary layer parameters. This is
consistent with the notion of a universal wall layer known to
respond rapidly to the local boundary-layer conditions. The
shear stress coefficient CT, however, should not depend only
on the local conditions since the Reynolds stresses in the
wake layer are known to respond relatively slowly to chang-
ing conditions, especially in low Reynolds number flows.
Following Green et al.,16 this slow response is modeled by
the following rate equation for CT, which is actually a
simplified form of the stress-transport equation of Bradshaw
and Ferriss.17

(22)

The nominal boundary-layer thicknesss d and the equilibrium
shear stress coefficient C are defined by the following
relations.

(23)

0.015
HlH

(24)

The dissipation coefficient formula (20), the slip velocity
definition (21), and the equilibrium shear stress definition
(24) are derived from the well-known G — /3 locus of
equilibrium boundary layers postulated by Clauser.18 The
empirical G —13 locus used in the present formulation is

G-6.7V1+0.75/3 (25)

where

Ht-l 2 6* dwp

The deviation of the turbulent boundary layer or wake from
the equilibrium locus (25) is governed by the rate equation
(22), which comes into play mainly in rapidly changing
flows. In slowly changing flows, CT closely follows C ,
and the empirical closure relations revert to their equilibrium
form.

The governing integral equations (4) and (5) and all the
turbulent closure relations are valid for free wakes, provided
the skin-friction coefficient Cf is set to zero. Hence, in the
present formulation, a turbulent wake is naturally treated as
two boundary layers with no wall shear. Laminar wakes do
not occur in aerodynamic flows of interest and are not con-
sidered here.

Transition
Accurate transition prediction is crucial in the analysis of

low Reynolds number airfoils. In particular, the location of
transition in a separation bubble strongly determines the

bubble's size and its associated losses. A typical separation
bubble has very steep gradients in the edge velocity ue and
momentum thickness 6 at reattachment resulting in jumps
Awe and M over the small extent of the reattachment region
as indicated in Fig. 2. An equation that relates the jumps is
readily obtained by integrating the integral momentum equa-
tion (4) over this small stream wise distance A£, neglecting the
skin friction Cf in the process.

(27)

This relation clearly shows that a large initial shape
parameter H at reattachment induces a large relative jump in
the momentum thickness. Since H increases rapidly down-
stream in the laminar part of a separation bubble, it is clear
from relation (27) that the momentum thickness jump will be
sensitive to the bubble length and hence to the precise loca-
tion of transition in the bubble. Because airfoil drag is
directly affected by any momentum thickness jump, a precise
and reliable method of transition prediction is mandatory for
quantitative drag predictions of low Reynolds number air-
foils with separation bubbles.

The present method employs a spatial-amplification theory
based on the Orr-Sommerfeld equation, which is essentially
the e9 method pioneered by Smith and Gamberoni19 and
Ingen.20 The e9 method assumes that transition occurs when
the most unstable Tollmien-Schlichting wave in the boundary
layer has grown by some factor, usually taken to be
e9~8100. To calculate this amplification factor, the distur-
bance growth rates must be related to the local boundary-
layer parameters. Using the Falkner-Skan profile family, the
Orr-Sommerfeld equation has been solved for the spatial
amplification rates of a range of shape parameters and
unstable frequencies. As done by Gleyzes et al.,3 the
envelopes of the integrated rates are approximated by
straight lines as follows:

(28)

H = 5.00 4.01 3.50 2.96 Z80

200 400 600 800Rea
1000

H = 2.60 2.48 2.41 2.30

2000 4000 6000 ^ 8000 10000
Ree

Fig. 3 Orr-Sommerfeld spatial amplification curves.
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Here, h is the logarithm of the maximum amplification
ratio. The slope dn/dRee and the critical Reynolds number
Re&Q are expressed by the following empirical formulas:

dn
dRed

• = O.Ql([2AHk-3.7+2.5tanh(l.5Hk -4.65)]2 + 0.25)I/2

(29)

3.295
(30)

Figure 3 shows the envelopes defined by the above equations
together with the actual amplification curves.

For similar flows, Hk is a constant, and Ree is uniquely
related to the stream wise coordinate £. Hence, Eq. (28) im-
mediately gives the amplitude ratio n as a function of £.
Transition is assumed to occur where n = 9. For nonsimilar
flows, the amplitude ratio is calculated by integrating the
local amplification rate downstream from the point of in-
stability. Gleyzes et al.3 integrate the rate given by Eq. (29)
with respect to Ree as follows:

n = dn
dRefi

dRe, (31)

It turns out that Eq. (31) is not suitable for determining tran-
sition in separation bubbles since Ree hardly changes at all in
the laminar portion of a typical bubble. Hence, Eq. (31) im-
plies that very little amplification will occur in the separation
bubble, which is clearly wrong. A more realistic approach is
to integrate the amplification rate in the spatial coordinate £.
Using some basic properties of the Falkner-Skan profile
family, the spatial amplification rate with respect to £ is
determined as follows:

dn dn dRefi dn
dRed dRefi 2 \u

Using the empirical relations

OMJ2 6.54//,-14.07

(32)

(33)

(34)

the amplification rate with respect to £ is expressed as a
function of Hk and 6:

dn dn

An explicit expression for n then becomes

)-^- (35>

(36)

where £0 is the point where Ree=Re0Q.
In the present formulation, Eq. (36) is not used directly.

Instead, the differential form (35) is discretized and solved as
part of the global Newton system. Thus, n is treated like
another boundary-layer variable. This type of treatment is
essential for a stable and rapid calculation procedure since
the amplification equation (35) is very strongly coupled to

the integral boundary-layer equations (4) and (5) in a separa-
tion bubble.

Boundary-Layer Equation Discretization
Figure 4 shows the primary turbulent boundary-layer vari-

ables 6, 6*, Clf in relation to the in viscid grid, with
subscripts 1 and 2 denoting the /-1th and /th stream wise sta-
tions. All other boundary-layer variables can be expressed in
terms of these primary variables. If the boundary layer is
laminar between stations i-l and /, then the amplification
ratio n replaces the shear stress coefficient C'f as the
primary variable. In the case of the transition interval, where
transition onset occurs between stations i-l and /, nl and C^
are the respective primary variables.

There are three different equations to be discretized: the
momentum equation (4), the shape parameter equation (5),
and either the amplification equation (35) or the lag equation
(22). Two-point central differencing (i.e., the trapezoidal
rule) is generally used. An exception to this is the shape
parameter equation (5), which tends to be stiff because of
the small quantity 6 multiplying the spatial rate dH*/d%. At
transition, this leads to numerical difficulties at higher
Reynolds numbers since the resulting rapid analytic change
in H* cannot be resolved by the available streamwise grid
spacing. This problem is eliminated by biasing the differenc-
ing of the shape parameter equation toward the downstream
station at higher Reynolds numbers. When the bias is entirely
on the downstream station, the differencing is equivalent to
backward Euler.

Special treatment is necessary in differencing across the
transition interval. For a stable and reliable solution pro-
cedure, it is essential that no discontinuities in the solution
are admitted as the transition point moves across a grid
point. In the present formulation, the transition interval is
treated as two subintervals as shown in Fig. 5.

By applying the discrete amplification equation to the
laminar subinterval, the transition onset location £/r can be
implicitly defined in terms of the neighboring primary
variables. The boundary-layer variables at %tr can thus be in-
terpolated from the /th and /—1th stations. The actual
discrete equations governing the transition interval are
weighted averages of the laminar and turbulent subintervals.
Although this formulation precisely defines the transition
onset location in a continuous manner, it is still necessary to
define how the turbulence develops afterward. To date, no
useful empirical laws describing transitional Reynolds
stresses have been formulated and most likely won't be for-
mulated for some time, given the complexity of the problem.
The approach adopted here is to set the initial value of Clf
at %tr to 0.7 times its equilibrium value, as indicated in Fig.
5. The key to the success of such a simple model is that the
momentum integral equation (4), which governs the ail-

Fig. 4 Boundary-layer variable locations.
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important momentum thickness jump at reattachment, re-
mains essentially correct, irrespective of the precise reattach-
ment mechanism. In any case, the transition formulation
described here has given good results for a wide range of
both low Reynolds number and transonic airfoil flows.

For the case of forced transition, the same basic transition
formulation described above is used. The only difference is
that £/r, instead of being related to the amplification ratio /?,
is simply set to its value at the forced transition location.

V. Newton Solution Procedure
The Newton solution procedure is an essential part of the

present design/analysis method. In particular, the sim-
ultaneous solution of the discrete inviscid Euler equations,
together with the discrete boundary-layer equations, hinges
on the applicability of the Newton method to this nonlinear
coupled system.

Conceptually, the Newton solution procedure is extremely
simple. The system of nonlinear equations to be solved can
be written as

2.0 i

1.5 -

i.o

0.5

0.0

RE - 250000
RE = 375000
RE = 500000
RE = 650000

0.01 0.02 0.03 o.ou

Fig. 7 Calculated (heavy line) and experimental (symbols) drag
polars for LNV109A airfoil.

(37)

where Q is the vector of variables and F is the vector of
equations. At some iteration level v, the Newton solution
procedure is

dF 1i

7dQ\
(38)

(39)

Because the grids used in the present scheme are regular,
the linearized Newton system (38) is highly structured and
has a large, very sparse block-tridiagonal coefficient matrix.
The vector of unknowns dQ is grouped into 7 siibvectors of
length 2.7+5 (where 7= number of streamwise stations, and
/= number of streamlines). Each subvector contains the

turbulent
interval

i-2

Fig. 5 Transition interval treatment.

-1.5

CP

LNV109R
MRCH = 0.100
RE = 0.500 x 106

RLFH = 7.358
CL = 1.2340
CD = 0.01395
CM = -0.050
L/0 = 88 .44

Exp't

Fig. 8 LNV109A calculated and experimental pressure distribu-
tions.

LNV109R
MflCH
RE

0. 100
0.375 x 106

flLFfl = 3.459
CL = 0.7915
CD = 0.01686

= -0.0524
= 46.95

Exp't

4.0
0.791
0.0169

-0.060

Fig. 6 132x32 grid near LNV109A airfoil.
Fig. 9 LNV109A calculated and experimental pressure distribu-
tions.
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0.0

RE = 250000
RE = 375000
RE = 500000

0.01 0.02 0.03
CD

0.04

Fig. 10 Calculated (heavy line) and experimental (symbols) drag
polars for LA203A airfoil.

LR203R
MfiCH = 0.100

Exp't

4.0
1.08
0.0150

-0.178

Fig. 11 LA203A calculated and experimental pressure distribu-
tions.

i . o

Fig. 12 LA203A calculated suction surface 6* and 0 distributions.

unknown inviscid changes dp, dn, and the viscous changes 60,
66*, bC'f- for one streamwise grid station. At laminar sta-
tions, dn replaces dClf. At stations with no boundary layer
or wake, only dummy viscous variables are present. The in-
viscid change dn is the grid node movement perpendicular to
the local streamline direction.

The Newton system (38) is solved every iteration by a
direct Gaussian block-elimination method. For the 132x32
grid sizes used for the calculations presented in this paper,
this solution method is faster than the best iterative methods
available. Each Newton iteration requires approximately 4
min CPU on a micro VAX II minicomputer. Of course, very

RflE
MflCH
RE
flLFfl
CL
CD
CM
L/D

2822
0.750
6.200 x 106

2.734
0.7431
0.02284
-0.0941
32.54

1353

Exp't

3.19
0.743
0.0242

-0.106

Fig. 13 RAE 2822 calculated and experimental pressure distri-
butions.

2.0

0.0

Fig. 14 RAE 2822 calculated and measured H distributions.

few Newton iterations are required to achieve convergence.
In theory, the convergence is quadratic and, in practice, the
number of iterations required ranges from only 3 for a sub-
sonic, inviscid case, up to 15 for a transonic case with a
strong shock and boundary-layer coupling.

VI. Results
The results presented here are aimed at demonstrating the

accuracy and speed of the ISES code for low Reynolds
number and transonic airfoil flows. The polars were
calculated by specifying a sequence of angles of attack in in-
crements of 0.5 deg. Since a good initial guess was available
for each point from the previous angle of attack, the Newton
solver required only 2 or 3 iterations to converge each point.
Clearly, the quadratic convergence property of the Newton
method gives large CPU savings in such a parameter sweep.

LNV109A Airfoil
This airfoil was designed by Liebeck to attain a specified

maximum lift coefficient under the constraint of a maximum
permissible pitching moment. The airfoil coordinates and ex-
perimental data were obtained from Liebeck and
Camacho.21 Figure 6 shows the 132x32 grid near the airfoil
used for the calculations.
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2.0

0.0

Fig. 15 RAE 2822 calculated and measured suction surface 5* and 6
distributions.

Four polars were calculated for chord Reynolds numbers
of 250,000, 375,000, 500,000, 650,000 and are shown in Fig.
7. The most important feature to point out is that the rapid
performance degradation with decreasing Reynolds number
is accurately predicted. The sharp increase in drag below a
lift coefficient of about 0.9 in three of the polars is due to
the pressure side transition point suddenly moving to the
leading edge. This jump appears to be present in the ex-
perimental data as well. For the lowest Reynolds number
(250,000), only the upper part of the polar is shown since
massive separation due to the bubble bursting occurred for
lift coefficients less than about 1.3, and the code failed to
converge properly as a result. The same massive separation
was observed in the experiment. Figures 8 and 9 show the
calculated and experimental pressure distributions for two
particular Reynolds numbers and angles of attack. The
separation bubbles are clearly discernable in both the
calculated and experimental pressure distributions.

LA203A Airfoil
This is an aft-loaded airfoil designed by Liebeck to con-

trast with the front-loaded LNV109A. The airfoil coor-
dinates and experimental data were again obtained from
Liebeck and Camacho.21 The lack of a pitching moment
constraint allowed milder adverse pressure gradients to be
imposed at the bubble. As a result, the LA203A airfoil does
not experience bubble bursting at the lowest Reynolds
number, as occurred with the LNV109A.

For the LA203A, three polars were calculated for chord
Reynolds numbers of 250,000, 375,000, 500,000 and are
shown in Fig. 10. Again, the rapid performance degradation
with decreasing Reynolds number is predicted reasonably
well, given the large amount of noise in the experimental
data. Figure 11 shows the calculated and experimental
pressure distributions for a Reynolds number of 250,000.
The very large separation bubbles are clearly discernable in
both the calculated and experimental pressure distributions.
Figure 12 shows the calculated suction surface d* and 6
distributions for this particular operating point of the
LA203A. The jump in the momentum thickness 6 at the bub-
ble reattachment point is clearly discernable.

RAE 2822 Airfoil
The last computational example shown is case 10 of the

series of transonic tunnel experiments involving the RAE
2822 airfoil and documented in Cook et al.22 Case 10 cor-
responds to a Mach number of 0.75 and a lift coefficient of
0.743 and involves limited shock-induced separation im-
mediately behind the strong suction surface shock wave. The
separation was reportedly visualized in the experiment using
the oil-flow technique. A calculation of this case reproduces
the separation fairly accurately. Figure 13 shows the
calculated and experimental pressure distributions. Note that
the drag coefficient is also accurately predicted. Figures 14

and 15 show the calculated and measured boundary-layer
parameters. The agreement is quite good, given the substan-
tial tunnel interference effects that might be expected for this
case.

VII. Conclusions
This paper has presented a viscous/inviscid analysis

method suitable for transonic and low Reynolds number air-
foils. A two-equation, integral, laminar/turbulent boundary-
layer method based on dissipation closure has been sum-
marized. An Orr-Sommerfeld-based transition prediction
formulation is used and is incorporated into the boundary-
layer analysis. The viscous formulation is fully coupled with
the inviscid flow that is governed by a streamline-based Euler
formulation. The applicability of the global Newton solution
procedure to solving the entire coupled nonlinear system of
equations has been shown.

The results show that the present analysis method can ac-
curately predict airfoil performance at low Reynolds
numbers due to the accurate representation of the separation
bubble losses. Robustness in calculating a strongly interac-
ting transonic case with shock-induced separation has also
been demonstrated.
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