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Abstract 

Premixed flames are widely utilized in spark ignition engines for automobiles and 

in advanced gas turbine engine systems for power generation. In the present study, the 

fundamental properties of premixed flames such as initiation, propagation, and extinction 

are systematically investigated using asymptotic theoretical analysis, detailed numerical 

simulations, and/or experimental measurements.   

A general theory on spherical flame initiation and propagation and an accurate 

numerical algorithm for adaptive simulation of unsteady reactive flow are first developed. 

The general theory describes different flame regimes and transitions among them. This 

could be utilized to study effects of radiative heat loss, ignition power, and preferential 

diffusion on spherical flame initiation, propagation, and extinction. The numerical solver 

is thoroughly tested and validated. It is shown to be able to accurately and efficiently 

model propagating flames with detailed chemical mechanisms. 

With the help of the general theory and the numerical solver, the controlling 

factor for spherical flame initiation and how it relates to the minimum ignition energy are 

then investigated. It is found that there exists a critical flame radius controlling the 

spherical flame initiation and that the minimum ignition energy is proportional to the 

cube of the critical flame radius. Moreover, results show that the preferential diffusion 

between heat and mass (Lewis number) plays an important role in the spherical flame 

initiation. Both the critical flame radius and the minimum ignition energy are found to 

increase with the Lewis number.  

The general theory and the numerical solver are also employed to study the 

accuracy of laminar flame speed measurements utilizing propagating spherical flames. 
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Different effects such as ignition, unsteadiness, compression, and stretch are found to 

decrease the accuracy of these measurements. New flame speed determination methods to 

obtain more accurate flame speeds by correcting for these effects are developed. For 

example, both the Compression-Corrected Flame Speed (CCFS) and the 

Stretch-Corrected Flame Speed (SCFS) are demonstrated not only to significantly 

improve the accuracy of the flame speed measurements but also to greatly extend the 

parameter range of experimental conditions.  

The effects of radiation on flame propagation, extinction, and flammability limits 

are also investigated. Opposite trends for the change of flame propagation speed and 

flame extinction/flammability limits are found for the outwardly and inwardly 

propagating spherical fames. A functional expression for the Markstein length is found in 

terms of the Lewis number and the radiative heat loss. Moreover, the spectrally 

dependent radiation absorption effect on propagating spherical flames is measured by 

using CO2-diluted CH4/O2/He mixtures at normal and elevated pressures. Radiation 

absorption is found to increase the flame speed and extend the flammability limit. In 

addition, the combined effects of flame curvature, radiation, and stretch on flame 

extinction are revealed via premixed tubular flames. It is found that the coupling between 

radiation and flame curvature leads to multiple flame bifurcations and extinction limits. 

Finally, the effects of kinetic and transport coupling on ignition and flame 

propagation are investigated by using dimethyl ether (DME) blended methane/air 

mixtures. It is shown that the addition of a small amount of DME to methane leads to a 

significant decrease in the ignition time, while the flame speed of DME/CH4/air mixture 

is only linearly proportional to the DME fraction. 
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Chapter 1: Introduction 
 

1.1 Overview and Significance 

Combustion has had significant impact on our daily lives since the beginning of 

human history. It is the primary means by which mankind produces power: about 85% of 

the world’s energy comes from combustion of fossil fuels. Meanwhile, combustion is 

also responsible for nearly all of the anthropogenic emission of nitrogen oxides (NOx), 

carbon monoxide (CO), particulates (such as soot and aerosols), and other by-products 

that are harmful to human health and the environment. In recent years, environmental 

regulations throughout the world have been tightened for engine emissions. The emission 

standards for both NOx and particulates have been tightened and more restrictive 

measures will be implemented in the coming years. Meeting these requirements is 

becoming increasingly difficult and developing high-efficiency, low-emission devices for 

the conversion of fossil energy is currently a major research goal in combustion and 

engine design communities. For example, radically new engine designs are the only hope 

for meeting the near-zero NOx and particulate emission commitments proposed for 

implementation by 2012. 

To facilitate the exploration of radically new concepts for high-performance 

engines, science-based predictive models for fundamental combustion processes such as 

ignition, flame propagation, and flame extinction should be developed. For example, 

ultra-lean combustion is currently one of the most promising concepts for substantial 

reduction of emissions while maintaining high efficiency. Operating near the lean 

flammability limit poses significant challenges such as flame blow-off, combustion 
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instabilities, auto-ignition, and flashback. In addition, the slowdown of combustion heat 

release at near-limit conditions encourages the coupling between chemistry and transport. 

Therefore, understanding and controlling near limit combustion are crucial for the 

successful design of ultra-lean combustion gas turbines and burners. 

This study is focused on the fundamental properties of premixed flames, which 

are widely utilized in spark ignition engines for automobiles and in advanced gas turbine 

engine systems for power generation. Using combined modeling and experimental 

approaches, this thesis includes investigations on the ignition, propagation, and extinction 

of premixed flames.  

1.2 Historical Perspectives 

1.2.1 Flame Initiation and Minimum Ignition Energy 

Ignition is the process whereby a medium capable of reacting exothermically is 

brought to a state of rapid combustion (Williams 1985). It is one of the most important 

problems in combustion. Understanding of flame initiation is important not only for 

fundamental combustion research but also for fire safety control and the development of 

low emission gasoline and homogeneous charge compression ignition (HCCI) engines 

and alternative fuels. Phenomenologically, ignition can be classified into two modes: 

self-ignition and forced-ignition (Glassman 1996). Self-ignition, which is also called 

auto-ignition or spontaneous ignition, is caused by chain branching or thermal feedback 

in a homogeneous mixture without input of either an external source of thermal energy or 

active radicals into the system. Unlike self-ignition, forced-ignition is a result of electrical 

discharge (spark), heated surface, shock wave, or pilot flame, with the locally initiated 
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flame front subsequently reaching a self-propagating state where the ignition source can 

be removed without extinguishing the combustion process. 

For self-ignition, there are two different modes according to the mechanisms of 

ignition. The first mode is chain self-ignition, in which the chain branching factor at a 

given temperature and pressure exceeds a critical value (Glassman 1996). The second 

mode is thermal self-ignition, in which the thermal energy release rate is greater than the 

heat loss rate and the temperature consequently increases exponentially until a flame 

appears (Glassman 1996). Theory on chain self-ignition was first developed by Semenov 

(1935) and Hinshelwood (1940). The thermal self-ignition was first presented in 

analytical form by Semenov (1935) and later in more exact form by Frank-Kamenetskii 

(1955).  

For forced-ignition, there are many means, among which the spark ignition is the 

first and most prevalent form. Most practical combustion devices require combustion 

events to be initiated at predetermined locations and times, and spark ignition is the 

primary means of accomplishing this task (Ronney 1994). Successful spark ignition 

depends on the amount of energy in the form of heat and/or radicals deposited into the 

combustible mixture. If the energy is smaller than a so-called minimum ignition energy 

(MIE), the resulting flame kernel decays rapidly because heat/radicals conducts/diffuse 

away from the surface of the ignition kernel and the dissociated species recombine faster 

than they are generated by the chain-branching reactions within the ignition kernel. 

Comprehensive experiments on spark ignition of different hydrocarbon fuels were 

conduced by Lewis and von Elbe and large amounts of experimental data on the MIE 

were reported (Lewis and Von Elbe 1961). To explain their observations of the MIE for 
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different mixtures, Lewis and von Elbe (1961) postulated the first theory of spark 

ignition. They proposed that the spark heated the surrounding mixture and ensured 

continued flame propagation. The minimum size of this heated “spark kernel” was 

dictated by the condition that heat transferred from its surface by conduction was 

balanced by heat generated by combustion inside the kernel. If the kernel volume was too 

small, the heat conduction rate was greater than the heat generation rate and the flame 

kernel would be extinguished. The minimum spark kernel size was believed to be related 

to the quenching distance which the authors had observed in their experiments (Lewis 

and Von Elbe 1961). It was then postulated that the MIE, Emin, was the spark energy 

necessary to heat a sphere of gas whose diameter was equal to the quenching distance, dq, 

to the flame temperature, Tf, of the mixture 

)()(
6 0

3
min TTCdE fpq −= ρπ                      (1.1) 

Similarly, based on the thermal-diffusion theory considering the competition 

between the reaction heat release and conductive heat loss, Zeldovich (Zeldovich et al. 

1985) proposed that the minimal ignition kernel radius for successful spherical flame 

initiation was related to the laminar premixed flame thickness, δf
0, and the MIE was 

proportional to the cube of the flame thickness  

)()(
3

4
0

30
min TTCE fpf −= ρδπ                     (1.2) 

Unfortunately, the above models could only phenomenologically describe the 

spark ignition since the fuel consumption and thus mass diffusion were not considered. 

More accurate description of flame ignition including the effect of preferential diffusion 

of heat and mass (Lewis number effect) was proposed later based on the studies about 
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flame balls (Deshaies and Joulin 1984; Zeldovich et al. 1985; Champion et al. 1986). 

Zel’dovich (Zeldovich et al. 1985) found that for any premixed mixture there could exist 

a diffusion controlled stationary flame ball with a characteristic equilibrium radius – the 

flame ball radius. A stability analysis (Deshaies and Joulin 1984) showed that adiabatic 

flame balls were inherently unstable: a small perturbation would cause the flame to 

propagate either inward and eventually extinguish, or outward and evolve into a planar 

flame. The unstable equilibrium flame ball radius was therefore considered to be a critical 

parameter in controlling flame initiation and the MIE was proposed to be proportional to 

the cube of the flame ball radius instead of the flame thickness (Zeldovich et al. 1985; 

Champion et al. 1986). Since the flame ball radius strongly depends on the Lewis number 

(Zeldovich et al. 1985), the MIE for mixtures with different Lewis numbers is totally 

different. This was confirmed by numerical simulation using a one-step chemical 

mechanism (Tromans and Furzeland 1988). Recently, He (2000) studied mixtures with 

larger Lewis numbers and found that propagating spherical flames with radius less than 

the flame ball radius could exist when the Lewis number was larger than a critical value. 

Therefore, it was concluded that flame initiation for mixtures with large Lewis numbers 

was not controlled by the radius of stationary flame ball (He 2000). All the above 

theoretical studies were based on the quasi-steady assumption, neglecting the 

unsteadiness of flame initiation. Using large activation energy asymptotic analysis, Joulin 

(1985) studied the dynamics of flame kernels whose evolution was triggered by a 

time-dependent point-source of energy and a parameter-free flame front evolution 

equation for mixtures with Lewis numbers smaller than and bounded away from unity 

was obtained.  
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While the simplified models (such as one-step chemistry, constant thermal 

properties, quasi-steadiness, energy deposition as a boundary condition independent of 

time and space) considered in the above theoretical studies are adequate to describe many 

important qualitative features of the ignition process, they do not appear to be adequate 

for quantitative accuracy (Ronney 1994). To include more quantitatively accurate and 

perhaps even more qualitatively realistic models, numerical simulations were employed 

to study the ignition process. Maas and Warnatz (1988) simulated the ignition process in 

hydrogen/air mixtures by solving the corresponding conservation equations (total mass, 

momentum, energy, and species mass) for one-dimensional geometries using a detailed 

reaction mechanism and a multi-species transport model. Sloane and Ronney (1993) 

compared the MIE for a stoichiometric methane/air mixture using a one-step chemical 

mechanism and a detailed mechanism, and found that the differences in chemical 

mechanisms had a substantial effect on the MIE. Other effects such as composition, size 

of ignition source, duration of energy deposition, method of energy deposition, and flow 

environment on the MIE were also investigated via numerical simulations, which were 

reviewed by Ronney (1994). Spherical symmetry was usually assumed and 

one-dimensional simulations of flame initiation were conducted for simplicity. To 

provide a better understanding of the spark discharge process, two-dimensional 

simulations were recently carried out and more sophisticated models including ionization 

were employed (Akram 1996; Thiele et al. 2000; Thiele et al. 2002; Ekici et al. 2007).  

Despite the extensive research on the flame initiation over many decades, the 

determination of MIE still remains empirical and could not be predicted even 

qualitatively by theory. To get a better understanding of the flame initiation and more 
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accurate prediction of the MIE, flame propagation after spark ignition should be studied 

since successful ignition critically depends on whether the expanding flame kernel would 

be able to maintain its propagation to reach a self-propagating state.  

1.2.2 Flame Propagation and Laminar Flame Speed 

When a sufficient amount of energy is locally deposited into a quiescent 

homogeneous combustible mixture, a sustainable combustion wave can be initiated. For 

some specific conditions of strong ignition, the combustion wave takes the form of a 

detonation characterized by the supersonic propagation speed in the fresh mixture. The 

detonation has a propagating shock front which is coupled with and sustained by 

chemical heat release behind it (Williams 1985). For mild ignition, deflagrations (called 

premixed flames in the following) can be initiated. In this study, the focus will be on 

these premixed flames which propagate with a subsonic speed into the chemically-frozen, 

fresh mixture.   

The thickness of premixed flames is usually much smaller than the characteristic 

length of the gas flow. Therefore, the flame front can be considered as a hydrodynamic 

discontinuity between two non-reactive flows, the fresh mixture and the burnt gases, both 

at thermo-chemical equilibrium (Clavin 1994). The motion of the flame front is 

controlled not only by its inner structure where diffusion and chemical reaction dominate, 

but also by the outer flow around it. Due to the coupling between diffusion and 

hydrodynamics, the dynamics and structure of premixed flames cannot be described 

completely by ordinary diffusion-reaction equations and thus are difficult to be analyzed 

theoretically. Therefore, either only hydrodynamics or only diffusion was considered in 

most of the previous studies. In the pioneering studies by Darrieus (1938) and Landau 
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(1944), the first stability analysis of a flame front was conducted and hydrodynamic 

instability, induced by the thermal expansion across the flame front, was found to be the 

main cause of the formation of cellular patterns on the flame front. The diffusive 

processes inside the flame front were completely neglected in their studies. On the other 

hand, other studies (Sivashinsky 1977; Joulin and Clavin 1979) deliberately neglected the 

hydrodynamic effect by using the thermal-diffusive model in which the density was 

assumed to be constant and the flame reduced to a simpler reaction-diffusion problem. 

Extensive studies on the reaction-diffusion problem using asymptotic methods and 

multiscale analyses were conducted, which were reviewed in the monograph by 

Buckmaster and Lundford (1982).   

The first study on the coupling of diffusion and hydrodynamics was carried out by 

Markstein (1951). Based on semi-phenomenological considerations, the following 

correlation between the local flame speed, Su, and the mean flame radius of curvature, R, 

was proposed (Markstein 1951) 

RLSS uuu /1/ 0 +=                      (1.3) 

where Su
0 is the laminar flame speed of an adiabatic freely-propagating planar flame and 

Lu is a length called the “Markstein length”. Lu depends on the diffusive properties of the 

reactive mixture and has the same order in magnitude as the flame thickness, δf
0. Later, 

the curvature of the flow (defined as the divergence of the unit flow velocity taken just 

upstream of the flame front) was included (Markstein 1964) 

])/(/1[1/ 0
−⋅∇++= uuRLSS uuu

vvv
                  (1.4) 

Another point of view was developed in a different context by Karlovitz 

(Karlovitz et al. 1953) who introduced the concept of “flame stretch” and proposed that 
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the local flame speed, Su, was affected by the flame stretch. The flame stretch, K, was 

defined as K=A-1dA/dt, where A is the elemental area of the flame front. It was shown 

that flame stretch was contributed by two sources: flame curvature and flow 

non-uniformity (Buckmaster 1982; Matalon 1983). For a weekly stretched flame, the 

following linear relationship was obtained (Clavin and Williams 1982) 

KLSS uuu −= 1/ 0                         (1.5) 

For an outwardly propagating spherical flame resulted from central spark ignition 

in a quiescent homogeneous combustible mixture, the flame stretch is well defined as 

(Lewis and Von Elbe 1961) 

dt
dR

Rdt
dA

A
K f

f

21
==                       (1.6) 

where A=4πRf
2 is the surface area of the flame front and Rf is the flame radius. When the 

flame size is small, for example on the order of flame thickness, the propagating spherical 

flame is strongly stretched according to the definition given by equation (1.6) and 

therefore the flame speed is significantly affected by the flame stretch (Clavin 1985). To 

achieve successful ignition, the MIE must be able to support the flame kernel to survive 

the strong flame stretch and propagate out to reach a self-propagating state.    

Extensively studies using asymptotic techniques were carried out to investigate 

the propagating spherical flames. Ronney and Sivashinsky (Ronney and Sivashinsky 

1989) studied the expanding spherical flame within the framework of a slowly varying 

flame (SVF) theory. While reasonable predictions for Lewis number (Le) less than unity 

were obtained, the results of the SVF theory were found to be physically unrealistic for 

Le>1. Bechtold and co-workers (Bechtold and Matalon 1987; Addabbo et al. 2003; 
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Bechtold et al. 2005) investigated the hydrodynamic and thermal-diffusion instabilities 

and effects of radiative loss in self-extinguishing and self-wrinkling spherical flames. 

Frankel and Sivashinsky (1983, 1984) examined the thermal expansion effect in 

propagating spherical flames in the limit of Le→1. Chung and Law (Chung and Law 

1988) conducted integral analysis for propagating spherical flames for Le=1. All the 

above studies were based on the assumption of large normalized flame radius 

(Rf/δf
0>>1). The recent work by He (2000) and Chen and Ju (2007) spanned all the 

spherical flame sizes and transitions between flames at small and large radii. 

One of the most important applications of propagating spherical flames in 

fundamental combustion research is for laminar flame speed measurements. Recently, the 

propagating spherical flames have been popularly utilized to measure the laminar flame 

speed, Su
0. The laminar flame speed, defined as the speed relative to the unburned gas 

with which a planar one-dimensional flame front travels along the normal to its surface 

(Andrews and Bradley 1972), is one of the most important parameters of a combustible 

mixture. On the practical level, it affects the fuel burning rate in internal combustion 

engines and the engine’s performance and emissions (Metghalchi and Keck 1980). On a 

more fundamental level, it is an important target for the validation of kinetic mechanisms 

(Law et al. 2003). In the last fifty years, substantial attention has been given to the 

development of new techniques and the improvement of existing methodologies for 

experimental determination of the laminar flame speed. Various experimental 

approaches, reviewed in (Andrews and Bradley 1972; Rallis and Garforth 1980), have 

been developed to measure the laminar flame speed utilizing different flame 

configurations, including the outwardly propagating spherical flame (Lewis and Von 
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Elbe 1961; Bradley and Mitcheson 1976; Metghalchi and Keck 1980; Rallis and Garforth 

1980; Hill and Hung 1988; Taylor 1991; Kwon et al. 1992; Aung et al. 1997; Bradley et 

al. 1998; Tse et al. 2000), counterflow or stagnation flame (Tsuji 1982; Egolfopoulos et 

al. 1989; Wu et al. 1999; Huang et al. 2004), Bunsen flame (Lewis and Von Elbe 1961), 

and burner stabilized flat flame (Levy and Weinberg 1959; Van maaren et al. 1994). Due 

to the lack of uniformity of the flame speed over the flame surface in the Bunsen flame 

and the wall effects in the flat flame, the propagating spherical flame and the stationary 

counterflow flame are among the most successful systems for flame speed measurements 

(Rallis and Garforth 1980; Tse et al. 2000). However, due to the Reynolds number limit, 

the counterflow flame method is difficult to apply at high pressures (e.g. above 10 

atm)(Tse et al. 2000). Consequently, tracking the evolution of an outwardly propagating 

spherical flame in a confined bomb is the most favourable method for measuring the 

flame speed, especially at pressure above 10 atmosphere (Metghalchi and Keck 1980; 

Bradley et al. 1998; Tse et al. 2000). This method will be investigated and utilized in the 

present study. 

1.2.3 Flame Extinction and Flammability Limit 

For ultra-lean combustion utilized in high-efficiency low-emission engines such 

as the HCCI, flame extinction is one of the most important problems on engine 

performance. A fundamental understanding of flame extinction is therefore essential for 

developing radically new engines.  

Flame extinction usually occurs for near-limit mixtures and it could be caused by 

different effects such as radiative heat loss, flame stretch, and flame curvature (Ju et al. 

2001). It is well known that radiation heat transfer is a dominant mechanism for 
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near-limit flame extinction. Indeed the flammability limit is determined by the radiative 

heat loss for unstretched premixed planar flames (Spalding 1957; Buckmaster 1976). For 

non-adiabatic planar flames, the following relationship between the normalized flame 

speed, U, and the normalized heat loss (which strongly depends on the fuel 

concentration), L, was derived (Spalding 1957; Buckmaster 1976)  

0)ln( 22 =+ LUU                       (1.7) 

According to the above relationship, the flammability limit is defined by  and 

. For each combustible mixture above the flammability limit, i.e. L<L

eL /1* =

2/1* −= eU *=1/e, 

there exist two laminar flame speed solutions and only the higher one is stable and thus 

could be observed in experiments (Joulin and Clavin 1979).   

The above theory works only for planar flames which are unstretched. For 

stretched flames, the flammability limit can be modified by the combined effects of 

thermal radiation and flame stretch. The effects of radiation and stretch were extensively 

studied by using the counterflow flames (Sohrab and Law 1984; Maruta et al. 1996; Sung 

and Law 1996; Buckmaster 1997; Ju et al. 1997; Ju et al. 1999a; Ju et al. 2000). These 

studies showed that the flammability limit of stretched flames below a critical Lewis 

number can be lower than that of unstretched flames. The extended flammable region 

was found due to the existence of the Near Stagnation plane Flame (NSF) and the 

flammability of the stretched flame below the critical Lewis number is characterized by 

the limit of the NSF (Ju et al. 1999a). It was shown that the flammable region of 

premixed counterflow flames was bounded by the stretch extinction limit at large stretch 

rate and the radiation extinction limit at low stretch rate. Multi-flame bifurcations were 

found theoretically (Buckmaster 1997) and numerically (Ju et al. 1997; Ju et al. 1999a) to 
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be intrinsic phenomena caused by the combined effects of radiation and flame stretch, 

and the limits of these flame regimes were shown to be sensitive to the Lewis numbers of 

reactants and to radiative heat losses.  

Unlike the counterflow flames, practical flames such as the laminar propagating 

spherical flames used in experiments and the flamelets in turbulent flames are not only 

stretched but also curved. To include the curvature effect, the tubular flames (Ishizuka 

1993; Ju et al. 1999b) and propagating spherical flames (Bechtold et al. 2005; Chen and 

Ju 2007) have been utilized to study the combined effects of flame radiation, stretch, and 

curvature on premixed flames. It has been shown that the interaction of flame curvature 

with radiation or stretch greatly affects the flame strength and extinction. 

In most of the studies mentioned above, radiation was only considered as heat loss 

from the combustion system. However, radiation emission and reabsorption occur 

simultaneously in combustion, and radiation from the downstream hot products could be 

reabsorbed by the upstream cold mixture. The effect of radiation absorption on the flame 

speed was first analyzed by Joulin and Deshaies (1986) using a gray gas model. It was 

shown that there was no flammability limit when radiation absorption is considered. The 

gray gas model was also used to study flame ball dynamics (Lozinski et al. 1994). 

However, radiation of most species is not gray. For example, CO2 radiation is strongly 

spectral dependent and has temperature and pressure broadening. Ju et al. (Guo et al. 

1998; Ju et al. 1998) first used the non-gray statistical narrow band (SNB) model to study 

CO2-diluted propagating flames and showed that a “fundamental” flammability limit 

exists because of the emission-absorption spectra difference between the reactants and 

products and band broadening. This model was later used in flame balls (Wu et al. 1999) 
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and high-pressure planar flames (Ruan et al. 2001). All these studies showed that 

radiation absorption plays an important role in flame extinction and flammability limits 

for CO2-diluted mixtures. 

1.3 Motivation and Objectives 

Flame initiation, propagation, and extinction are intriguing combustion 

phenomena that also have substantial practical applications and deserve further research. 

The motivation and objectives of the present study are listed below:  

(1) When an external energy is locally deposited into a combustible mixture, there 

are four possible outcomes: evolution from the outwardly propagating spherical flame to 

a planar flame, a stationary flame ball, a propagating self-extinguishing flame, or a 

decaying ignition kernel (Ronney 1988; He and Law 1999; Ju et al. 2001). The planar 

flame, flame ball, and self-extinguishing flame have been extensively studied (Spalding 

1957; Deshaies and Joulin 1984; Zeldovich et al. 1985; Ronney 1988; Buckmaster et al. 

1990; Ronney 1990; Clavin 1994). However, previous studies only focused on the 

dynamics of the separate phenomena such as flame balls and self-extinguishing flames, 

and thus the propagating flames were isolated from flame balls and self-extinguishing 

flames. As a result, the relation between self-extinguishing flames and flame balls and the 

relation between the flame ball size and successful initiation of outwardly propagating 

flames were not well understood. Recognizing the importance of the missing relationship 

between flame balls and propagating flames, a theoretical analysis by He and Law (He 

and Law 1999) was conducted to examine the transition of a flame ball to a propagating 

spherical flame. Although it was concluded that radiative heat loss has a significant effect 

on flame transition, the impact of radiative heat loss in the unburned region was not 
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considered. A recent study by He (2000) was motivated to study the flame initiation at 

large Lewis numbers, but it did not consider radiative heat loss either. This makes the 

results less realistic because near-limit flame initiation is dominantly affected by radiative 

heat loss. Therefore, the role of heat loss on flame transition and the correlation among 

the flame regimes from ignition kernels to flame balls and propagating flames remain 

unknown.  

In view of the above considerations, the first objective is to develop a general 

theory which could describe the flame regimes and transitions among the flame kernel, 

the flame ball, the self-extinguishing flame, the outwardly propagating spherical flame, 

and the propagating planar flame, and to investigate the effects of radiative heat loss, 

ignition energy, and preferential diffusion between heat and mass (Lewis number) on 

flame transitions based on the general theory.  

(2) As mentioned before, theoretical models usually only give qualitative rather 

than quantitative predictions due to the simplify assumptions employed. For example, for 

outwardly propagating spherical flames, it is unrealistic to obtain the flame propagation 

speed as a function of flame radius predicted by theory to agree well with experimental 

measurements because the theory is usually based on the assumption of one-step 

irreversible chemical reaction with large activation energy. In order to get quantitative 

results which could be utilized to compare with the experimental data, numerical 

simulations including detailed chemical kinetics and accurate transport properties need to 

be conducted. Besides, numerical simulation has many other advantages that make it an 

attractive tool for scientific research and engineering design. For example, computer 

simulations allow the user to interrogate the flow domain at any point in a non-intrusive 
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manner. Thus, filed information such as pressure, temperature, velocity, and species 

concentration could be obtained without altering the flow field. Moreover, numerical 

simulation also enables the user to separate the various processes that occur in a flow and 

study the many complex interactions of these processes. For example, the role of 

radiation on flame initiation and propagation may be better understood by studying cases 

without radiation and then introducing radiation to isolate and thereby identify the 

radiation effect on flame initiation and propagation. It would be exceptionally difficult, or 

impossible, to accomplish this decoupling and removal of processes in experiments. 

Therefore, the second objective is to develop a time-accurate and space-adaptive 

numerical solver for the adaptive simulation of unsteady reactive flow. High-fidelity 

numerical simulations of flame initiation, propagation, and/or extinction will be carried 

out to validate the theoretical models and/or to explain experimental measurements.  

(3) Flame initiation plays an important role in the performance of combustion 

engines and a fundamental understanding of ignition is essential for a better control of 

fuel efficiency, exhaust emission, and idle stability of the engine operation. Despite 

extensive research effort over many decades on the determination of the MIE, it remains 

unclear as the length scale controlling the spherical flame initiation and how it is related 

to the MIE. Quenching distance or flame thickness was first considered to be the 

controlling length scale and the MIE was proposed to be proportional to the cube of the 

quenching distance or flame thickness (Lewis and Von Elbe 1961; Zeldovich et al. 1985). 

Later, the unstable flame ball radius was considered to be the controlling length scale for 

flame initiation and the MIE was proposed to be proportional to the cube of the flame ball 

radius instead of the flame thickness (Deshaies and Joulin 1984; Zeldovich et al. 1985; 
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Champion et al. 1986). A recent study (He 2000) showed that propagating spherical 

flame with radius less than the flame ball radius could exist when the Lewis number is 

larger than a critical value. It was concluded that flame initiation for mixtures with large 

Lewis numbers was not controlled by the radius of the stationary flame ball (He 2000). 

More recent experiments (Kelley et al. 2008) on hydrogen/air ignition at different 

equivalence ratios and pressures showed that there was a critical flame radius for 

spherical flame initiation and successful ignition depended on whether the initially 

ignited flame kernel can attain this critical radius. However, the relation between the 

critical flame radius and the MIE was not examined in those studies. Therefore, more 

studies should be carried out to clarify what is the controlling length scale for spherical 

flame initiation. Moreover, since the MIE is a very important parameter, the next 

question needs to be answered is how the controlling length scale is related to the MIE. 

The third object of this study is therefore to find the controlling length scale for 

spherical flame initiation and to reveal its relationship with the MIE.  

(4) Currently the propagating spherical flame is popularly utilized to measure the 

laminar flame speed and many experiments on different fuels at different conditions have 

been conducted. However, it was found that large discrepancies exist among flame speed 

data obtained from measurements using spherical flames and counterflow flames (Farrell 

et al. 2004). The reason for this discrepancy has yet to be explained. The accuracy and 

the validity of the employed models for flame speed measurements over a certain 

parameter range in the spherical flame methods still remain unclear due to the complexity 

of flame stretch, flow compression, flame structure, chamber geometry, and thermal 

radiation. For example, in the constant-pressure method using propagating spherical 
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flames, the stretched flame speed is first obtained from the flame front history Rf=Rf(t) 

and then is linearly extrapolated to zero stretch rate to obtain the unstretched flame speed 

(Taylor 1991; Tseng et al. 1993; Bradley et al. 1996). Flame speeds are commonly 

extrapolated over ranges of flame radius data, [RfL, RfU]. The lower bound, RfL, is often 

chosen to reduce the effects of initial spark ignition, flame curvature, and unsteadiness on 

the flame propagation speed, and to make stretch rate small such that the linear 

relationship between the stretched flame speed and stretch rate is satisfied (Taylor 1991; 

Tseng et al. 1993; Bradley et al. 1996). The upper bound, RfU, is frequently chosen to 

ensure that the pressure change is “small”. Historically, the choice of the data range has 

been somewhat arbitrary — different researchers made different choices without giving 

quantitative justification. To the authors’ knowledge, there is no quantitative study on 

how the flame radii range, [RfL, RfU], affects the measured flame speed and how to choose 

the proper RfL and RfU in the literature. Similarly, in the constant-volume method using 

propagating spherical flames (Lewis and Von Elbe 1961; Metghalchi and Keck 1980; 

Hill and Hung 1988), stretch effect on the laminar flame speed might be too large to be 

neglected and thus the stretch correction for obtaining accurate unstretched laminar flame 

speed is indispensable (Wu et al. 1999). However, in all previous studies using the 

constant-volume method, the effect of flame stretch was neglected (Lewis and Von Elbe 

1961; Metghalchi and Keck 1980; Hill and Hung 1988; Parsinejad et al. 2006). The 

stretch effect for the constant-volume method addresses two concerns: how much does 

the stretch affect the accuracy of flame speed measurement; and how does one correct the 

stretch effect in the flame speed measurements.  
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The fourth objective is therefore to answer the questions posed above. Different 

effects such as ignition and unsteady transition, compression, and flame stretch on the 

accuracy of laminar flame speed measurements using propagating spherical flames will 

be investigated and new methods to obtain more accurate flame speeds in a broader 

experimental range by correcting for these effects will be developed. 

(5) It is well known that curved flame fronts prevail in turbulent combustion and 

the effect of curvature on flame propagation is important, especially for near-limit flames. 

Therefore, in order to extend the flammability and to improve flame stability for ultra 

lean combustion engines, it is particularly important to understand how the coupling of 

thermal radiation, flame curvature, and flame stretch affects the flame speed and 

extinction limits. Extensive studies have been conducted to investigate the effects of 

radiation, stretch, and curvature on flame extinction by using the counterflow flames and 

outwardly propagating spherical flames (Frankel and Sivashinsky 1984; Sohrab and Law 

1984; Flaherty et al. 1985; Maruta et al. 1996; Sung and Law 1996; Buckmaster 1997; Ju 

et al. 1997; Ju et al. 1999a; Ju et al. 2000; Bechtold et al. 2005; Chen and Ju 2007). 

However only radiation together with stretch or stretch together with curvature was 

considered and the combined effects of radiation with both stretch and curvature were not 

addressed in all the previous studies except for the numerical study by Ju et al. (Ju et al. 

1999b). Therefore, to gain a clear understanding of the extinction mechanism and to 

obtain an explicit correlation of the flammability limit, it is necessary to perform an 

analytical study to investigate the combined effects of radiation, stretch, and curvature on 

flame propagation and extinction.  

Furthermore, with the recent development of high pressure combustor for high 
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energy efficiency and low NOx and soot emission technology, a large amount of CO2 is 

recycled to the unburned mixture. As such, the strong spectral radiation absorption of 

CO2 and the appearance of large amount of CO2 in the recirculated exhausted gas raise 

the following question: what is the role of CO2 radiation in flame speed and flammability 

limit? This concern becomes more serious with increasing ambient pressure. In most of 

previous studies, only radiative heat loss was considered. However, CO2 not only is a 

radiation emitter but also an absorber. Therefore, it is important to know the effect of 

radiation absorption due to CO2 on flame extinction and flammability limit. 

Based on the above considerations, the fifth objective is to study the combined 

effects of radiation, stretch, and curvature on flame propagation and extinction, and to 

investigate the extension of flammability limits and the increase of laminar flame speeds 

due to the spectral dependent radiation absorption.  

(6) Dimethyl ether (DME) is emerging as a substitute for Liquefied Petroleum 

Gas (LPG), diesel fuels, and Liquefied Natural Gas (LNG) because it has low soot 

emission, no air or ground-water pollution effects, and can be mass produced from 

natural gas, coal or biomass (Semelsberger et al. 2006; Arcounianis et al. 2008). Recently, 

the study of DME combustion has received significant attention. DME has shown 

promise as an additive and/or fuel extender. Yao et al. (2005) have undertaken studies on 

DME addition to methane for homogeneous charge compression ignition (HCCI) engines. 

In such cases, the coupling of DME kinetics with those of methane involves the low 

temperature kinetics of DME. On the other hand, DME/methane utilization in burners 

and in gas turbine applications is expected to involve principally high temperature kinetic 

coupling effects. However, the underlying kinetic coupling between DME and CH4 
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responsible for the observed ignition enhancement was not explored in any detail. In 

addition, kinetic coupling effects on flame properties and auto-ignition in non-premixed 

systems have not been studied.  

Moreover, it is well known that flame properties such as burning rate and flame 

stability depend on the overall activation energy and the Lewis number or the Markstein 

length  (Clavin 1985; Law 2006). Kinetic coupling may result in a dramatic change in 

the overall activation energy with a small amount of DME addition to methane. 

Furthermore, DME has a molecular weight larger than air so that the Le is larger than 

unity for lean DME/air mixtures in comparison to methane/air mixtures. On the other 

hand, DME is expected to react more quickly in the preheating zone by decomposing to 

lighter molecules. Therefore, it is of interest to investigate how the effective mixture 

Lewis number or the Markstein length depends on the blending ratio of dual fuels with 

disparate molecular weights, such as DME/CH4 mixtures.  

Thus the sixth and last objective of the present study is to investigate the kinetic 

coupling effects of DME addition on the high temperature ignition and burning properties 

of methane/air mixtures.  

The above motivation and objectives basically provide the guideline for the 

dissertation research, with the following structure. 

1.4 Organization of the Dissertation 

Chapter 2 presents a general theory on spherical flame initiation, propagation, and 

extinction. Based on this theory, the dynamics of flame kernel evolution with and without 

ignition energy deposition is studied and the effects of radiative heat loss and Lewis 

number on flame propagation are investigated. 
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Chapter 3 describes the numerical solver for Adaptive Simulation of Unsteady 

Reactive Flow (A-SURF). The details on the governing equations, numerical methods, 

and code validation for A-SURF are reported. 

Chapter 4 is concerned with flame initiation. The critical flame radius and 

minimum ignition energy for spherical flame initiation are studied. The emphasis is on 

investigating the effect of preferential diffusion between heat and mass on the flame 

kernel evolution and the minimum ignition energy. 

Chapter 5 is focused on flame propagation. The constant pressure and constant 

volume methods utilizing propagating spherical flames for laminar flame speed 

measurements are investigated. New methods to obtain more accurate flame speed in a 

broader experimental range are presented. 

Chapter 6 is focused on flame extinction. Different effects such as radiative heat 

loss, stretch, curvature, and preferential diffusion on flame extinction are identified. The 

extension of flammability limits and the increase of laminar flame speeds due to the 

spectral-dependent radiation reabsorption are also discussed.    

Chapter 7 reports the ignition and burning properties of the dimethyl 

ether/methane dual fuel. The effect of dimethyl ether addition to methane-air mixtures on 

ignition, flame speed, and Markstein length is studied. New experimental data were 

obtained for the validation of existing chemical mechanisms. 

Chapter 8 summarizes the present theoretical analysis, numerical modeling, and 

experimental work, and provides recommendations for future work. 
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Chapter 2: Theoretical Analysis on Spherical Flame 

Initiation and Propagation 
 

In this chapter, a general theory on spherical flame initiation and propagation is 

presented. The dynamics of flame kernel evolution with and without external energy 

deposition is studied using large-activation-energy asymptotic analysis. The effects of 

radiative heat loss, ignition energy, and Lewis number on the correlation and transition 

among the initial flame kernel, the self-extinguishing flame, the flame ball, the outwardly 

propagating spherical flame, and the propagating planar flame are investigated. The 

theory will be utilized to study ignition and flame speed measurement in Chapter 4 and 

Chapter 5, respectively. 

2.1 Mathematical Model 

We consider the evolution of an unsteady, one-dimensional spherical flame kernel 

with and without an external energy source at the center. By assuming constant thermal 

properties, the conservation equations for energy and fuel mass in a quiescent flow are 

given as 
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where t~ , r~ , ρ~ , T~  and Y~  are time, radial coordinate, density, temperature, and fuel 

mass fraction, respectively.  is the chemical heat release per unit mass of fuel, q~ PC~  

the specific heat capacity at constant pressure, λ~  the thermal conductivity, and D~  the 
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fuel mass diffusivity. To further simplify the problem in theoretical analysis, we also 

adopt the commonly used constant density assumption (Joulin and Clavin 1979) so that 

the convection flux is absent. ω~  is the reaction rate for a one-step irreversible reaction, 

)~~/~exp(~~~ 0TREYA −ρ , in which A~  is the pre-factor of Arrhenius law, E~  the activation 

energy, and 0~R  the universal gas constant. The volumetric radiative heat loss H~  is 

estimated by using the optically thin model, )~~(~~4~ 44
∞−= TTKH pσ , where σ~  is the 

Stefan-Boltzmann constant and pK~ denotes the Planck mean absorption coefficient of 

the mixture.  

By using the adiabatic planar flame speed, 0~
uS , and the flame thickness, 
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where ∞T~  and ∞Y~  denote the temperature and fuel mass fraction in the fresh mixture, 

respectively, and Pad CqYTT ~/~~~~
∞∞ +=  is the adiabatic flame temperature. By further 

attaching the coordinate to the moving flame front, R=R(t), the non-dimensional 

equations take the following form  
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where DCLe P
~~~/~ ρλ=  is the Lewis number and dtdRU /= is the flame front 

propagating speed. The radiative heat loss and chemical reaction rate are normalized, 

respectively, as 
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One can see that the present model extends the previous theoretical flame ball 

models (Zeldovich et al. 1985; Buckmaster et al. 1990; Buckmaster et al. 1991) by 

including propagating flames and radiative heat loss in both the burned and unburned 

zones. Therefore the correlation between flame ball and propagating flames and the 

impact of radiation on the flame transition among different flame regimes can be 

examined.  

In the limit of large activation energy, chemical reaction occurs only within a very 

thin zone of high temperature and the reaction rate can be replaced by a Delta function 

with jump conditions used at the flame front (Sivashinsky 1977; Joulin and Clavin 1979; 

Law 2006) 
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where adTREZ ~~/)1(~ 0σ−=  is the Zel’dovich number and adTT ~/~
∞=σ  the expansion 

ratio. By integrating the conservation equations (2.3a) and (2.3b) around the flame front 

(r=R), the jump relations for temperature and fuel mass fraction can be obtained as 

(Sivashinsky 1977; Joulin and Clavin 1979) 
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In this study, we shall also examine the impact of external energy deposition on 

the flame initiation and flame transition. A constant energy flux is locally deposited in an 

initially homogeneous mixture. For an initial flame kernel with a radius of , the center 

of the flame kernel is located at 

R

0=r , and Rr ≤≤0  and ∞<≤ rR  are respectively 

the burned and unburned regions. By defining the flame as the location where the fuel 

concentration goes to zero, the boundary conditions for temperature and fuel mass 

fraction can be given as 

0,/,0 2 =−=∂∂= YQrTrr                    (2.7a) 

0,, === YTTRr f                   (2.7b) 

1,0, ==∞= YTr                    (2.7c) 

where  is the normalized ignition power given by Q
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2.2 Theoretical Analysis 

The unsteady problem given by equations (2.3a, 2.3b) cannot be solved 

analytically. In fact, as will be demonstrated later by numerical simulations, it is 

reasonable to assume that in the attached coordinate moving with the flame front, the 

flame can be considered as in quasi-steady state (∂/∂t=0). This assumption has also been 

used in previous studies (Frankel and Sivashinsky 1983; Deshaies and Joulin 1984; 

Frankel and Sivashinsky 1984; He 2000). Therefore, the governing equations can be 

simplified to 
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In addition, for the convenience of the algebraic manipulation the heat loss term H 

is approximated by a linear function of the normalized temperature as , where 

 is the heat loss constant taking the following form 
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Note that the radiative heat loss constant involves the radiation intensity and the 

fuel concentration. For any mixtures, a decrease of fuel concentration (decrease of flame 

speed) means an increase of h. For methane-air flames, the heat loss constant, h, 

calculated according to equation (2.10) is in the range of 0.001 to 0.05. 

2.2.1 Analytical Solution without External Energy Addition 

Equation (2.9) with boundary conditions given by equation (2.7) can be solved 

analytically for Q=0. An exact solution of temperature and fuel mass fraction distribution 

is presented below. For fuel lean cases, the fuel mass fraction in burned gas region 

( ) is zero and that in unburned gas region (Rr ≤≤0 ∞<≤ rR ) is obtained by solving 

equation (2.9b) with boundary conditions given by equations (2.7b, 2.7c) 
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As to the temperature distribution, for adiabatic flames (h=0), the analytical 

solution is  
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For nonadiabatic flames, since the radiation properties in burned and unburned 

gases may be different, we use  and  to represent the heat loss constants in the 

burned and unburned regions, respectively. Therefore, the individual contribution of the 

radiative heat loss from these two regions can be examined. By defining 

1h 2h

)2 ,1(42 =+= ihUk ii , an analytical solution of the temperature distribution is 

obtained as 
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Note that this exact solution removes the assumption of small heat loss 

( ) which is commonly employed in previous studies (Joulin and Clavin 

1979; Buckmaster et al. 1990; Buckmaster et al. 1991). Therefore, the present study 

provides a more rigorous consideration of radiation modelling to understand the relation 

between spherical flames and the far field propagating planar flames in the limit of 
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By using the jump relations given by equation (2.6), one obtains the following 

algebraic system of equations for the flame propagation speed, U, flame radius, R, and 

flame temperature, Tf
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where 
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(2.14b) 

The present work extends the study of He (He 2000) by considering the coupling 

of radiative heat loss with the flame kernel evolution, which is the key mechanism for 

near-limit flames, and allows bridging between the spherical flame limits and the 

flammability limit of planar flames. By solving equation (2.14) numerically, the relation 

for the flame propagation speed, flame radius, and flame temperature and the existence of 

different flame regimes at different radiative heat loss intensities (or different fuel 

concentrations) and/or different Lewis numbers can be obtained.  

2.2.2 Validation in Limiting Cases 

In the following, it will be shown that in different limiting cases the present model 

recovers the previous results of stationary flame balls (Buckmaster et al. 1990; 

Buckmaster et al. 1991), outwardly propagating spherical flames (Frankel and 

Sivashinsky 1984), and planar flames (Joulin and Clavin 1979).  

2.2.2.1 Stationary Flame Balls   

In previous studies (Buckmaster et al. 1990; Buckmaster et al. 1991), the 

non-adiabatic stationary flame ball was investigated via asymptotic analysis under the 

assumption of small heat loss ( Zhh in /1 = , ). The relation between heat loss 

and flame radius was 

2
2 / Zhh out=
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flame temperature and radius of adiabatic stationary flame ball (Zeldovich et al. 1985). 
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In the present study, the exact solution for the fuel mass fraction and temperature 

distribution is obtained without using the small heat loss assumption. In the limit of 

 for flame balls, equation (2.14) reduces to the following form for the nonadiabatic 

stationary flame ball  

0=U
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If the small heat loss assumption ( Zhh in /1 = , ) is used and 

high-order terms of  are neglected, the above relation can be reduced to the same 

form as equation (2.15). Therefore, the flame ball solution (Buckmaster et al. 1990; 

Buckmaster et al. 1991) is a limiting case of the present result. 

2
2 / Zhh out=

Z/1

2.2.2.2 Outwardly Propagating Spherical Flames   

A flame speed relation for propagating spherical flames was obtained by Frankel 

and Sivashinsky (1984). It is readily seen that the present result given by equation (2.14) 

recovers the same result in the limit of zero heat loss and large flame radius ( 021 == hh  

and ). Specifically, for , the exponential integral can be represented by an 

asymptotic series 

1>>R 1>>R
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By using the above expansion, equation (2.14) reduces to the following form  
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The following relation can be immediately derived from equation (2.19), which is 

similar to the theory presented in (Frankel and Sivashinsky 1984)  

          )11(2)11()2ln()2( −−−=++
LeRLeR

Z
R

U
R

U             (2.20) 

The only difference between equation (2.20) and the relation from Frenkel and 

Sivashinsky (Frankel and Sivashinsky 1984) is the additional second term on the right 

hand side of equation (2.20), which was not considered by Frenkel and Sivashinsky for 

Z→∞ and Le→1. Since the Zel’dovich number for most mixtures is in the range of 5~15 

such that the deviation of Lewis number from unity can be of order of unity, the second 

term on the right hand side of equation (2.20) can not be neglected. 

As such, the present model is valid in both limits of flame ball and propagating 

flames and can provide the relationship and transition mechanism between these two 

flames during the flame kernel growth. 

2.2.2.3 Planar Flames   

In the limit of , the functions  and  respectively become ∞→R F G

1
)/,/,(

)/,/1,(

111

111 →
−

−+
kUkURkF

kUkURkF ,   0
)/,/,(
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222 →
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Therefore, equation (2.14) reduces to 
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Asymptotically, when the heat loss is of the order of  in the limit of large 

Zel’dovich number ( , 

Z/1

Zhh in /1 = Zhh out /2 = , and 1>>Z ), equation (2.21) recovers 

the classical theory of flammability limit for planar flames (Joulin and Clavin 1979) 

)()ln( 21
22 hhZhhLwithUUL outin +=+=−=          (2.22) 

The flammability limit is defined by eL /1=  and . Therefore, 

equation (2.14) is a general solution to describe the dynamics of flame kernel growth and 

depicts a clear correlation among the ignition kernel, flame ball, propagating curved 

flames, and planar flames. In the following section, we will demonstrate the role of 

radiative heat loss, Lewis number, and external energy addition in the various flame 

regimes and flame initiation.  

2/1−= eU

2.2.3 Effect of Radiative Heat Loss 

Radiative heat losses from the burned and unburned zones affect the flame 

temperature in different ways. The heat loss from the unburned zone will directly reduce 

the flame temperature. However, the heat loss from the burned region only affects the 

flame temperature via the heat conduction loss from the flame. In addition, the impact of 

radiative heat loss on the flame depends on the ratio of the burned gas volume to the 

surface area of the flame front. As the flame kernel grows, the volume to surface area 

ratio changes significantly. For example, the normalized radiative heat loss from the 

burned and unburned zones can be given as 
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dTR 22  is the total heat generation from chemical reaction. By 

using the temperature distribution obtained in equation (2.13), the ratio of the heat loss in 

the limit of small and large flame radius becomes 
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The above qualitative result shows that the radiative heat loss from burned and 

unburned zones will have different impacts on the flame temperature and flame 

transition. Since the radiative heat loss in the unburned region was neglected in the 

previous theoretical studies (He and Law 1999; He 2000), the competing role of radiative 

heat loss from the unburned and burned zones as the flame kernel grew was not 

identified. 

In the following we will take an example of CH4/air flames and use equation 

(2.14) to demonstrate how differently the radiative heat losses from the burned and 

unburned regions affect the flame temperature and flame propagation speed. For flames 

around the stoichiometric equivalence ratio, we choose 10=Z  and 15.0=σ . Equation 

(2.23) is utilized to evaluate the radiative heat loss from different zones and the total 

normalized radiative heat loss is their summation: Hall=Hin+Hout. 

Figure 2.1 shows the dependence of normalized heat loss and flame propagation 

speed on the flame radius for 1=Le  and 015.0=h . It is seen that there are two flame 

branches in the  diagram: the fast stable flame branch abc and the slow unstable RU −

 35



flame branch cde. At point c, the flame is extinguished at a finite propagating speed 

because the normalized heat loss reaches its maximum on the fast flame branch abc. It is 

also observed that the normalized total heat loss changes nonmonotonically as the flame 

radius increases. There exists a minimum value as the flame reaches point b on the fast 

branch and point d on the slow branch, respectively. This phenomenon can only be 

explained by considering the individual contributions of heat loss in the burned and 

unburned zones.  

The dependence of the normalized radiative heat loss in the burned and unburned 

zones,  and , on flame radius are shown in figure 2.1(b). It is seen that  

increases monotonically with flame radius while  decreases monotonically with 

flame radius. It is shown that the radiative heat loss from the unburned zone  

remains nearly constant when the flame radius is larger than 20 and is an order smaller 

than  (  when ). This means that the effect of heat loss in the 

unburned zone becomes weaker as the flame grows. However, it does not mean that heat 

loss from the unburned zone can be neglected because the heat loss from these zones 

affect the flame temperature in different ways. The rapid increase of flame speed and the 

peak of the radiative heat loss in the region of 

inH outH inH

outH

outH

inH 1.0/ <inout HH 20>R

20<R  are caused by the competition of 

radiative heat loss from the burned and unburned zones. 

When the radiative loss is larger than the critical loss ( eL /1=  and 0184.0=ch ) 

at the flammability of the planar flame, a flame does not exist at larger flame radii. Figure 

2.2 shows the dependence of the normalized heat loss and flame propagation speed on the 

flame radius for  and 1=Le 0197.0=h . It is interesting to note that a propagating 

spherical flame still exists at intermediate flame radii and has two extinction limits, 
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respectively, at small and large flame radii. The normalized total heat loss also changes 

non-monotonically and peaks at both extinction limits. This indicates that the extinction 

at small flame radius is caused by the heat loss in the unburned zone and the extinction at 

large flame radius by that from the burned zone (figure 2.2b). The appearance of the 

extinction limit at small flame radius has not been reported in previous studies and the 

existence of this extinction limit will significantly affect the ignition kernel size for 

successful flame initiation. Therefore, adequate inclusion of radiative loss from unburned 

gas is particularly important for understanding the flame kernel evolution. 

2.2.4 Correlation among Different Flame Regimes 

Figure 2.3(a) shows the flame propagation speed as a function of flame radius for 

various radiative loss constants (or different fuel concentrations) at . To further 

demonstrate the importance of heat loss in the unburned zone, the results with radiative 

loss only from the burned gas is shown in figure 2.3(b). In figure 2.3, solutions on the 

horizontal axis of  denote the stationary flame balls (equation 2.17) and those on 

the vertical axis at large flame radius denote the planar flame (equation 2.21). The 

solution curves between the flame ball solutions and the planar flame solutions represent 

the travelling spherical flames. It is seen from figure 2.3(a) that for adiabatic flame 

( ), the quasi-steady state flame ball exists at small radius, R=1. As the flame size 

grows the flame speed increases rapidly because of the increase of diffusion flux and 

eventually reaches the planar flame speed (

1=Le

0=U

0=h

1=U ) at a large flame radius. When there is a 

small radiative loss ( ), the quasi-steady state flame ball solution does not exist, 

and at a small flame radius, the flame extinguishes at a finite flame speed. As the flame 

radius increases, flame speed increases and ultimately reaches the corresponding 

005.0=h
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nonadiabatic planar flame speed. As the radiative loss further increases and becomes 

larger than the critical heat loss associated with the flammability limit, as explained in 

figure 2.2(a), sub-limit flames only exist at intermediate flame radii and the radiative loss 

from the unburned and burned zones yield two extinction limits at small and large flame 

radii, respectively. To distinguish this flame regime from the self-extinguishing flame 

observed in the microgravity experiments (Ronney 1985; Ronney 1988), we will refer to 

it as an isolated self-extinguishing flame because this flame cannot be initiated by a small 

localized ignition source. When only the radiative loss in the burned zone is considered 

(figure 2.3b), it is seen that the quasi-steady state solution of the stationary flame ball 

exists for all heat losses. This obviously contradicts the experimental observation 

(Ronney 1990). Therefore, it can be concluded that the present model can successfully 

predict the existence of multiple flame regimes and the transition between flame balls and 

travelling flames. Radiation from the unburned zone yields a new flame regime at 

intermediate flame radii. The exclusion of radiative loss from unburned zone prevents 

correct prediction of the flame regimes and their transitions. 

The flame speed dependence on flame radius for 8.0=Le  and 1.2 is shown in 

figures 2.4(a) and 2.5(a), respectively. For comparison, results without radiative loss in 

the unburned zone are shown in figures 2.4(b) and 2.5(b). Effects of Lewis number on the 

flame regime and the flame transition can be found by comparing these results with 

figure 2.3. It is seen that in a mixture of 8.0=Le , depending on the fuel concentration, 

there exists five different flames: the flame ball, the outwardly propagating spherical 

flame, the planar flame, the self-extinguishing flame (SEF), and the isolated 

self-extinguishing flame (ISEF). Because of the Lewis number effect, the sub-limit SEF 
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and ISEF can exist at much lower concentrations than the flammability limit of the planar 

flame. In addition, stationary flame balls start to appear at small radiative losses. These 

results are consistent with the experimental observation (Ronney 1985; Ronney and 

Wachman 1985; Ronney 1988; Ronney and Sivashinsky 1989; Ronney 1990). At 

, figure 2.5(a) shows that neither flame ball nor sub-limit SEF or ISEF exists. At 

large radiative loss or low fuel concentrations, a flame does not exist because of the 

combined effect of radiative loss in the unburned gas and of the flame stretch. Obviously, 

predictions without inclusion of radiative heat loss in the unburned zone (figures 2.4b, 

2.5b) do not correctly predict this phenomenon. For example, figure 2.5b shows that 

flame balls exist at all fuel concentrations. This is contrary to experimental observations.  

2.1=Le

The effects of radiative loss on the critical Lewis number below which a 

quasi-steady state flame ball solution exists are shown in figure 2.6 for different radiation 

intensities. It is seen that for a large radiative loss constant, stationary flame balls exist 

only for small Lewis number, which is consistent with the experimental results in 

microgravity (Ronney 1985; Ronney and Wachman 1985; Ronney 1988; Ronney and 

Sivashinsky 1989; Ronney 1990). The importance of radiative loss in the unburned zone 

can also be observed from figure 2.6. It is seen that the effect of radiative heat loss on the 

critical Lewis number for flame ball is dominated by the heat loss in the unburned zone. 

This conclusion is different from previous studies in which the radiative loss in the 

unburned region was often ignored. This is because the flame ball size is very small and 

the diffusion zone is very broad at zero and small flame speed. As a result, the radiative 

loss in the burned zone plays a negligible role in affecting the critical Lewis number.  
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2.2.5 Effects of Ignition Energy 

We now consider the case in which an external energy flux is deposited in the 

center of a quiescent mixture and to examine how the ignition energy affects the flame 

diagram and the transition trajectory.  

In the quasi-steady model, the ignition energy Q is modelled as a boundary 

condition (related discussions are presented at the end of this section), that is  

0/2 →−=∂∂
=

ε
ε

withQrTr r
                  (2.25) 

The fuel mass fraction distribution is the same as that obtained in section 3.1 and 

the temperature distribution in the burned gas region ( Rr ≤≤0 ) is given by  

)()()( 0 rTQrTrT Q⋅+=                      (2.26) 

where  is the solution in the case of )(0 rT 0=Q  (equations 2.12, 2.13) and  is 

the temperature increase caused by the external ignition power 

)(rTQ

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠⎥
⎦

⎤
⎢
⎣

⎡
−⋅+−−⋅

=
=

+−

−

∫

0),,(),,(

0
)(

1
11

12
11

11
)(5.0

12

1 hif
k
U

k
UrkFC

k
U

k
UrkGCe

hifde

rT
rkU

R

r

U

Q

τ
τ

τ

   (2.27) 

with 
1

1111
2

111
12

1 )/,/1,()/,/,(
2

−

⎥⎦
⎤

⎢⎣
⎡ −+−+−−

+
= kUkUkGkkUkUkG

kU
C εεεε  and 

)/,/,(/)/,/,( 11111112 kUkURkFkUkURkGCC −−−⋅−= . 

By using the jump relations given by equation (2.6), the flame speed equation can 

be obtained as  
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where  is given by equation (2.14b) and  Ω
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The effects of ignition power and Lewis number on flame transition can be 

studied by solving equation (2.28) numerically. Figures 2.7 to 2.9 show the flame speed 

as a function of flame radius with different values of ignition power, radiative loss 

constant, and Lewis number. Figure 2.7(a) shows the results for  and 0.1=Le 0=h . 

The solid line ab shows the result of zero ignition energy ( 0=Q ) which is the same as 

that in figure 2.3(a). In this case, the outwardly propagating spherical flame only exists 

beyond a finite flame radius 0.1=bR . When an external energy is deposited, it is seen 

that the flame transition trajectory is changed. At a low ignition energy of , due 

to the increase of flame temperature, the propagating flame branch ab is extended to 

branch ac and the critical flame initiation radius is reduced to . At the same 

time, a new flame branch (ignition kernel) de is formed at small flame radius and the 

flame quenches as it grows. Therefore, flame initiation is not successful. However, by 

increasing the ignition power to 

05.0=Q

72.0=cR

092.0=Q , a new ignition kernel branch fg starts to 

merge with the propagating flame branch ag, indicating that an outwardly propagating 

spherical flame can be successfully initiated via the flame transition along fga. Therefore, 

we can define the critical ignition power ( 092.0=CQ ) above which the flame kernel 

branch always merges with the travelling flame branch.  

Figure 2.7(b) shows the results of nonadiabatic flame evolution diagram for 

 and . Unlike the adiabatic case, no flame ball solution exists and the 0.1=Le 01.0=h
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outwardly propagating spherical flame only exists at a much larger flame radius with a 

finite flame speed due to the effects of radiative loss. When the ignition energy is 

deposited, the new flame kernel branch starts to merge with the travelling flame branch at 

and forms three new flame branches, a fast flame transition branch dja, a slow 

isolated branch ic, and an ISEF branch egh. As the ignition power increases, the ISEF 

branch degenerates and the fast transition branch becomes more monotonic, indicating a 

successful flame transition from the ignition kernel to a travelling flame. Note that the 

radiative loss not only changes the flame bifurcation but also significantly increases the 

critical ignition radius (from 

107.0=Q

3.0=fR  to 0.6) and the critical ignition energy (from 

 to 0.107). Therefore, the adiabatic model does not adequately describe the 

flame initiation trajectory. This conclusion is different from that of a previous study (He 

2000).  

092.0=Q

The adiabatic and nonadiabatic flame trajectories with external ignition energy for 

 and 1.2 are shown in figures 2.8 and 2.9. For the case of a small Lewis number 

(figure 2.8), due to the Lewis number effect, the critical ignition radius becomes much 

smaller and the critical ignition power decreases. Moreover, the radiation effect becomes 

weaker with the decrease of Lewis number. However, at a large Lewis number (figure 

2.9), both the critical ignition radius and the critical ignition power significantly increase. 

In particular, compared with the non-adiabatic model (figure 2.9b), the adiabatic model 

(figure 2.9a) not only does not predict the correct flame bifurcation but also fails to 

predict the size of critical ignition kernel.  

8.0=Le

It is noted that ignition is an essentially transient process. Depending on the 

relative magnitude of the characteristic times of external heating, chemical reaction, 
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travelling acoustic wave and heat conduction, there are fast-nondiffusive-ignition 

(Vazquez-Espi and Linan 2001) and thermal-diffusive-ignition (Vazquez-Espi and Linan 

2002). In the present study, the constant density assumption is used and the acoustic 

effect is neglected because its time scale is far shorter than the thermal diffusion time 

scale. Therefore, only the thermal-diffusive-ignition is investigated here. It is reasonable 

because in practical devices the initial flame kernel size is much smaller than the volume 

of combustion chamber so that the pressure increase can be neglected. Unlike the work of 

Vazquez-Espi and Liñán (Vazquez-Espi and Linan 2002), in which the 

unsteady-diffusion-reaction equations similar to equation (2.1) were solved numerically 

and radiative loss was not considered, here we present a general theory (equation 2.28) 

based on the quasi-steady assumption in which radiative loss is included. The 

shortcoming of the present analysis is that the ignition energy deposition is modelled as a 

boundary condition (equation 2.25); while in practice it should be resolved in time and 

space. The employment of such a steady state energy deposition is for the purpose to 

obtain an analytical solution. However, this simplification does not prevent the model 

from producing qualitatively correct results. It will be shown in the next section that 

results from the present theoretical analysis based on the quasi-steady assumption agree 

well with those from fully transient numerical simulations.   

2.3 Numerical Modeling of the Unsteady Effect 

In order to confirm the validity of the quasi-steady state assumption used in the 

previous analysis, we performed numerical simulations of the time-dependent flame 

initiation problem. The nondimensional form of equations (2.1a, 2.1b) under the constant 

density assumption is solved numerically by means of an implicit finite volume method. 
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To numerically resolve the moving flame front, a ten-level adaptive grid algorithm has 

been developed (Chen et al. 2007a) and utilized here. The mesh addition and removal are 

based on the first and second order gradients of the temperature and reaction rate 

distributions. Uniform grids of 0.00125~0.01 (length normalized by flame thickness) are 

used in the reaction zone and kept moving with the flame front. The following finite 

reaction rate is used in the numerical simulation, 
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The boundary conditions are the same as those given by equations (2.7a, 2.7c). 

With an initial uniform temperature and fuel mass fraction distribution of T(r)=1-Y(r)=0, 

the unsteady flame initiation problem is resolved.  

To justify the validity of the quasi-steady state assumption used in theoretical 

analysis, flame speeds at different flame radii predicted from theoretical analysis were 

compared with those from numerical simulations, in which the flame propagation speed 

was calculated from the flame front history, i.e. U=dR/dt (the flame front, R, is defined as 

the position where the maximum heat release appears). Figure 2.10 shows the results for 

Le=1 without and with radiative loss. It is seen that the results from the theory agree 

reasonably well with those from the unsteady simulations. Comparisons for other Lewis 

numbers without and with radiative loss are also made and qualitatively agreement is 

obtained.  

In order to evaluate quantitatively the magnitude of the unsteady term, numerical 

results from unsteady simulation were transformed into the coordinate attached to the 

flame front (in which theoretical analysis was carried out). The magnitudes of unsteady 

term (∂T/∂t), convection term (U∂T/∂r), diffusion term (r-2∂(r2∂T/∂r)/∂r), and reaction 
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term (ω) in equations (2.3a, 2.3b) are evaluated and compared in the transformed 

coordinate. The importance of the unsteady effects is shown by comparing the unsteady 

term with other terms. Figure 2.11 shows the distributions of the unsteady, convection, 

diffusion, and reaction terms in energy equation (2.3a) for flames at different flame radii 

with Le=1.0 and Q=0.2. When the flame radius is large, R=5.0 in figure 2.11(a), the 

unsteady term is one order smaller than all other terms, therefore it is negligible. For the 

cases of larger flame radii, the unsteady term becomes much smaller. Therefore, it is 

reasonable to employ the quasi-steady state assumption. When the flame radius is small, 

R=0.5 in figure 2.11(b), the diffusion and reaction terms will dominate, while the 

unsteady and convection terms are relatively small near the flame front. However, near 

the center where energy deposition exists, the unsteady term is very large and is balanced 

by the convection term. This is because the energy deposited in the center (modelled as a 

boundary condition) is moving away from the flame front in the coordinate attached to 

the flame front.  

Furthermore, to investigate the effect of the time scale of energy deposition on the 

flame trajectory, we compared the flame-front trajectories obtained from time dependent 

numerical computations with different duration time, ts at a given energy flux, Q (there is 

zero heat flux from the center when t>ts,). In numerical simulation, the energy flux Q at 

the boundary is set to be zero when the time is greater than the duration time (ts). Figure 

2.12 shows the results for Le=1.0, h=0.01 and Q=0.2. It is seen that the flame initiation 

fails when the duration is too small. However, when ts≥6.5 the flame-front trajectory 

(which is the same as that of ts=6.5) is not affected by the change of the time scale of 

energy deposition. Therefore, in this case, the duration must be large than 6.5 (time 
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normalized by flame thickness divided by planar flame speed) to make the quasi-steady 

model consistent. Similar results were also presented in (He 2000). 

2.6 Conclusions 

A general solution to describe the flame regimes and transitions among the flame 

kernel, the flame ball, the self-extinguishing flame, the outwardly propagating spherical 

flame, and the propagating planar flame is obtained. The results show that radiative heat 

loss significantly affects the flame regime, flame transition, and critical ignition radius 

and power. It is found that radiative loss from the unburned and burned zones play 

different roles in affecting the flame propagation speed. With the increase of flame 

radius, the radiative loss from the burned zone increases, while the radiative loss from the 

unburned zone decreases. As a result, there is a peak radiation loss at an intermediate 

flame radius, which dramatically affects the flame regimes and critical flame initiation 

parameters. It is also found that the radiative loss from the unburned zone results in a new 

flame regime: the isolated self-extinguishing flame with two radiation extinction limits 

respectively at small and large flame radius. In addition, it is shown that the critical 

Lewis number for the stationary flame ball is dominated by the heat loss from the 

unburned gas. The results also show that radiative loss significantly affects the transition 

history of flame initiation with external energy deposition. The critical radius for 

successful flame initiation of radiative flames is much larger than that of adiabatic 

flames. Furthermore, this difference increases dramatically with the increase of the Lewis 

number.  
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Appendix: Solutions for Cylindrical Flames 

Following the same asymptotic analysis procedure, solutions for cylindrical flame 

initiation and propagation can also be obtained. The following equations provide the 

general solutions for both cylindrical and spherical flames, with a geometrical factor N 

utilized for these two flames (N=1, cylindrical flames; N=2, spherical flames): 
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The effects of radiation, ignition, and Lewis number on cylindrical flame 

initiation and propagation can be investigated based on the above analytical solutions in 

the same way as that for spherical flames. 
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Figure 2.1: The dependence of normalized radiative heat loss and flame propagation 

speed on flame radius for Le=1 and h=0.015, (a), Hall-R and U-R; (b), Hin-R and Hout -R. 
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Figure 2.2: The dependence of normalized radiative heat loss and flame propagation 

speed on flame radius for Le=1 and h=0.0197, (a), Hall-R and U-R; (b), Hin-R and Hout -R. 
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Figure 2.3: Flame propagation speed as a function of flame radius for Le=1.0 with 

different values of radiative heat loss constants, (a), with heat losses in both the burned 

and unburned zones; (b), with heat loss only in the burned zone. 
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Figure 2.4: Flame propagation speed as a function of flame radius for Le=0.8 with 

different values of radiative heat loss constants, (a), with heat losses in both the burned 

and unburned zones; (b), with heat loss only in the burned zone. 
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Figure 2.5: Flame propagation speed as a function of flame radius for Le=1.2 with 

different values of radiative heat loss constants, (a), with heat losses in both the burned 

and unburned zones; (b), with heat loss only in the burned zone. 
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Figure 2.6: The dependence of critical Lewis number above which no solution exists for 

stationary flame ball for a given heat loss constant. 
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Figure 2.7: Flame propagation speed as a function of flame radius with different values of 

ignition power for Le=1.0, (a), h=0.0; (b), h=0.01. 
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Figure 2.8: Flame propagation speed as a function of flame radius with different values of 

ignition power for Le=0.8, (a), h=0.0; (b), h=0.01. 
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Figure 2.9: Flame propagation speed as a function of flame radius with different values of 

ignition power for Le=1.2, (a), h=0.0; (b), h=0.01. 
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Figure 2.10: Comparison of flame propagation speeds predicted by numerical simulation 

and theoretical analysis for Le=1.0, (a), h=0.0; (b), h=0.01. 
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Figure 2.11: The unsteady term (∂T/∂t), convection term (U∂T/∂r), diffusion term 

(∂(∂T/r2∂r)/r2∂r), and reaction term (ω) in equations (2.3a) predicted from numerical 

simulation for flames at different flame radii with Le=1.0 and Q=0.2, (a), R=5.0; (b), 

R=0.5. 
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Figure 2.12: Flame-front trajectories obtained from numerical computations with 

different duration time (ts) at a given energy flux (Q=0.2) for Le=1.0 and h=0.01. 
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Chapter 3: Adaptive Simulation of Unsteady Reactive 

Flow (A-SURF)  
 

A time-accurate and space-adaptive numerical solver for Adaptive Simulation of 

Unsteady Reactive Flow, A-SURF, has been developed. The details on the governing 

equations, numerical methods, and code validations are presented in this chapter. By 

using A-SURF, high-fidelity numerical simulations will be carried out to validate the 

theoretical results and the kinetic models on spherical flame initiation and propagation in 

the following chapters. 

3.1 Governing Equations for Unsteady Reactive Flows 

In A-SURF, the unsteady compressible Navier-Stokes equations are solved in 

order to account for the pressure change and pressure-induced compression waves 

produced during the flame propagation. The general conservation equations are presented 

in Section 3.1.1. The conservation equations require modelling of the viscous stress 

tensor, the diffusion velocities, the heat flux, and the chemical source terms. These 

models are shown in Section 3.1.2. The detailed description and/or derivation of the 

conservation and transport equations presented in this section can be found in (Williams 

1985; Poinsot and Veynante 2005; Law 2006). 

3.1.1 General Conservation Equations 

3.1.1.1 Mass Conservation 

Conservation of mass is given by the continuity equation 

 61



0)( =⋅∇+
∂
∂ V

t
ρρ                         (3.1) 

where ρ is the density and V=(u, v, w) is the velocity vector. 

3.1.1.2 Momentum Conservation 

Conservation of momentum is described by the Navier-Stokes equations 
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∂

∂ ∑ )()()(
kk fYVV

t
V ρρρ              (3.2) 

with fk being the body force on species k (not considered in the present study) and Π the 

stress tensor, which is define as 

τ+−=Π PI                           (3.3) 

where P is the hydrostatic pressure, I the unit tensor, and τ the viscous stress tensor. In 

this chapter, ∑ denotes the summation with respect to k from 1 to NS, the total number of 

species. 

3.1.1.3 Species Conservation 

Conservation of species k is given by the species-mass-balance equation: 

kkk
k YVV

t
Y

ωρ
ρ
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∂
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])([

)(                   (3.4) 

where Yk, V’k, and ωk are the mass fraction, diffusion velocity vector and the production 

rate of species k, respectively. Note that the summation of the conservation equations for 

each species should recover to the mass conservation equation, equation (3.1). Therefore  

∑ =′ 0)( kkVYρ ,  ∑ = 0kω                    (3.5) 

3.1.1.4 Energy Conservation 

Conservation of total energy is described by the following equation 

∑ ′+⋅++Π⋅⋅∇+⋅−∇=+⋅∇+
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∂ )]([)()]([ kkR VVfYQVqPEV

t
E ρ     (3.6) 
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where E, q, and QR are the total energy per unit volume, heat flux, and the heat source 

term (due, for example, to an electric spark, a laser or a radiative flux), respectively. The 

total energy is defined as 

hVPE ρρ ++−= 2/2 ,  ∑= )( kk hYh ,       (∫+=
T

T kPkk dTTChh
0

)(,0, 3.7) 

where T is the temperature, hk, the enthalpy of species k, hk,0 the species enthalpy of 

formation at the reference temperature T0, and CP,k the specific heat of species k at 

constant pressure. 

3.1.1.5 Equation of State 

Assuming all species in the reactive flow to be ideal gas, the equation of state that 

couples density, ρ, partial pressure, Pk, and temperature, T, reads 

kkk MTRYP /0ρ=                         (3.8) 

where R0 is the universal gas constant (8.314 J/(molK)) and Mk is the molecular weight of 

species k. The hydrostatic pressure P is equal to the summation of the partial pressures Pk 

of all species 

MTRPP k /0ρ== ∑                        (3.9) 

with ])/(/[1 ∑= kk MYM  being the mean molecular weight of the mixture. 

3.1.2 Transport and Chemistry Models 

3.1.2.1 Viscous Stress 

The gas mixture is assumed to behave as a Newtonian fluid. Therefore, the 

viscous stress tensor can be modelled with Stokes’ law of friction, 

])(
3
2)([( IVVVPI T ⋅∇−∇+∇+−=Π μ              (3.10) 
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where μ is the dynamic viscosity of the mixture. Note that Stokes’ assumption of zero 

bulk viscosity is employed here. 

3.1.2.2 Diffusion Velocity 

The diffusion velocity can be obtained by solving the following system of 

equations 
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where Di,j is the binary mass diffusion coefficient of species i into species j, 

kkk MMYX /=  the mole fraction, and DT,k the thermal diffusion (the diffusion of mass 

due to temperature gradients: Soret effect) coefficient of species k. Mathematically, it is 

difficult and costly to solve these equations and simplified approach (for example Fick’s 

law) is usually used. In the present study, the mixture-averaged formula (Kee et al. 1985) 

is employed. The diffusion velocity is composed of three parts (Kee et al. 1985): 

CkTkYkk VVVV ,,, ′+′+′=′                        (3.12) 

where V’k,Y is the ordinary diffusion velocity and is given in the Curtiss-Hirschfelder 

approximation by  

MMYDVY kkmYkk /)(, ∇−=′                     (3.13) 

and Dkm is the mixture-averaged diffusion coefficient of species k. 

Furthermore, V’k,T  is the thermal diffusion velocity, which is included only for 

low molecular weight species (H, H2 and He) 

)/(, MTTMDVY kkkmTkk ∇Θ−=′                     (3.14) 
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where Θk is the thermal diffusion ratio of species k, the sign of which makes the lower 

molecular weight species diffuse from low to high temperature regions. 

The correction velocity V’k,C is included to insure compatibility of species and 

mass conservation equations. It is calculated according to the requirement given by the 

first equation in (3.5). 

3.1.2.3 Heat Flux 

The heat flux q includes a heat diffusion term expressed by the Fourier’s law and 

a second term associated with the diffusion of species with different enthalpies. 

∑ ′+∇−= kkk VYhTq ρλ                        (3.15) 

where λ is the thermal conductivity of the gas mixture. Note that the Dufour effect (heat 

flux due to a mass gradient) is usually negligible and thus is not included in the present 

study.  

In A-SURF, the CHEMKIN-TRANSPROT package (Kee et al. 1989) is 

implemented to calculate all the transport coefficients, μ, Dkm, Θk, and λ. 

3.1.2.4 Chemical Model 

Consider a chemical system of NS species reacting through NR reactions 

NRjforAA kjkkjk ,...,1"' ,, =⇔ ∑∑ νν             (3.16) 

where Ak is a symbol for species k, ν’k,j and ν”k,j are the molar stoichiometric coefficients 

of species k in reaction j. The production rate of species k is given by a general form of 

the law of mass action 

∑
=

Ψ−=
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j
jjkjkkk M

1
,, )'"( ννω                     (3.17) 

where Ψj is the progress rate of reaction j, written as 
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where Kf,j and Kb,j are the forward and reverse rates of reaction j. The reaction rate for 

each elementary reaction is usually modeled using the empirical Arrhenius law 

)exp(,, RT
E

TAK j
jfjf

j −= β                       (3.19) 

where Af,j is the pre-exponential constant, βj the temperature exponent, and Ej the 

activation energy. These parameters are given by the detailed reaction mechanism and the 

CHEMKIN package (Kee et al. 1985; Kee et al. 1989) is used to evaluate the production 

rate. 

In A-SURF, different detailed chemical mechanisms are utilized for different 

fuels. For example, the recent mechanism of 9 species and 25 reactions developed by Li 

et al. (Li et al. 2004) is employed for H2/air flames, and the GRI-MECH 3.0 mechanism 

(Smith et al.) is utilized for CH4/air flames. 

3.2 Numerical Methods 

Finite volume method is employed for discretizing the governing equations given 

in the previous section. The conservation equations for one-dimensional, 

multi-component, reactive compressible flows can be written as 
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where the vectors U, F(U), G(U), Fv(U), and SR(U) are defined as 
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where N is the geometry factor (N=0, rectangular coordinate; N=1, cylindrical coordinate; 

N=2 spherical coordinate). u is the flow velocity and x(=r) is the spatial coordinate. 

The viscous stress and dissipation energy are: 
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The heat flux is: 

∑ ′+∂∂−= )(/ kkk
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The corrected diffusion velocities (to ensure 0=′∑ kkVY ) are: 
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3.2.1 Fractional-step Procedure 

To solve the conservation system (3.20), the stiff source term SR is treated by the 
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fractional-step procedure (Toro 1999). In the first fractional step, the non-reactive flow is 

solved 

1
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The chemistry is solved in the second fractional step for a homogeneous system  
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The two steps given by equations (3.25) and (3.26) are denoted by operator C(t) 

and operator S(t), respectively. Based on the above splitting, the solution can be evolved 

from its initial value Un at time tn, by one time step of size Δt, to a value Un+1 at time 

tn+1= tn+Δt,  

)(1 nttn UCSU ΔΔ+ =                         (3.27) 

The above procedure for solving the inhomogeneous system given by equation 

(3.20) is exceedingly simple but only has first-order accuracy in time, when S and C are 

at least first-order accurate solution operators (Toro 1999). A scheme with second-order 

accuracy in time called Strang splitting (Strang 1968) is 

)(2/2/1 ntttn USCSU ΔΔΔ+ =                      (3.28) 

where S and C are at least second-order accurate solution operators in time. 

For the S operator, the mass fraction of species are updated by using the VODE 

solver (Brown et al. 1989). Note that the density ρ, momentum ρu, and total energy E 

remain to be constant during updating the mass fraction of all the species, after which the 

temperature is solved according to the definition of total energy, equation (3.7): 

0/2//)( 20 =+−−= ρEhuMTRTF               (3.29) 
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where the equation of state, equation (3.9), is utilized to eliminate the pressure term. The 

above equation can be solved numerically by using the Newton iteration method and the 

updated temperature at each iteration step is 

)//()( 0
P

oldoldnew CMRTFTT −−=                (3.30) 

For the C operator, the details are presented in the following. 

3.2.2 Finite Volume Method 

The unsteady convection-diffusion system solved in the C operator is discretized 

by applying a Godunov-type upwind finite volume spatial discretization procedure (Toro 

1999). The integral form of the conservation system (3.20) without the source term is  
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A conservative finite-volume scheme can be obtained by evaluating the integral 

over a control volume representing the domain of interest. Here we consider the control 

volume over space from xi-1/2 to xi+1/2. For this control volume, the above equation 

becomes 
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Explicit time marching (Toro 1999) is utilized in the C operator and the above 

equation is solved to evolve the solution from the current time step tn to the next time step 

tn+1= tn+Δt, where Δt is the time step length which is restricted by the CFL number for 

computational stability (Toro 1999). 

The MUSCL-Hancock (van Leer 1984) and central difference schemes, both of 

second-order accuracy, are employed to evaluate the convective flux, F(xi+1/2,t), and 
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diffusive flux, Fv(xi+1/2,t), in equation (3.32), respectively. The ordinary differential 

equation, (3.32), can be written in the following form  

)(UL
dt
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=                            (3.33) 

where U  is the cell average of the solution state. At cell i, it is  
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To update the state nU  at the current time step to state 1+nU  at the next time 

step according to equation (3.33), a second-order TVD Runge-Kutta method (Gottlieb 

and Shu 1998) can be utilized 
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3.2.3 Locally Adaptive Mesh  

Most combustion phenomena in nature contain many disparate length scales. 

Therefore, a numerical method should be able to adapt resolutions to regions with 

different length scales; otherwise computer resources will be largely wasted in regions 

where the solutions do not require the maximum resolution. Mesh adaptation is just a 

way to distribute mesh cells in the interested regions so as to resolve a physical 

phenomenon economically.  

An unstructured h-refinement (the cells in the regions of interest are locally 

subdivided, and some other cells may be coarsened in the regions of less importance) is 

employed in A-SURF. Local mesh addition and removal are based on the first-order and 

second-order gradients of the temperature, velocity and major species distributions. The 
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present adaptive mesh for one-dimensional and two-dimensional simulations is based on 

the same algorithm developed in (Sun 1998; Sun and Takayama 1999). The details can be 

found in (Sun 1998; Sun and Takayama 1999) and thus not repeated here.  

For propagating flames investigated in the present study, the reaction zone is 

usually very thin and the flame thickness is strongly affected by pressure. Therefore, in 

order to maintain adequate numerical resolution of a moving flame front without the need 

to use hundreds of thousands of grid points, adaptive mesh with seven to ten grid levels is 

utilized in this study and the moving reaction zone is always fully covered by the finest 

meshes of 32 μm to 4 μm in width. 

It is noted that the numerical methods described above are for one-dimensional 

reactive flows whose conservation equations are given in (3.20). For two-dimensional 

problems, the same fractional-step procedure and finite volume method are implemented 

in A-SURF. 

3.3 Validation and Examples 

To demonstrate the accuracy and robustness of A-SURF, simulation results from 

A-SURF for different problems are compared with their exact solutions or predictions by 

other well-developed algorithms.  

Simulation of a modified version of the popular Sod’s test (Sod 1978; Toro 1999) 

is carried out to illustrate the performance of A-SURF on one-dimensional, time 

dependent Euler equations. Figure 3.1 shows the comparison between numerical and 

exact solutions of the temperature distribution. It is seen that the left-propagating 

expansion fan, right-propagating contact line, and right-propagating shock wave are all 

well resolved and the numerical prediction agrees well with the exact solution. Moreover, 
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according to the mesh level distribution (the mesh size is inversely proportional to 2mesh 

level), the finest meshes are focused on the expansion fan, contact line, and shock wave. 

Therefore, the adaptive mesh utilized in A-SURF helps to resolve these physical 

phenomena economically.  

A one-dimensional, time dependent convection-diffusion problem is utilized to 

show the performance of A-SURF on the Navier-Stokes equations. The governing 

equations and initial conditions for unsteady convection (with constant velocity, u) and 

diffusion (at constant mass diffusivity, DH2) of hydrogen can be written as (assuming 

constant density, ρ(x,t)≡1)  
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The above problem has the following exact solution  
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Figure 3.2 shows the hydrogen mass fraction profiles at different times. The numerical 

prediction by A-SURF is seen to agree very well with the exact solution given by 

equation (3.38). Also it is seen that the finest meshes are focused on the region with large 

gradient of hydrogen mass fraction due to the mesh adaptation. Therefore, A-SURF could 

be utilized to accurately and efficiently simulate one-dimensional unsteady 

convection-diffusion problems. 

To illustrate the performance of A-SURF on one-dimensional propagating flames, 

PREMIX (Kee et al. 1985) is employed here to make comparison with A-SURF since 
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PREMIX is widely utilized to simulate one-dimensional planar flames in combustion 

research. Figure 3.3 shows the simulation results for a planar stoichiometric CH4/air 

flame from both A-SURF and PREMIX. The GRI-MECH 3.0 mechanism (Smith et al.) is 

utilized in both simulations. It is seen that the temperature distribution predicted by 

A-SURF is nearly the same as that by PREMIX. The relative differences of adiabatic 

flame temperature, Tad, and laminar flame speed, Su, between the predictions by A-SURF 

and PREMIX are 0.27% and 1.34%, respectively. Simulations of one-dimensional planar 

flames for other fuels were also conducted and very good agreements between 

predictions from A-SURF and PREMIX were obtained. Therefore, A-SURF can 

accurately model one-dimensional flames. 

Figure 3.4 shows the temperature and mesh level distribution at different times for 

a propagating spherical CH4/O2/CO2 (15%/30%/55% by volume) flame (the 

spectral-dependent radiation, discussed in Chapter 6, is not considered here). The flame 

front is shown to be covered by the finest meshes (L=6 in mesh level and ∆x=16 μm in 

mesh size). Moreover, the finest meshes move together with the flame front and thus the 

total mesh number does change during flame propagation. Figure 3.5 shows the flame 

propagation speed as a function of flame radius for different propagating spherical H2/air 

and CH4/air flames. The computation domain is a sphere of 30 cm in radius, which is the 

same that of the spherical chamber used in experiments (Taylor 1991). As shown in 

figure 3.5, good agreement between simulations and experiments is obtained. The 

laminar flame speeds of methane/air at different equivalence ratios from simulations 

(predicted by both A-SURF and PREMIX) and experiments (Gu et al. 2000; Rozenchan 

et al. 2003; Qin and Ju 2005) are shown in figure 3.6. It is observed that the laminar 
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flame speeds of methane/air predicted by A-SURF agree very well with those by 

PREMIX and the experimental results. The maximum relative differences between the 

predictions from A-SURF and PREMIX over the entire test range is less than 2%, which 

demonstrates the robustness and accuracy of the present computation methods. The 

laminar flame speeds and burned Markstein length of hydrogen/air flames as a function 

of equivalence ratio are shown in figure 3.7. Again, very good agreement among the 

predictions from A-SURF and PREMIX is obtained. According to all the tests shown in 

figures 3.3 to 3.7, A-SURF can accurately model the propagating flames. Therefore, it 

can be employed to validate the theoretical models for spherical flame initiation and 

propagation in the following chapters. To the authors’ knowledge, A-SURF is currently 

the only code available to simulate propagating flames based on compressible governing 

equations (thus acoustics are resolved) using detailed chemical mechanisms and an 

adaptive mesh.  

The above discussion is on one-dimensional problems. Some preliminary results 

on two-dimensional simulations using A-SURF are shown in figures 3.8 to 3.12.  

In order to demonstrate the performance of two-dimensional adaptive mesh 

utilized in A-SURF, a propagating flame with specified propagating flame front, 

Rf(t)=(Rf0+U·t)·[1+0.05·sin(24·θ)], is studied. No flow is considered in the simulation and 

mesh adaptation is based on the temperature gradient which changes with the propagation 

of the flame front, Rf(t). The temperature distribution is given by  
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Therefore, the temperature of the unburned and burned gases is 300 K and 2300 K, 
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respectively. Adaptive mesh spanned seven levels, from the base mesh, level L=0, to the 

finest mesh, level L=6 (mesh size changes from 2048 × 2048 μm2 to 32 × 32 μm2 for the 

rectangular meshes shown in figure 3.8) are implemented in the simulation. Figure 3.8 

shows that the flame front is covered by the finest mesh (which moves together will the 

flame front) due to the appearance of the largest temperature gradient there, and that both 

quadrilateral and rectangular meshes can be utilized in the simulation. Therefore, this 

example shows that A-SURF can efficiently resolve two-dimensional propagating flames 

using locally adaptive meshes. Moreover, with the help of quadrilateral meshes, any 

two-dimensional computational domain with arbitrary boundary geometries can be 

accurately resolved by A-SURF.  

 To illustrate the performance of A-SURF on two-dimensional, time dependent 

Euler equations, a numerical simulation of cylindrical explosion by A-SURF was 

conducted. For this problem, the initial conditions are described by two thermodynamic 

states separated by a cylindrical interface: high pressure state inside and low pressure 

state outside. During the evolvement, an outwardly-propagating shock, an 

outwardly-propagating contact surface, and an inwardly-propagating rarefaction wave 

appear. This is similar to the Sod’s problem (Sod 1978; Toro 1999) discussed at the 

beginning of this section. Due to the axisymmetry of this problem, it can be studied by 

both one-dimensional and two-dimensional simulations. Figure 3.9(a) shows a 

comparison between the one-dimensional radial solution (very high resolution which 

could be regarded as the exact solution) and the two-dimensional solution along the radial 

line that is coincident with the x-axis. It is seen that the prediction from the 

two-dimensional simulation agrees very well with the exact solution. Comparison along 
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other radial directions gives virtually identical results. This is confirmed by the very 

symmetric character of the numerical solution of density distribution shown in figure 

3.9(b), demonstrating that A-SURF can accurately resolve the rarefaction wave, contact 

surface, and shock wave in two-dimensional simulations. Similar to the one-dimensional 

simulation shown in figure 3.1, the finest meshes are focused on the expansion fan, 

contact line, and shock in the two-dimensional simulation. Moreover, nearly the same 

results were obtained from simulations using rectangular and quadrilateral meshes 

(similar to the two types of meshes shown in figure 3.8). 

Another example of the two-dimensional simulation based on Euler equations is 

shown in figure 3.10. The wave interaction problem (Müller 2000) is studied using 

A-SURF. The initial configuration is determined by four states corresponding to the four 

quadrants of the coordinate system (Müller 2000): 
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Away from the origin of the coordinate system, the solution, as shown in figure 3.10(a), 

exhibits a one-dimensional wave pattern consisting of a rarefaction wave, a contact 

surface and a shock wave. Close to the origin, the different one-dimensional waves 

interact forming a genuinely two-dimensional wave pattern. The density contours shown 

in figure 3.10(a) agree well with those reported in (Müller 2000). Moreover, figure 3.10(b) 

shows that the finest adaptive meshes efficiently cover the position where the waves and 

their interactions appear. These results show that the two-dimensional simulation can 

accurately resolve the wave interactions. 

A-SURF is also utilized to simulate propagating two-dimensional premixed 

flames with one-step irreversible chemical mechanism. Figures 3.11 and 3.12 show the 
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flame fronts of outwardly propagating cylindrical flames at different times for mixtures 

with different Lewis numbers. It is well known that laminar premixed flames are 

subjected to two modes of cellular instability: hydrodynamic and thermal-diffusive 

(Williams 1985; Law 2006). Hydrodynamic instability is caused by the density disparity 

across the flame and it always exists; while thermal-diffusive instability is caused by the 

preferential diffusion between heat and mass and it occurs when the global Lewis number 

is less than one (Williams 1985; Law 2006). For an outwardly propagating flame, its 

positive stretch tends to inhibit the development of cellular instability, especially for 

mixtures with larger Lewis numbers (Law 2006; Jomaas 2008). As a result, the cellular 

instability occurs earlier as the flame expands when the Lewis number is smaller. Figures 

3.11 shows that the cellular instability is strongest for flames at Le=0.5, since both 

hydrodynamic and thermal-diffusion instabilities occur. For Le=1.0, only the 

hydrodynamic instability occurs because the flame is highly stretched and curved when it 

is small, hence preventing the onset of cellular instabilities. Consequently, the flame front 

is smooth at the beginning. Cellular instabilities appear when the flame radius becomes 

larger because both the curvature and stretch are smaller, as shown by figure 3.12. For 

Le=2.0, the flame front is much smoother than that of Le=1.0 due to the stabilization 

caused by the positive stretch. The results shown in figures 3.11 and 3.12 agree 

qualitatively with those from experiments on outwardly propagating spherical flames 

(Jomaas 2008). Figure 3.13 shows the flame front of a propagating cylindrical lean 

hydrogen/air flame at time t=3.92 mS. Detailed chemical mechanism for hydrogen/air (Li 

et al. 2004) are employed in the simulation. For hydrogen/air at equativalence ratio φ=0.5, 

the Lewis number is around 0.5 (Law 2006). Therefore strong cellular instabilities are 
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observerd.  

In summary, based on the numerical validations and tests presented above, 

A-SURF can be utilized to accurately and efficiently simulate one-dimensional 

propagating flames with detailed chemical mechanisms. For two-dimensional flame 

simulations with large detailed chemistry (for large hydrocarbon fuels) treated by a single 

computer, the computation time will be on the order of a month and thus effective 

parallelization and chemical mechanism reduction are needed. In the following chapters, 

only one-dimensional simulations using A-SURF will be conducted. 
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Figure 3.1: Mesh level and temperature distribution at time t=100 μs. 

 

 

 

 

X (cm)

Y
H

2

20 25 30

0

0.01

0.02

0.03

0.04

0.05

0.06

exact
numerical

X (cm)

Y
H

2

31.9 31.95 32 32.05 32.1

0

0.01

0.02

0.03

0.04

0.05

0.06

exact
numerical

 

(a) (b)

 

Figure 3.2: Distribution of hydrogen mass fraction: (a) at time t=0, 19200, 38400, 57600, 

76800 μs with u=1 m/s and DH2=8·10-5 m2/s; (b) at t=120 μs with u=1000 m/s and 

DH2=8·10-5 m2/s.  
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Figure 3.3: Temperature distribution for a propagating planar stoichiometric CH4/air 

flame at Tu=298 K and P=1 atm. 
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Figure 3.4: Temperature and mesh level distribution at different times for a propagating 

spherical CH4/O2/CO2 (15%/30%/55% in volume) flame at Tu=298 K and P=1 atm.  

The base mesh (L=0) size is ∆x=1024 μm and the finest mesh(L=6) size is ∆x=16 μm.  
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Figure 3.5: Flame propagation speed as a function of flame radius for different spherical 

H2/air and CH4/air flames. 
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Figure 3.6: Laminar flame speed of CH4/air flames as a function of equivalence ratio at 

Tu=298 K and P=1 atm. 
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Figure 3.7: (a) Laminar flame speeds and (b) burned Markstein length of H2/air flames as 

a function of equivalence ratio at Tu=298 K and P=1 atm. 
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Figure 3.8: (a) Rectangular and (b) quadrilateral adaptive mesh following the moving 

flame front given by Rf(t)=(Rf0+U·t)·[1+0.05·sin(24·θ)] at time t=0.01 s (Rf0=0.05 cm, 

U=50 cm/s). 
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Figure 3.9: Two dimensional simulation of cylindrical explosion: (a), comparison 

between the exact and 2D solutions; (b), the density distribution. 

 84



(a)

 

 

 

(b)

Figure 3.10: Two dimensional simulation of wave interactions: (a), density contours; (b), 

adaptive mesh. Output time: 12 μs; mesh size: ∆x0=5 mm, ∆x=∆x0/2Level. 
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Figure 3.11: Flame fronts of propagating cylindrical flames at different times: (a), Le=2.0; 

(b), Le=1.0; (c), Le=0.5 (the units of both x and y coordinates are cm).
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Figure 3.12: Flame fronts of a propagating cylindrical flame at different times with 

Le=1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.13: Flame front of a propagating cylindrical lean hydrogen/air (equativalence 

ratio φ=0.5) flame at time t=3.92 mS. Q is the total heat release in the unit of J/(m3S). 
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Chapter 4: Critical Flame Radius and Minimum 

Ignition Energy for Spherical Flame Initiation 
 

In this chapter, the theory and numerical solver developed in the previous two 

chapters will be utilized to study spherical flame initiation. The objectives are to find the 

controlling length scale for spherical flame initiation and to reveal its relationship with 

the minimum ignition energy (MIE). In the following we shall first provide a summary of 

the theoretical results so as to provide a unified interpretation of the role of critical flame 

radius and the effect of preferential diffusion on spherical flame initiation. This will be 

followed by detailed numerical simulations of spherical flame initiation for different 

fuel/oxygen/helium/argon mixtures (hydrogen, methane, and propane), which 

demonstrates the validity of the theoretical results.  

4.1 Theoretical Analysis 

4.1.1 Analytical Solutions 

In Chapter 2, the spherical flame kernel evolution with and without an external 

ignition source at the center and/or radiative heat loss was investigated analytically. The 

theory developed in Chapter 2 will be utilized here with the main results briefly 

summarized below.  

For a freely propagating spherical flame (i.e. a spherical flame without ignition 

energy deposition, Q=0), the following algebraic system of equations (equation 2.14 in 

Chapter 2) for normalized flame propagation speed, U, flame radius, R, and flame 

temperature, Tf, were obtained 
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When an external energy flux is continuously deposited in the center of the 

quiescent mixture (Q>0), the following relationship (equation 2.14 in Chapter 2) between 

U, R, Tf, and Q was obtained  
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    (4.2) 

By solving equations (4.1) and (4.2) numerically, the relations for the flame 

propagation speed, flame radius, and flame temperature and the existence of different 

flame regimes for different Lewis numbers and/or ignition powers can be obtained. In the 

following, the critical flame radius and minimum ignition power will be investigated 

based on the quasi-steady solutions given by equations (4.1) and (4.2).  

4.1.2 Results and Discussions  

As suggested in (Deshaies and Joulin 1984; He 2000), the critical conditions for a 

spherical flame to propagate in a self-sustained manner control the critical conditions for 

spherical flame initiation. Therefore, the critical conditions for the existence of a 

propagating spherical flame are first investigated for cases without ignition energy 

deposition by solving equation (4.1). Figure 4.1 shows the flame propagation speed as a 

function of flame radius for mixtures with different Lewis numbers. The Zel’dovich 

number, Z=10, and thermal expansion ratio, σ=0.15, are fixed for all the theoretical 

results except those in figure 4.5. For each mixture at a given Lewis number, there is a 

critical flame radius, RC, as shown in figure 4.1. Above the critical flame radius, a flame 
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can successfully propagate outward. On the other hand, no quasi-steady solution exists 

below the critical flame radius. As shown in figure 4.1, the critical radius increases with 

the Lewis number. This is because the propagating spherical flame has positive stretch 

rate, and the highly curved spherical flame of small radius has high stretch rate, which 

makes the flame weaker at higher Lewis numbers (Law 2006). It is seen that for mixtures 

with small Lewis numbers (Le=0.5, and 0.7 in figure 4.1), the flame propagation speed 

could be higher than the adiabatic planar flame speed (U>1.0). This is due to the 

enhancement by positive stretch rate for flames with Lewis number less than unity (Law 

2006).  

Figure 4.1 also shows that the adiabatic flame ball radius (Zeldovich et al. 1985), 

RZ, corresponding to zero propagating flame speed (U=0), increases with Lewis number. 

It is found that for Le<1.35, the critical flame radius, RC, is equal to the flame ball radius, 

RZ; while for Le>1.35, we have RC<RZ. Therefore, the stationary flame ball radius, RZ, is 

not the minimum radius for the existence of propagating spherical flames in mixtures 

with high Lewis numbers. This was first found by He (He 2000) and it was proposed that 

the flame initiation is not controlled by the radius of stationary flame ball for mixtures 

with high Lewis number (He 2000). As a result, the critical flame radius, RC, is proposed 

to be the controlling length scale for spherical flame initiation, instead of the radius of 

stationary flame ball, which is commonly considered to be the minimum radius below 

which a spherical flame cannot propagate outwards (Deshaies and Joulin 1984; 

Champion et al. 1986). 

We now consider the case in which an external energy flux is deposited in the 

center of a quiescent mixture and examine how the ignition power correlates with the 
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critical flame radius. The effect of ignition energy on the flame diagram and the transition 

trajectory has been studied in Chapter 2 for mixtures with Lewis number around unity 

(Le=0.8, 1.0, 1.2). In the present study, mixtures with large Lewis numbers are 

investigated. Figure 4.2 shows the flame propagation speed as a function of flame radius 

at different ignition power for mixtures with Le=2 and Le=2.5. For Q=0, only a C shaped 

flame branch for U-R exists (which is also shown in figure 4.1 for Le>1.3), and there is a 

critical flame radius, RC, at the turning point, and a flame ball radius, RZ, at U=0 (it is not 

shown in figure 4.2 since RZ is larger than the upper bound of flame radius range). At low 

ignition power, Q=0.5 for Le=2 and Q=1.0 for Le=2.5, there is a new branch (left branch) 

of solution for U-R at small flame radii with the flame propagation speed decreasing 

sharply to zero (flame ball solution). On the left branch, the maximum possible flame 

radius is defined as the lower critical flame radius, RC
−, and the flame ball solution is 

defined as the lower flame ball radius, RZ
−. The C shaped branch (right branch) is slightly 

shifted to the left side due to the ignition power deposition. On the right branch, the 

corresponding upper critical flame radius, RC
+, and the upper flame ball radius, RZ

+ are 

defined in the opposite way. It is seen that the left and right branches move towards each 

other with increasing ignition power. Figure 4.2 shows that when the ignition power is 

larger than a critical value (0.968 for Le=2 and 2.04 for Le=2.5), defined as the minimum 

ignition power, Qmin, the two branches merge with each other, resulting in the new upper 

and lower branches. Spherical flame can thereafter propagate outward along the upper 

branch U-R correlation, and therefore successful spherical flame initiation is obtained.  

The changes of the upper and lower critical flame radii and flame ball radii with 

the ignition power are shown in figure 4.3. It is seen that the upper and lower flame ball 
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radii are both strongly affected by the ignition power. However, for the critical flame radii, 

RZ
− monotonically increases with Q, while RZ

+ remains almost constant at different Q. 

The lower critical flame radius and the flame ball radius are almost the same. Here the 

minimum ignition power is the power at which RC
+=RC

−. In (Champion et al. 1986), the 

minimum ignition power is defined as the power at which RZ
+=RZ

−. From figure 4.3, it is 

seen that the minimum ignition power defined according to RZ
+=RZ

− (Q’min=1.048 for 

Le=2 and Q’min=2.53 for Le=2.5) is higher than the Qmin defined based on the critical 

flame radius (Qmin=0.968 for Le=2 and Qmin=2.04 for Le=2.5). Therefore, the minimum 

ignition power is over-predicted in (Champion et al. 1986) based on the flame ball radius. 

For mixtures with Lewis number less than 1.3, there is no C shaped branch for U-R and 

the critical radius is the same as the flame ball radius. Therefore, the minimum ignition 

power based on the critical flame radius is the same as that based on flame ball radius.  

 It is noted that the critical flame radius, RC
+=RC

−, at the minimum ignition power 

is nearly the same as the critical flame radius, RC, at the zero ignition power deposition 

since RZ
+ remains almost constant for different Q (figure 4.3). By comparing the critical 

flame radius and flame ball radius, over-prediction of the minimum ignition power based 

on flame ball radius instead of critical flame radius can be found. Figure 4.4 shows the 

critical flame radius and flame ball radius for different Lewis numbers at Q=0. It is seen 

that the critical flame radius strongly depends on the Lewis number and the flame ball 

radius increases exponentially with Lewis number – the adiabatic critical flame radius is 

it is more than one order larger for Le=2 than Le=1. As a result, the minimum ignition 

power would be substantially over-predicted based on the flame ball radius for mixtures 

with large larger Lewis numbers. Therefore, the critical flame radius should be 
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considered as the controlling length scale for a spherical flame initiation for mixtures 

with Lewis number above a critical value, Le*=1.35. For Le<1.35, the critical radius is 

the same as the flame ball radius, and the minimum ignition power can be correlated with 

either the critical radius or the flame ball radius.   

To see how the critical flame radius is correlated with the minimum ignition 

power, the minimum ignition power, Qmin, and the cube of the critical flame radius, RC
3, 

for mixtures with different Lewis numbers (Le=1.4~2.5) and Zel’dovich numbers (Z=10, 

13) are plotted in figure 4.5. Both Qmin and RC
3 are shown to strongly depend on the 

Lewis number. It is seen that the minimum ignition power varies almost linearly with the 

cube of the critical flame radius, demonstrating a linear correlation: Qmin ~ RC
3. Therefore 

it is the critical flame radius that controls successful spherical flame initiation. 

Furthermore, the minimum energy deposition for successful spherical flame initiation is 

proportional to the cube of the critical flame radius instead of the flame thickness or the 

flame ball radius. 

The above results were obtained from theoretical analysis of spherical flames 

based on the assumption of quasi-steadiness in the flame-front attached coordinate. The 

shortcoming of this analysis is that the ignition energy deposition is modeled as a 

boundary condition in the center; while under most realistic conditions it is resolved in 

time and space. The steady-state energy deposition is employed in order to achieve an 

analytical solution. However, this simplification does not prevent the model from 

producing qualitatively correct results, as will be confirmed by results from unsteady 

simulation. In the next section, energy deposition similar to practical ignition will be 

utilized in detailed numerical simulation.  
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4.2 Numerical Validation 

4.2.1 Numerical Specifications 

In this section, the validity of the theoretical results presented in the previous 

section is demonstrated by numerical simulations using detailed chemistry. A-SURF 

developed in Chapter 3 is used here to simulate spherical flame initiation and 

propagation. 

Symmetric conditions at the center (r=0) and non-reactive, adiabatic condition at 

the wall (r=1.0 m) are utilized in the simulation. At the initial state, the premixture is 

assumed quiescent and homogeneous at 298 K and atmospheric pressure. Ignition is 

achieved by energy deposition resolved in time and space and the following term is added 

to the conservation equation of energy (Frendi and Sibulkin 1990), 
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where E is the total ignition energy, τig=200 μs, the duration of the source energy, and 

rig=200 μm, the ignition kernel radius (large τig and rig are utilized here to prevent high 

temperature, (>5000 K) in the center, above which the thermal and transport coefficients 

are difficult to be evaluated). It is noted that the duration of the source energy and the 

ignition kernel radius both affect the MIE, Emin (Lewis and Von Elbe 1961; Ronney 1994). 

In the present study, fixed values of τig and rig specified above are utilized, and the 

emphasis is on the correlation between the MIE and the critical flame radius, and the 

preferential diffusion effect on spherical flame initiation.   

Simulations utilizing detailed chemical mechanisms for different fuels (H2, CH4 

and C3H8) have been conducted. To simulate the H2/O2/He/Ar and H2/air flames, the 
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recent mechanism (Li et al. 2004) of 9 species and 25 reactions is employed. For 

CH4/O2/He/Ar, the GRI-MECH 3.0 mechanism (Smith et al.) is used. To save the 

computation time, the NOx sub-mechanism is not included and the resulting mechanism 

contains 36 species and 219 reactions. For C3H8/O2/He/Ar mixtures, the San-Diego 

Mechanism 20051201 (Williams) which consists of 46 species and 235 reactions is 

utilized.  

The following homogeneous premixtures initially at room temperature (298 K) 

and atmospheric pressure (1 atm) were studied 
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where rs is the stoichiometric oxygen-to-fuel mole ratio (rs=0.5 for H2, 2.0 for CH4, 5.0 

for C3H8) and φ is the equivalence ratio. The volumetric fraction of fuel and oxygen is 

fixed to be 30%, while that of inert diluents, helium and argon, is fixed to be 70%. 

Different amount of helium fractions (α=0%, 25%, 50%, 70%) is used to investigate the 

preferential diffusion effect on spherical flame initiation. With the increase of the helium 

fraction, the thermal diffusivity of the mixture increases, resulting in higher Lewis 

numbers (Chen et al. 2007a). The laminar flame speed also increases with helium dilution, 

since it increases with the Lewis number (Law 2006). However, the adiabatic flame 

temperature does not change with the increase of helium fraction because the thermal 

capacities of helium and argon are almost the same. 

4.2.2 Results and Discussions 

Figure 4.6 shows the flame radius evolution, Rf=Rf(t), and the flame propagation 

speed, Sb=dRf/dt for different ignition energies for H2/O2/Ar at φ=2.0 and α=0%. The 

MIE for this mixture, Emin=0.165 mJ, and for all other mixtures was calculated with an 
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error less than 3%. It is seen that there is a left branch of Sb-Rf, along which the spherical 

flame could not successfully propagate outwardly when the ignition energy is less than 

the MIE. Only when the ignition energy is above the MIE can a self-sustained 

propagating flame be successfully initiated. The results are similar to the theoretical 

results shown in figure 4.2, except the right and lower branches which could not be 

calculated from the transient numerical simulation. It is noted that the critical flame 

radius can not be defined in the same way as that in the quasi-steady theoretical analysis. 

Figure 4.2 shows that the critical flame radius is almost the same flame radius at which 

the minimum propagating speed occurs in case of the minimum ignition power 

deposition. According to this, in numerical simulations, we define the critical flame 

radius as the radius at which the minimum propagating speed occurs in case of MIE 

deposition. In the diagram of flame radius evolution, Rf=Rf(t), the critical flame radius 

occurs at the inflection point for E=Emin=0.165 mJ,  which is RC=0.11 cm. Similar 

results to those shown in figure 4.6 were also obtained from simulation (one-step 

chemistry, constant thermal properties, and no thermal expansion) and experiments in 

(Champion et al. 1986).  

To investigate the preferential diffusion effect on spherical flame initiation, 

numerical simulations on the initiation of H2/O2/He/Ar mixtures at different equivalence 

ratios and different amounts of helium dilution were conducted. The burned Markstein 

length, the MIE, and the critical flame radius of different H2/O2/He/Ar mixtures are 

shown in figures 4.7, 4.8, and 4.9, respectively. The burned Markstein length, Lb, is 

obtained from the linear extrapolation based on the plot of Sb-K, where the flame speed 

relative to the burned gas, Sb=dRf/dt, and the flame stretch rate, K=(2/Rf)(dRf/dt), 
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satisfying the following linear relation (Law 2006) 

                           (KLSS bbb −= 0 4.5) 

where Sb
0 is the unstretched laminar flame speed relative to the burned gas. It is well 

known that the burned Markstein length increases with Lewis number and vice versa 

(Clavin 1985).  

Figure 4.7 shows that the burned Markstein length increases with the increase of 

the helium fraction at each equivalence ratio. Therefore, the Lewis number increases with 

helium dilution, which is consistent with previous discussion that helium increases the 

Lewis number of the mixture by increasing its thermal diffusivity. Figure 4.7 also shows 

that the burned Markstein length increases with the equivalence ratio for fixed inert gas 

ratio. This is also reasonable since for hydrogen/air mixtures, the Lewis number 

monotonically increases with equivalence ratio (Law 2006). Therefore, the Lewis number 

of the H2/O2/He/Ar mixture increases with both the inert helium fraction and equivalence 

ratio. As a result, the MIE and the critical flame radius of the H2/O2/He/Ar mixture also 

increase with the inert helium fraction and the equivalence ratio, as shown in figures 4.8 

and 4.9. This is consistent with the theoretical results on the Lewis number effect on the 

critical flame radius and the MIE shown in figures 4.4 and 4.5. It is noted that the 

increase of both the MIE and the critical flame radius with the helium fraction at higher 

equivalence ratios is much greater than that at lower equivalence ratios. This is because at 

a higher equivalence ratio, the H2/O2/He/Ar mixture has larger Lewis number, while the 

relative change of Lewis number and/or burned Markstein length is not strongly affected 

by equivalence ratio, which is shown in 4.7. According to results from the theoretical 

analysis shown in figure 4.5, at higher Lewis number, the same relative change of Lewis 
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number results in larger changes of both the MIE and the critical flame radius. 

To see how the critical flame radius correlated with the minimum ignition power, 

the MIE, Emin, and the cube of the critical flame radius, RC
3, for different H2/O2/He/Ar 

mixtures are shown in figure 4.10. Similar to the theoretical results (figure 4.5) based on 

the quasi-steady analysis with energy deposition as a steady boundary condition, the 

transient numerical simulation with energy deposition resolved in time and space also 

shows that the MIE changes almost linearly with the cube of critical flame radius, 

demonstrating a linear correlation: . Therefore, it is the critical flame radius 

that controls the successful spherical flame initiation, and the minimum energy deposition 

for successful spherical flame initiation is proportional to the cube of the critical flame 

radius instead of the flame thickness or the flame ball radius. It is noted that the slope of 

E

3
min ~ CRE

min−RC
3 is different for mixtures with different equivalence ratios.  

To further demonstrate the validity of the theoretical results, simulations for other 

fuels (CH4 and C3H8) and hydrogen/air of different equivalence ratios (φ = 3, 4, 4.2, 4.4, 

4.5, 4.6, 4.8, 5) were also conducted. Similar results to those of H2/O2/He/Ar were 

obtained. Figures 4.11 and 4.12 show that the linearly correlation, , also holds 

for CH

3
min ~ CRE

4/O2/He/Ar, C3H8/O2/He/Ar and H2/O2/N2 mixtures. Therefore, the spherical flame 

initiation is controlled by the critical flame radius and the minimum ignition energy is 

proportional to the cube of the critical flame radius.  

4.3 Conclusions 

Spherical flame initiation is studied by asymptotic analysis and detailed numerical 

simulation. The results show that it is the critical flame radius, rather than the flame 

 98



thickness or flame ball radius, that controls spherical flame initiation. The minimum 

ignition energy for successful spherical flame initiation is shown to be proportional to the 

cube of the critical flame radius. Furthermore, the preferential diffusion between heat and 

mass (Lewis number effect) is found to play an important role in spherical flame 

initiation. It is shown that the critical flame radius and the minimum ignition energy 

increase significantly with the Lewis number. Therefore, for fuels with much higher 

thermal diffusivity than fuel mass diffusivity, larger ignition energy is needed to initiate a 

self-sustained propagating premixed flame. 
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Figure 4.1: Normalized flame propagation speed as a function of flame radius for 

mixtures at different Lewis numbers (the critical flame radius for each case is denoted by 

a circle at the corresponding minimum flame radius). 
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Figure 4.2: Normalized flame propagation speed as a function of flame radius at different 

ignition power for mixtures with (a), Le=2; (b), Le=2.5.  
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Figure 4.3: Change of upper and lower critical flame radii and flame ball radii with 

ignition power. 

 

Lewis number, Le

C
rit

ic
al

fla
m

e
ra

di
us

/f
la

m
e

ba
ll

ra
di

us

0.5 1 1.5 2 2.5
10-1

100

101

102

RC

RZ

  
 

Figure 4.4: Critical flame radius and flame ball radius as functions of different Lewis 

numbers. 
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Figure 4.5: Minimum ignition power and cube of critical flame radius for mixtures with 

different Lewis numbers and Zel’dovich numbers. 
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Figure 4.6: Spherical flame initiation for H2/O2/He/Ar mixtures at different ignition 

energies: (a), temporal variation of flame radius; (b), flame propagation speed at each 

radius.
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Figure 4.7: Burned Markstein length of H2/O2/He/Ar mixtures. 
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Figure 4.8: Minimum ignition energy for H2/O2/He/Ar mixtures. 
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Figure 4.9: Critical flame radius of H2/O2/He/Ar mixtures. 
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Figure 4.10: Minimum ignition energy and cube of critical flame radius of H2/O2/He/Ar 

mixtures  
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Figure 4.11: Minimum ignition energy and cube of critical flame radius of different fuels 

with different amount of He dilutions.  
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Figure 4.12: Minimum ignition energy and cube of critical flame radius of rich H2/air 

mixtures.  
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Chapter 5: On the Determination of Laminar Flame 

Speed using Propagating Spherical Flames 

 

In this chapter, the method of laminar flame speed measurement utilizing 

propagating spherical flames in a confined bomb is investigated theoretically and 

numerically. The emphasis is placed on how to improve the accuracy of flame speed 

measurement. It is found that the accuracy is affected by different effects such as Lewis 

number, ignition and unsteady flame transition, compression, and flame stretch. Rigorous 

determination of flame speeds could be achieved by using techniques developed in this 

chapter to correct these effects. 

5.1 Introduction 

As discussed in Chapter 1, tracking the evolution of an outwardly propagating 

spherical flame in a confined bomb is currently the most preferred method for measuring 

the laminar flame speed at high pressures. In this method, a quiescent homogeneous 

combustible mixture in a closed chamber is centrally ignited by an electrical spark or a 

laser beam which results in an outwardly propagating spherical flame (Lewis and Von 

Elbe 1961; Rallis and Garforth 1980). The flame front history and/or the pressure rise 

history are/is recorded during the experiment and subsequently related to the laminar 

flame speed through theoretical models (described in the next two sections). Depending 

on the bomb design and the pressure change, there are two different methods for flame 

speed measurement by using the expanding spherical flames. The so-called constant 

pressure method uses Schlieren photograph to view the flame front propagation history of 

an expanding spherical flame in a large confined chamber or a pressure release 
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dual-chamber. There are two main advantages of this method. First, the propagating 

flame surface is observed such that any distortion of the flame morphology from being 

spherical or smooth can be detected; the former effect could occur for slow burning 

flames due to buoyancy while the later from the development of flame front instabilities 

especially those of cellular nature. Second, since the effect of the increase of the pressure 

and temperature within the chamber on the flame speed is minimal during the early 

stages, there exists a stage where the flame speed is purely a function of stretch — 

allowing for extrapolation to zero stretch and determination of stretch behaviour. 

Recently a great deal of effort has been devoted to obtaining accurate flame speeds 

utilizing this method. For example, Kelley and Law (Kelly and Law 2007) suggested that 

nonlinear extrapolation between the stretched flame speed and stretch rate should be used 

for mixtures with Lewis numbers appreciably different from unity in order to obtain 

accurate flame speed; Bradley et al. (Bradley et al. 2007) developed a method to correct 

the flame speed enhancement due to flame wrinkling arising from hydrodynamic and/or 

thermal-diffusive instabilities and measured laminar flame speed of lean hydrogen/air 

mixtures; Burke et al. (Burke et al. 2008) demonstrated that the effect of flow field 

deviation due to constant-pressure non-spherical chambers can significantly affect the 

accuracy of flame speed measurements and the Flow-Corrected Flame Speed (FCFS) was 

proposed to include the flow field deviation in order to improve the accuracy of flame 

speed measurements.  

The other experimental technique, the so-called constant volume method (Lewis 

and Von Elbe 1961; Bradley and Mitcheson 1976; Metghalchi and Keck 1980; Hill and 

Hung 1988) employs a fast-response pressure transducer to measure the chamber 
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pressure history during the propagation of an expanding spherical flame in a closed 

thick-walled spherical vessel. Conversion of the reactants to hot products across the 

flame front results in a rapid pressure rise and a consequent temperature rise in unburned 

and burned gas. Therefore, this method has the advantage that the flame speed for a given 

mixture over a wide range of temperatures and pressures can be obtained from a single 

test (Metghalchi and Keck 1980). Recently, several improved theoretical models to relate 

the experimentally measured pressure history to the instantaneous flame speeds have 

been developed. Saeed and Stone (Saeed and Stone 2004) developed a multiple burned 

gas zone model to allow for a more realistic temperature distribution within the burned 

gas than the initially employed uniform temperature assumption. Metghalchi and 

co-workers (Parsinejad et al. 2006) considered a variable-temperature central burned gas 

core surrounded by a preheat zone, a uniform-temperature unburned gas shell, and a 

thermal boundary layer at the wall in their model, and they accounted for different 

sources of heat loss. Huzayyin et al.(Huzayyin et al. 2008) revealed that using different 

models to relate the same pressure history (from the same experimental data) to the 

laminar flame speed results in discrepancies up to 15% in the predicted flame speed. The 

result indicates the importance of accurate models and the need to improve them further. 

The objective of the present study is to investigate different effects such as 

ignition and unsteady transition, compression, and flame stretch on the accuracy of 

laminar flame speed measurements using propagating spherical flames and to develop 

new methods to obtain more accurate flame speeds in a broader experimental range by 

correcting these effects. For the constant pressure method, the assumptions such as the 

linear relationship between the stretched flame speed and stretch rate, negligible effects 
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due to ignition and unsteady transition, and zero burned gas velocity will be investigated. 

For the constant volume method, the stretch effect on the measured flame speed will be 

studied. For both methods, the validity of the theoretical models and the improvement in 

the accuracy of measured flame speed will be demonstrated by numerical simulations 

using detailed chemistry for different fuels (hydrogen, methane, and propane). In this 

study, detailed numerical simulations instead of experimental measurement were utilized 

because: 1), the compression induced flow field (which is difficult to measure in 

experiments) can be readily obtained from simulation and thus it is compared with the 

theoretical prediction; and 2), other effects such as radiative loss (which always exists in 

experiments) can be included/excluded in simulations in order to isolate the effects of 

interest. 

5.2 Constant Pressure Method 

For the outwardly propagating spherical flame, the flame front, Rf=Rf(t), has a 

propagation velocity, dRf/dt. If the radial flow velocity is defined positive in the outward 

direction, and the flame front is assumed to be infinitely thin, the velocity of the flame 

front must be subtracted from that in the mass flow balance through the flame front 

(Peters 2000) 

)()(
dt

dR
U

dt
dR

U f
bb

f
uu −=− ρρ                    (5.1) 

where ρ and U are density and flow velocity caused by thermal expansion across the 

flame front, respectively. The subscripts u and b refer to parameters for unburned and 

burned mixtures, respectively. At the flame front, the kinetic balance between the 

propagation velocity (dRf/dt), flow velocity (Uu), and flame speed with respect to the 
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unburned gas (Su), is 

uu
f SU

dt
dR

+=                           (5.2) 

Similarly, the kinetic balance with respect to the burned mixture is 

bb
f SU

dt
dR

+=                            (5.3) 

According to the mass conservation given by equation (5.1), we have 

bu aSS =                              (5.4) 

where a=ρb/ρu is the density ratio. Note that both Su and Sb are laminar flame speeds 

under finite stretch rate. For outwardly propagating spherical flames, the flame stretch 

rate is (Clavin 1985) 

dt
dR

Rdt
dA

A
K f

f

21
==                         (5.5) 

where A=4πRf
2 is the surface area of the flame front. The above flame stretch rate could 

be separated into two components: one due to the strain rate and the other due to the 

flame curvature (Bradley et al. 1996; Groot et al. 2002). Therefore, separate effects due to 

strain rate and curvature on flame speed can be studied (Bradley et al. 1996; Groot et al. 

2002). However, it has been shown that the Markstein length with respect to the stretch 

due to strain rate is not unique while that with respect to the stretch rate given by 

equation (5.5) is unique (Groot et al. 2002). Moreover, in most of the previous 

experimental measurements (Brown et al. 1989; Dowdy et al. 1990; Tseng et al. 1993; 

Aung et al. 1997; Hassan et al. 1998; Tse et al. 2000; Rozenchan et al. 2003) the stretch 

rate defined by equation (5.5) was used. Therefore, it is also used in the present study and 

the separate effects by strain rate and curvature is not studied here. For weakly stretched 
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flames, a linear relationship between the stretched flame speed and the stretch rate exists 

that is quantified by a burned gas Markstein Length, Lb (Clavin 1985) 

KLSS bbb −= 0                            (5.6) 

where Sb
0 is the unstretched flame speed with respect to the burned mixture. The 

unstretched laminar flame speed with respect to the unburned mixture, Su
0, is given 

through mass conservation 

00
bu aSS =                              (5.7) 

By substituting equations (5.4) and (5.7) into (5.6), we have 

KaLSS buu −= 0                          (5.8) 

From equations (5.3) and (5.4), the stretched flame speed, Su, is given by 

b
f

u aU
dt

dR
aS −=                        (5.9) 

In all previous studies utilizing the constant pressure method, data reduction was 

performed only for “small” pressure change and the burned gas is assumed to be 

quiescent (Ub≈0). As a result, the moving velocity of the experimentally visualized flame 

front is the burned flame speed, and from equation (5.9) we have 

)/( dtdRaS fu ≈                        (5.10) 

Therefore, according to equation (5.8), the unstretched laminar flame speed, Su
0, 

and burned gas Markstein Length, Lb (or the unburned gas Markstein Length, Lu=aLb), 

can be obtained from the linear extrapolation based on the plot of Su-K, where Su and K 

are calculated from the flame front history, Rf=Rf(t), according to equations (5.10) and 

(5.5), respectively. It should be noted that the flame front is assumed to be infinitely thin 

in the above discussions. The effect of finite flame thickness, discussed in (Bradley et al. 
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1996; Bradley et al. 1998; Gu et al. 2000; Groot et al. 2002), is not included here.  

The constant pressure method discussed above is based on the following 

assumptions: linear relationship between the stretched flame speed and stretch rate, 

negligible effects due to ignition and unsteady transition, zero burned gas velocity, and 

negligible radiative loss. In the following, the conditions under which these assumptions 

hold and the corrections for circumstances that these assumptions do not hold will be 

investigated. 

5.2.1 Validity of the Linear Relationship between Flame Speed and Stretch  

To investigate under what conditions the stretched flame speed changes linearly 

with the stretch rate, the theory for propagating spherical flames presented in Chapter 2 is 

utilized here. By neglecting radiative loss, the relationship between the normalized flame 

radius, R=Rf/δ, and the normalized flame speed, U=Sb/Sb
0, can be expressed as 
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   (5.11) 

where Tf, Q, and Z are, respectively, the normalized flame temperature, ignition power at 

the center, and Zel’dovich number, which are defined in Chapter 2. Equation (5.11) is 

valid for flames at both small and large radii. Hereafter, we refer to it as the detailed 

model (DM).  

For spherical flames of large radii (R>>1), the detailed model reduces to the 

simplified model (SM) 

)11(2)11()2ln()2( −−−=++
LeRLeR

Z
R

U
R

U             (5.12) 

For weakly stretched flames, the stretched flame speed is close to the adiabatic 
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unstretched flame speed (i.e. U=1+ε with ε<<1). In this limit, equation (5.12) reduces to 

the linear model (LM) 

KaMaU ⋅−= 1                          (5.13) 

where Ka=2U/R=Kδ/Su
0 is the Karlovitz number and Ma=Le-1-(Z/2)(Le-1-1) the 

Markstein number, which is the same as that derived for premixed counterflow flame 

(Law 2006).   

The linear relationship, equation (5.6) or (5.8), utilized for linear extrapolation for 

constant pressure method, is based on the LM given by equation (5.13). To find under 

which conditions the LM works well, the normalized flame speed predicted as a function 

of flame radius and the Karlovitz number (in figures 5.1(b) and 5.5(b), Ka=2U/(σR) is 

used since the propagating speed, thus the flame stretch, is 1/σ times of the laminar flame 

speed, Su
0, to the zeroth order) by DM, SM, and LM for Z=10, σ=0.15 and Le=0.5, 1.0, 

2.0 is shown in figure 5.1. It is observed that SM and LM agree well with DM only for 

large flame radius. In addition, the difference among the prediction from DM, SM, and 

LM strongly depends on the Lewis number. Figure 5.1(b) reveals that for each Lewis 

number, there is a critical Karlovitz number above which the spherical flame does not 

exist, due to the quenching caused by the combined effects of flame curvature and stretch. 

The maximum Karlovitz number for Le=2 is much smaller than that for Le=0.5 and 1.0, 

indicating that small spherical flames does not exist for large Lewis numbers. Finite 

flame curvature always decreases the flame speed (equation 5.12). However, the effect of 

flame stretch on flame speed depends strongly on the Lewis number derivation from 

unity (Law 2006). As a result, the critical Karlovitz number, denoted by the turning points 

in figure 5.1(b), decreases significantly with increasing Lewis number. As will be shown 
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later, this conclusion plays an important role in determining the experimental data range 

for flame speed measurement. 

Figure 5.2 shows the critical flame radius above which the relative discrepancies 

between LM and DM and between SM and DM are less than 5%. It is seen that the 

critical flame radius of SM is much smaller than that of LM for a given Lewis number, 

which is consistent with the fact that the SM is more comprehensive than the LM (SM is 

based on the assumption of large flame radius; while LM is based on the assumption of 

large flame radius as well as small stretch rate). The nonmonotonic change of the critical 

flame radius with Lewis number is due to the fact that the absolute value of the Markstein 

length becomes smallest when Le is close to a critical value which is slightly less than 

unity (Law 2006).  

By comparing the three different models of DM, SM and LM given by equations 

(5.11-5.13), we obtain the critical flame radius above which the linear or non-linear 

relationship between the stretched flame speed and stretch rate is satisfied. This critical 

flame radius can be used as a guide to choose the experimental data range for flame speed 

measurement by using either linear or nonlinear fitting approaches based on equation 

(5.11) or (5.12). Since the critical flame radius changes greatly with Lewis number, for 

mixtures such as rich hydrogen/air or lean propane/air with Lewis numbers greatly 

different from unity, the lower flame radius bound RfL should be specified above the 

critical radius so that the linear (based on LM) or nonlinear (based on SM) extrapolation 

can be carried out. 

5.2.2 Effects of Ignition and Unsteady Transition  

The above theoretical analysis is based on the quasi-steady assumption, with the 
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effects of ignition and unsteadiness are neglected. In order to study the effects of 

unsteady flame evolution at different ignition energies, A-SURF (1D) described in 

Chapter 3 is used to simulate outwardly propagating spherical flames. Detailed chemistry 

is included in the simulation: for H2/air flames, the recent mechanism of 9 species and 25 

reactions developed by Li et al. (Li et al. 2004) is employed. The spherical chamber 

radius is set to be R0=100 cm and the flame trajectory data with flame radius less than 5 

cm are utilized. Therefore, both the pressure increase (<1‰) and the 

compression-induced flow effect described in the next section are negligible. The flame is 

initiated by a small hot pocket of burned product surrounded by fresh mixture at the room 

temperature and pressure (T0=298 K, P0=1 atm). The size of the hot pocket, Rh, is 

between 0.9 mm and 2.0 mm, which changes with the equivalence ratio of H2/air. For 

very rich cases (φ=5.0 or 5.5), which have large Lewis numbers, a larger hot pocket is 

needed to obtain a propagating spherical flame (Chen et al. 2008b). In order to examine 

the effect of ignition energy on flame trajectories, at a fixed equivalence ratio, three 

different hot pocket sizes, Rh, 1.2Rh, 1.4Rh, were adopted to mimic the experiments with 

different ignition energies. The position of the flame front, Rf, is defined as the position of 

maximum heat release rate and the flame speed is calculated from the flame front history, 

i.e. Sb=dRf/dt.  

The propagating spherical H2/air flames at different equivalence ratios (φ=0.5, 1.0, 

2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5) and different ignition hot pocket sizes are simulated. 

Figure 5.3 shows the flame speed with respect to the burned mixture, Sb, as a function of 

the flame radius, Rf, and flame stretch rate, K. The results show that the initial unsteady 

flame transition and different ignition energies (hot pocket sizes) lead to different flame 
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speed trajectories. Only above a critical flame radius, Rc, which is denoted by the open 

circles in figure 5.3, does the flame speed trajectory become independent of the ignition 

energy and converge to a low-dimensional manifold. With the increase of equivalence 

ratio, this critical flame radius increases dramatically. For φ=4.5, the critical radius is 

even larger than 0.8 cm, which lies within typical experimental data ranges utilized for 

extrapolation of flame speed. For example, lower flame radius bounds, RfL, of 0.5 cm or 

0.6 cm are often employed (Kwon et al. 1992; Tseng et al. 1993; Bradley et al. 1996; Tse 

et al. 2000; Farrell et al. 2004). Therefore, care is needed to fit the experimental data for 

flame speed measurements of mixtures with large Lewis numbers. Moreover, figure 5.3(b) 

shows that for flame radii larger than the critical radius (i.e. stretch rates less than the 

critical stretch rate, which are marked by the open circles), Sb changes linearly with K, 

except for very small Lewis numbers (the lean case at φ=0.5). As a result, for these 

conditions, the linear extrapolation can be utilized to obtain unstretched flame speed.  

For H2/air flames, the critical radius from present simulations and the effective 

Lewis number based on contributions from both reactants in (Joulin and Mitani 1981; 

Law 2006) are shown in figure 5.4. The critical radius is shown to change 

non-monotonically with the equivalence ratio and is smallest for φ=2, which corresponds 

to the largest laminar flame speed and the smallest flame thickness. The nonmonotonic 

trend between the critical radius and equivalence ratio is similar to that between the flame 

thickness and equivalence ratio. This is caused by the fact that the duration of initial 

flame transition period (which is proportional to critical radius) strongly depends on the 

flame thickness.  

In order to understand the cause for the strong flame trajectory dependence on the 
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ignition energy and Lewis number, the dependence of normalized flame speed on the 

Karlovitz number (Ka=Kδ/Su
0) of spherical H2/air flames is shown in figure 5.5(a). The 

maximum Karlovitz number changes greatly with the equivalence ratio, or more 

accurately, with the Lewis number. This predicted dramatic change of the maximum 

Karlovitz number is consistent with the theoretical prediction shown in figure 5.1(b). To 

show the effects of ignition energy, the theoretical results for a mixture with Le=2 are 

shown in figure 5.5(b) for comparison. Theory predicts that the ignition energy does not 

affect the flame trajectories above the turning point of maximum Karlovitz number. This 

is due to the fact that energy deposition is treated as a boundary condition at the center 

and the unsteadiness is not included in the asymptotic theory. However, contrary to the 

theory, figure 5.5(a) shows that there is a strong unsteady effect near the maximum 

Karlovitz number. Due to the unsteady effect, the flame speed trajectory depends on the 

ignition energy. For φ=4.5, the simulations reveal that, at large Karlovitz numbers, flames 

initiated by large ignition energies have large flame speeds. However, near the maximum 

Karlovitz number, flames initiated by smaller ignition energies have larger flame speed. 

This new phenomenon is called “flame speed reverse”, which originates from the 

unsteady flame evolution near the adiabatic extinction limit (the point of maximum 

Karlovitz number in figures 5.5(a) and 5.1(b)). Because of the existence of the flame 

speed reversal at large Lewis numbers, neither nonlinear fitting nor linear fitting of 

experimental data including the flame speed reverse period for flame speed determination 

is correct. Ignition energy and transient flame evolution significantly affect the flame 

trajectories and thus must be considered. 

For flame radii larger than the critical radius (figure 5.3), flame speed becomes 
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only dependent on the Karlovitz number. The critical radius above which the unsteady 

flame transition ends can be found by observing the change of the flame thickness during 

flame propagation. Figure 5.6 shows the history of flame thickness (defined as the 

distance between the cold, T=400 K, and hot, T=1000 K, sides of the flame) during flame 

propagation for H2/air at φ=4.5 initiated from three different ignition hot pocket sizes 

(cases a, b, c, marked also in figures 5.3 and 5.5). The results indicate that there is a 

significant change in the flame thickness during the initial period of unsteady flame 

transition. The substantial thickening of the flame initiated by the smallest ignition energy 

before it reaches the maximum Karlovitz number is the cause of the flame speed reversal. 

After the transition period, the flame thickness is almost constant and the three lines 

merge together onto the low-dimensional manifold for Rf>Rc. The change of flame 

thickness during flame propagation clearly demonstrates the effect of unsteadiness on the 

flame trajectory. In addition to the above results obtained under atmospheric conditions, 

numerical simulations of H2/air flames at elevated pressures have also been conducted 

(figure 5.7). It is found that the flame speed reversal effect also exists at high pressures 

and that the critical radius decreases with pressure.  

Therefore, the ignition energy has a significant impact on the flame trajectory and 

the unsteady flame transition causes a flame speed reversal phenomenon, which greatly 

narrows the experimental data range for flame speed extrapolation. Experiments (Chen et 

al. 2008a) on outwardly propagating spherical H2/air flames have been conducted to 

validate the above theoretical and numerical results about Lewis number and 

ignition/unsteadiness effects. 
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5.2.3 Effect of Compression 

In the previous section, the flow compression effect due to the interaction between 

the burned gas thermal expansion and the chamber walls is neglected and the flow 

velocity in the burned gas is assumed to be zero (Ub≈0). As will be shown in this section, 

neglecting the compression-induced flow velocity, Ub, even for a small pressure increase 

could significantly reduce the accuracy of the flame speed measurements. In the 

following, an analytical expression of Ub will be derived and a Compression-Corrected 

Flame Speed (CCFS) will be presented.  

The mass conservation in the spherical bomb gives 

0mmm ub ≡+                          (5.14) 

dtdmdtdm bu // −=                        (5.15) 

in which mb and mu are, respectively, the mass of burned and unburned gases and m0 is 

the total mass which does not change with time. According to the definition of flame 

speed, we have 

uufu SRdtdm ρπ 24/ −=                        (5.16) 

Based on the assumptions that the spherical flame is thin and the temperature is 

uniform in the burned gas region, we have  

bfb Rm ρπ 3)3/4(=                          (5.17) 

By further assuming that the burned gas behaves as an ideal gas and that the compression 

is isentropic during the flame propagation, we have 

PdPd bb γρρ // =                          (5.18) 

where γ is the ratio of heat capacities, and P is the pressure which is nearly uniform in a 

closed chamber (Lewis and Von Elbe 1961). Substituting equations (5.15) and (5.17) into 
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(5.16) and using the above isentropic relationship, one obtains (Lewis and Von Elbe 

1961; Bradley and Mitcheson 1976; Hill and Hung 1988)  

dt
dP

P
R

a
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dR
aS ff

u γ3
+=                        (5.19) 

By comparing equations (5.9) and (5.19), the flow velocity of the burned gas 

behind the flame front is 

dt
dP

P
R

U f
b γ3

−=                           (5.20) 

The pressure and its rate of change in equation (5.20) can be either measured directly in 

experiments or calculated from the flame front history obtained from the Schlieren 

images according to the following relationship (Bradley and Mitcheson 1976) 
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where P0 and Pe are the initial and final chamber pressures, respectively, and R0 is the 

radius of a spherical chamber (which is the equivalent radius, R0=(3V/4π)1/3, for a 

non-spherical chamber of volume V).  

With the increase of pressure, the unburned gas temperature, Tu, will also increase 

so that the density ratio, a, is not a constant but a function of Tu

1)/1(/)( −Δ+== uaduu TTTTTa                  (5.22) 

where ΔT is the temperature increase caused by chemical heat release and it can be 

calculated from thermodynamic data. Assuming the unburned gas is compressed 

isentropically, Tu can be calculated from the pressure which can be evaluated from the 

flame front history according to equation (5.21), Tu=T0(P/P0)(1-1/γ). Then Tu and thus 

a=a(Tu) can also be calculated from the flame front history. 
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Therefore, the compression-induced flow velocity, Ub, can be evaluated from the 

flame front history by using equations (5.20) and (5.21). As a result, flame speed 

extrapolated by using equation (5.9) instead of (5.10) is more accurate due to the 

inclusion of the compression effect. The unstretched flame speed, Su
0, obtained by the 

linear extrapolation of Su given by equations (5.9), (5.20) and (5.21), is called the 

Compression-Corrected Flame Speed (CCFS).  

To show the improvement of the accuracy in flame speed measurement by CCFS, 

A-SURF is used to simulate propagating spherical flames in a closed chamber for 

different fuels (H2, CH4 and C3H8). Detailed chemistry is included in simulation, as 

specified previously in Section 4.2.1 for the H2/air, CH4/air, and C3H8/air flames.  

In all the simulations, the spherical chamber radius is set to be R0=6 cm. All the 

results in the following parts are presented in terms of flame radii normalized by the 

chamber size (Rf/R0). Therefore the same conclusions still hold for the cases using other 

chamber sizes (normalized results from simulations with R0=12 cm show quantitatively 

similar results as those with R0=6 cm). The flame is initiated by a small hot pocket  (~1 

mm in radius) of burned products surrounded by fresh mixture at room temperature and 

pressure (298 K, 1 atm). At the inner and outer boundaries, r=0 and r=R0, respectively, 

zero-gradient conditions are enforced. The effects of ignition and unsteadiness discussed 

previously are excluded and only the data for flame radii larger that 6 mm are used to 

calculate the flame speed in this section.  

For the constant pressure method, similar to the Schlieren imaging in the 

experiments, the flame front history, Rf=Rf(t), from the numerical simulation is used to 

calculate the flame speed. In the simulation, the position of flame front is defined as the 
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position of maximum heat release It was pointed out that the level of contours chosen to 

track the flame front might affect the flame front propagating speed (Bradley et al. 1996). 

However, this second-order effect is important only for very lean or rich pre-mixtures 

which have much thicker reaction zones. The chamber pressure can be either obtained 

from simulation or calculated from flame front history by solving equation (5.21). The 

difference between the pressures obtained from those two methods is negligible. The 

compression-induced flow velocity, Ub, is defined as the flow velocity at the position 

where 99.9% of the chemical heat is released. 

Figure 5.8 shows the change of the flow field during flame propagation. There is a 

velocity jump at the flame front induced by thermal expansion resulted from chemical 

heat release in the flame reaction zone. The product and unburned mixture are ‘expanded’ 

inwardly and outwardly, respectively. When the relative flame radius is small, the 

velocity of burned gas is negligible and thus the assumption of zero burned gas velocity 

is reasonable. However, as shown in figure 5.8, the velocity of burned gas continuously 

increases during the flame propagation. Therefore, without including the movement of 

the burned gas, the flame speed would be under-predicted. This is further shown in 

figures 5.9~5.11, which are results from the same simulation of the outwardly 

propagating spherical stoichiometric CH4/air flame. Figure 5.9 shows the normalized 

compression-induced flow velocity of the burned gas behind the flame front, aUb/SL
0, as a 

function of normalized flame radius or relative pressure increase. The results from the 

theoretical relations given by equations (5.20) and (5.21) agree well with those from the 

simulation. Note that to the zeroth order of accuracy, we have Su≈SL
0
 (Su is the stretched 

flame speed while SL
0 is the planar unstretched flame speed). Therefore, according to 
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equations (5.9) and (5.10), aUb/SL
0 is the relative error in evaluating the stretched flame 

speed, Su, caused by neglecting the compression-induced flow, Ub. The results indicate 

that for normalized flame radius Rf/R0 larger than 0.4, the error will be greater than 5%. 

Thus, for larger flames, in order to derive accurate flame speeds from experimental 

measurements, the flow compression effect must be considered. As will be shown in 

figure 5.11, this error is further amplified during the linear extrapolation process to obtain 

the unstretched flame speed. Note that when the normalized flame radius Rf/R0 is less 

than 0.5, the relative pressure increase is below 18% and the increase of the temperature 

of unburned mixture is less than 12 K. The resulting change of the laminar flame speed is 

less than 1% and thus is negligible. 

The flow compression effect on the stretched flame speed is further demonstrated 

in figure 5.10, in which different methods are employed to calculate the stretched flame 

speed, Su. The normalized stretch rate is defined as K’=Kδ/SL
0, with δ=0.2 mm and 

SL=37.2 cm/s being the unstretched adiabatic laminar planar flame thickness and flame 

speed, respectively. Figure 5.10 reveals that if the effect of flow compression is not 

considered, i.e. Su=a(dRf/dt), Su decreases with increasing flame size when Rf/R0>0.3. 

This is due to the fact the flame front propagating speed is reduced by the 

compression-induced flow (note that Ub is negative as shown in figure 5.9). The rapid 

decrease of the flame speed at large flame radii (or small stretch rate) renders the linear 

extrapolation to zero stretch rate inaccurate. Therefore, in order to obtain an accurate 

unstretched flame speed (Su
0) from the linear extrapolation of Su-K according to equation 

(5.8), an upper bound, RfU, must be chosen to make RfU/R0<0.3 such that the effect of the 

compression-induced flow is prevented. Otherwise the flame speed will be 
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under-predicted. For a small combustion chamber of R0=6 cm, the RfU that satisfies 

RfU/R0<0.3 is 1.8 cm. As such, the flame radius range, [RfL, RfU], for which the constant 

pressure relations are accurate, is [0.6 cm, 1.8 cm]. This flame radius range might be too 

narrow for accurate linear extrapolation. Therefore, the compression-induced flow 

velocity, Ub, should be considered to extend the upper bound, RfU. Figure 5.10 shows that 

when the flow velocity, Ub, is considered, i.e. Su=a(dRf/dt-Ub), without including the 

temperature change, Su will monotonically increase during flame propagation (increase of 

Rf) until Rf/R0>0.52. Therefore the upper bound, RfU, is extended more than 70% by 

considering the compression-induced flow velocity, Ub. The decrease of Su for Rf/R0>0.52 

is caused by the change of density ratio, a, with the increase of the unburned gas 

temperature, Tu, as mentioned previously, and thus the density ratio is a function of Tu 

instead of being constant, i.e. a=a(Tu), which is given by equation (5.22). Accordingly, 

figure 5.10 shows that if the change of density ratio is also considered, i.e. 

Su=a(Tu)·(dRf/dt-Ub), Su monotonically increases during the entire flame propagation 

process as is expected for a positive Markstein length mixture and a flame with 

increasing Tu. It should be noted that when the pressure increase is small ((P-P0)/P0<2% 

or Rf/R0<0.25), the compression induced flow, Ub, is negligible and thus the stretched 

flame speeds calculated from all three methods are almost the same. However, the two 

CCFS methods yield linear relationships with stretch rate, as predicted by theory, for 

larger spans of data. 

To reveal how the choice of the flame radius range affects the measured laminar 

flame speed by the flow compression effect, the accuracy of the unstretched flame speed 

with and without the flow compression correction using different flame radii ranges, [RfL, 
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RfU], are shown in figure 5.11. The unstretched flame speed, Su
0, is extrapolated from the 

plot of Su-K according to equation (5.8) and SL
0=37.2 cm/s is the laminar flame speed of 

the unstretched planar flame at the room temperature and pressure obtained from the 1-D 

planar flame simulation. When the compression effect is neglected, i.e. Su=a(dRf/dt), 

figure 5.11 shows that the flame radius range affects greatly the extrapolated unstretched 

flame speed, Su
0, with the increase of the upper bound of the flame radius, Su

0,  

significantly under-predicted (by more than 20%). This large discrepancy reveals that the 

flow compression effect on flame speed is magnified by the linear extrapolation to zero 

stretch rate. However, when the compression induced flow velocity, Ub, is considered and 

the CCFS is employed, i.e. Su=a(dRf/dt-Ub), the discrepancies between the extrapolated 

unstretched flame speed, Su
0, using different flame radii ranges are all below 5%. 

Therefore significant improvement in the accuracy of flame speed measurements is 

achieved using the CCFS, which considers the compression-induced flow. A typical data 

range utilized in previous experiments is [1.0 cm, 2.5 cm]. For chambers of radius larger 

than 10 cm (Brown et al. 1989; Dowdy et al. 1990; Tseng et al. 1993; Aung et al. 1997; 

Bradley et al. 1998; Gu et al. 2000), the accuracy of flame speed measurements 

neglecting the compression effect is below 5% according to figure 5.11. However, these 

experiments are for measurements below 5 atmospheres. For measurements of flame 

speed at high pressures (above 10 atmosphere), smaller chamber should be used for 

safety issues and only flames of small size can be used because hydrodynamic instability 

and/or thermal diffusive instability, making flame front wrinkled, will occur earlier at 

higher pressures (Rozenchan et al. 2003). When a chamber of 5 cm in radius is used, to 

use the data range of [1.0 cm, 2.5 cm] will result in errors of 15%. Only when the CCFS 
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is employed, the error becomes less than 5%. 

Figure 5.12 shows the accuracy of the unstretched flame speed for stoichiometric 

H2/air and C3H8/air flames, respectively. The results are similar to those of CH4/air 

mixtures. All the results demonstrate that: 1), the compression-induced flow and flame 

radius range have significant impacts on the accuracy of the measured flame speed; 2), 

the compression-induced flow can be accurately predicted by the analytical correlation 

given by equations (5.20) and (5.21); 3), the accuracy of the flame speed measurements 

can be greatly improved using the CCFS; and 4), for high pressure experiments using 

small chambers, CCFS should be utilized to obtain accurate flame speed.  

5.3 Constant Volume Method 

The constant volume method also uses a spherical vessel with central ignition. 

However, it calculates the flame speed based on the pressure history, P=P(t), recorded 

after the flame has grown to a sufficiently large size so that the pressure variation is 

evident. Details of theoretical analysis on this method can be found in (Lewis and Von 

Elbe 1961; Bradley and Mitcheson 1976; Hill and Hung 1988) and are only briefly 

described below.   

The constant volume method is based on the following assumptions (Hill and 

Hung 1988): the flame is thin, smooth, and spherical; the pressure is spatially uniform; 

the constituents of the burned and unburned gases behave as ideal gases; the dissociation 

products are in equilibrium; the unburned gas is compressed isentropically; and buoyancy 

effects are negligible. These assumptions allow for the calculation of properties of the 

burned and unburned gases in a constant volume combustion process. 

First, we define the mass fraction of burned gas, x, as 
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00 /1/ mmmmx ub −==                        (5.23) 

where the burned mass is given by equation (5.17). The unburned and total masses are 

given by the following two equations, respectively, 

ufu RRm ρπ )()3/4( 33
0 −=                     (5.24) 
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where ρu
0 is the initial mixture density. According to the isentropic assumption we have 

γ

ρ
ρ /10

0

)(
P
P

u

u =                           (5.26) 

From equations (5.14), (5.16), (5.24-26), the following expressions for flame 

speed, Su, can be obtained  
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The above equations describe essentially the technique for determining the 

laminar flame speed from the pressure history (Lewis and Von Elbe 1961; Bradley and 

Mitcheson 1976; Hill and Hung 1988). Equilibrium calculations (Metghalchi and Keck 

1980; Takizawa et al. 2005) at the constant volume condition are carried out to obtain the 

relationship of P with x, γ, and the burned and unburned gas temperatures, Tb and Tu. 

These relationships are then applied to the experimentally measured pressure, P, and 

finally the flame speed, Su, is obtained by solving equations (5.27) and (5.28). Detailed 

descriptions are given in (Metghalchi and Keck 1980; Takizawa et al. 2005). For 

simplicity, the commonly employed assumption of a linear relationship between the mass 
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fraction of the burned gas and pressure rise is employed (Lewis and Von Elbe 1961; 

Bradley and Mitcheson 1976; Hill and Hung 1988), 

)/()( 00 PPPPx e −−=                        (5.29) 

The validity of this assumption is confirmed by detailed numerical simulation in 

the next sub-section (figure 5.14b). Substituting equation (5.29) into (5.27) and (5.28), 

the relationship in (5.21) is readily obtained and the flame speed is given by  
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Therefore, from the pressure history P=P(t), the flame position Rf can be obtained 

according to equation (5.21) and the stretched flame speed Su can be evaluated by using 

equation (5.20).  

5.3.1 Effect of Stretch Rate 

In all previous experimental studies (Metghalchi and Keck 1980; Hill and Hung 

1988; Farrell et al. 2004; Saeed and Stone 2004; Takizawa et al. 2005; Parsinejad et al. 

2006; Huzayyin et al. 2008), the flame speed, Su, obtained from the constant volume 

method is actually the stretched flame speed, not the unstretched flame speed, Su
0. As 

mentioned before, the stretch effect on flame speed could be significant for mixtures with 

Lewis numbers greatly deviating from unity. In the following, the effects of flame stretch 

on the measured flame speed will be analyzed, and a method that includes a stretch 

correction in the determination of laminar flame speed will be introduced. 

The stretch effect on flame speed is given by equation (5.8). By using Lu=aLb 

(this relation is correct only under the assumption of thin flame front), it becomes 

KLSS uuu −= 0                           (5.31) 
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Note that to the zeroth order, we have Su≈Su
0. So equation (5.31) can be written as 
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With the definition of stretch rate given in equation (5.5) and the flame radius in 

term of pressure in equation (5.21), the following expression for the flame stretch rate can 

be derived 
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By using equations (5.21), (5.30), (5.32), and (5.33), the relative difference of the 

flame speed caused by stretch effects can be obtained as  
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According to the above equation, the error in the measured flame speed caused by 

neglecting the stretch effect can be evaluated. It is seen from equation (5.34) that the error 

is proportional to the Markstein length and the inverse of flame radius. Furthermore, 

when the flame size is small, the pressure increase is small and thus Pe/P is large, so the 

stretch effect is further magnified by the second term inside the brackets in equation 

(5.34). Therefore, for small spherical flames in mixtures with Lewis numbers greatly 

deviating from unity, the stretch effect on the flame speed is significant so stretch 

correction is necessary. Figure 5.13 shows the error caused by neglecting the stretch 

effect of equation (5.34) for a typical run with Pe/P0=8.27, γ=1.4, Lu=0.25 mm (close to 

the Markstein length of rich hydrogen/air and lean propane/air flames, as will be shown 

later) and chamber size R0=6 cm. It is observed that the stretch effect on the flame speed 

is greater than 10% when the pressure increase is below 20% (P/P0<1.2 or Rf/R0<0.54). 
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Therefore, the stretch correction is needed for accurate determination of the laminar 

flame speed.  

In order to obtain a more accurate flame speed, a Stretch-Corrected Flame Speed 

(SCFS), Su
0, is proposed here. The SCFS is obtained by applying a stretch correction 

according to equation (5.31), in which the stretched flame speed, Su, is calculated from 

the measured pressure history according to equations (5.30) and (5.21), and the stretch 

rate, K, calculated according to equation (5.33). Note that in equation (5.31), the 

calculation of SCFS requires a value for the Markstein length, Lu. The Markstein length, 

which is usually measured either from propagating spherical flames using the constant 

pressure method discussed above or from counterflow flame experiments, can be 

obtained from linear extrapolation of the stretched flame speed, Su, and flame stretch rate, 

K, calculated from the pressure history (according to equations 5.30, 5.21, 5.33) over 

spans of data where the pressure and temperature increase is small for the constant 

volume method. Since the temperature and pressure of the unburned gas increase during 

the flame propagation, the flame speed is affected not only by the stretch rate but also by 

the increases of the temperature and pressure of the unburned gas. Therefore, the 

Markstein length can not be obtained accurately from the linear extrapolation of Su and K 

calculated from pressure history when the pressure increase is large (above 5%) for the 

constant volume method. However, there exists a portion of the flame propagation where 

the pressure rise is detectable experimentally, while the flame speed is nearly insensible 

to changes in temperature and pressure and thus is only affected by the stretch rate. As 

will be shown by numerical simulations below, the Markstein length corresponding to 

mixtures at the initial pressure can be accurately obtained from the pressure history 
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during this period and can be utilized in the SCFS method to improve the accuracy of the 

flame speed measurement. 

For the constant volume method, the pressure history, P=P(t), from the simulation 

is used to calculate the flame speed without stretch correction according to equations 

(5.30) and (5.21). The SCFS is calculated from the pressure history using the procedure 

proposed above. Before obtaining the SCFS, the validity of the theoretical relationships 

between the flame radius and pressure given by equation (5.21) and the linear 

relationship between the mass fraction of burned gas and pressure rise given by equation 

(5.29) is demonstrated by their excellent agreement with numerical simulation of 

propagation spherical flames in a closed spherical chamber. The results for a rich H2/air 

flame at the equivalence ratio of φ=4 are shown in figure 5.14, which reveals that the 

theoretical model agrees well with the direct numerical simulation. Similar results for 

other fuels are also obtained, indicating the robustness of the theoretical relationships 

given by equations (5.21) and (5.29). 

In order to obtain the Stretch-Corrected Flame Speed (SCFS), the Markstein 

length, Lu, must be extracted from the pressure history. As mentioned before, the 

temperature and pressure of unburned gas increase during flame propagation. As a result, 

the Markstein length, Lu, which depends on pressure and temperature, may also change. 

In the following, the Markstein length is obtained from two different methods. The first 

method (Lu≠const) is to use Rf=Rf(t) results from numerical simulation to calculate the 

Markstein length through linear extrapolation of stretched flame speed, Su, and stretch 

rate, K, at constant pressure and temperature calculated from the constant pressure 

method. This process is repeated to obtain the Markstein length at different temperature 
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and pressures corresponding to those for flames at different sizes in the constant volume 

method. Unfortunately, in most experimental measurements of flame speed, it is 

impossible to calculate the Markstein length accurately using the above method because a 

validated mechanism is usually not available. The second method (Lu= Lu
0=const) is to 

use the pressure history which is recorded in experiments to obtain the Markstein length 

via linear extrapolation of Su and K calculated from pressure history (according to 

equations 5.39, 5.21, 5.33). In addition, in order to remove the effect of pressure and 

temperature increase, the data range used for the Markstein length calculation is limited 

to those with pressure increase lower than 5%. The results show that the Markstein length 

obtained by the second method agree well (less than 2% difference) with those obtained 

from the first method. The Markstein lengths obtained from the two different methods 

proposed above will be utilized to calculate the SCFS. 

The propagating spherical flames of different fuels were simulated and the results 

are shown in figures 5.15 and 5.16. For a rich H2/air flame of the equivalence ratio of 

φ=4, the Markstein length corresponding to mixtures at the initial pressure and 

temperature (1 atm, 298 K), is 0.3 mm which is predicted well by both methods. Figure 

5.15(a) shows that without the stretch correction the flame speed from the constant 

volume method (using equations 5.30 and 5.21) agree well with those from PREMIX 

(PREMIX calculations are conducted at different sets of temperature and pressure 

according to the expected rise as the flame kernel grows in the constant volume vessel) 

only at a very large pressure increase (large Rf/R0). When the pressure increase or the 

relative flame radius is small, the discrepancy between the flame speed without and with 

stretch correction is more than 20%. This result shows clearly that stretch correction is 
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necessary in the constant volume experiment to obtain a reliable flame speed for small 

spherical flames. Figure 5.15 shows that the SCFS agrees very well with those from 

PREMIX, even for small pressure increases. Therefore, the accuracy of the measured 

flame speed is greatly improved by utilizing the SCFS. 

 Results indicate that the SCFS using the Markstein lengths from the above two 

methods (Lu≠const and Lu=const) agree very well. In fact, using a constant Markstein 

length from the second method only slightly over-predicts the stretch effect because the 

Markstein length and stretch rate decrease with increasing pressure. As shown in figure 

5.15(b), the stretch rate (normalized by the stretch rate at Rf/R0=0.1) quickly decreases 

with increasing pressure. This explains why the difference between the SCFS obtained 

using the first and second methods is negligible. The success of the second method is 

significant for experimental measurements of flame speeds by using the constant volume 

method – the SCFS can be obtained directly from the pressure history without any 

knowledge of chemical kinetics and transport properties. 

For a stoichiometric H2/air flame of φ=1, the unburned Markstein length is 0.03 

mm at the initial pressure and temperature of (1 atm, 298 K). Therefore, as expected, the 

error caused by neglecting the stretch effect is small (below 5% in this case), which is 

also confirmed by results shown in figure 5.16(a). It is seen that for the stoichiometric 

H2/air mixture, which has a small unburned Markstein length, the stretch effect is 

negligible and the discrepancy between the flame speed without and with stretch 

correction is small.  

For a lean H2/air flame of φ=0.45, the unburned Markstein length is negative, 

Lu=-0.28 mm at the initial pressure and temperature of (1 atm, 298 K). As such, positive 
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flame stretch will increase the flame speed according to equation (5.8). As shown in 

figure 5.16(b), flame speed without stretch correction is much larger than the planar 

unstretched flame speed predicted by PREMIX. The discrepancy between the flame 

speed without and with stretch correction can reach as high as 50% for this case. Figure 

5.16(b) shows that after the stretch correction, the flame speed obtained from the constant 

volume method agrees well with those computed from PREMIX. Therefore, the above 

results show that the accuracy of the flame speed measurement can be greatly improved 

by utilizing the SCFS. Of course, in experiments for lean H2/air flames, cellular 

instability will greatly affect the flame speed when the flame radius is larger than a 

critical value. Nevertheless, the results of lean H2/air flame are presented here in order to 

demonstrate the validity of the analytical relation for the stretch effect given by equation 

(5.34), and the improvement of the flame speed measurements accuracy by using SCFS. 

For a stoichiometric CH4/air flame, similar results to those of the stoichiometric 

H2/air shown in figure 5.16(a) are obtained. It is found that the stretch effect is negligible 

since the Markstein length is small, which agrees with the prediction from equation 

(5.34). 

For a lean C3H8/air flame of φ=0.8, the unburned Markstein length is 0.19 mm at 

the initial pressure and temperature of (1 atm, 298 K). Figure 5.16(c) shows that when the 

pressure increase or the relative flame radius is small, the discrepancy between the flame 

speed with and without the stretch correction is more than 20%. After the stretch 

correction, the flame speeds from the constant volume method agree very well with those 

from PREMIX. Again, the accuracy of the measured flame speed is shown to be greatly 

improved by utilizing the SCFS. All the results in figure 5.16 show that the SCFS based 
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on Markstein lengths obtained from the two methods are also in good agreement. 

Therefore, all the numerical results of H2/air, CH4/air and C3H8/air mixtures show 

that for mixtures of large unburned Markstein lengths, the stretch effect on flame speed 

measurement in the constant volume method is significant and that the SCFS should be 

calculated to improve the accuracy of the flame speed measurements. Without stretch 

correction, only the data of spherical flame with normalized radius larger than 0.6 or 

presume increase greater than 50% can be utilized (figures 5.15a, 5.16b, 5.16c). After 

stretch correction, the SCFS agrees well with that from PREMIX and can be utilized as 

unstretched laminar flame speed for spherical flames with normalized radius larger than 

0.1. Therefore, the present SCFS method not only greatly improves the accuracy of the 

flame speed measurements but also extends the parameter range of experimental 

conditions for which accurate measurements can be gathered. Since the proposed 

methods do not need information about transport and kinetic properties of the mixtures, 

these methods can be directly implemented in experimental measurements. 

5.4 Conclusions 

The constant pressure and constant volume methods utilizing propagating 

spherical flames for laminar flame speed measurements were studied theoretically and 

numerically. Different effects such ignition, unsteadiness, compression, and stretch on the 

accuracy of flame speed determination were investigated. New methods to obtain more 

accurate flame speeds in a broader experimental range by correcting for these effects 

were presented. The principal conclusions are:  

1. For the constant pressure method, theoretical analysis reveals a critical flame 

radius only above which is the linear or non-linear extrapolation for flame speeds valid. It 
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is found that the critical radius changes non-monotonically with the Lewis number. For 

large Lewis numbers, the critical radius can be greater than the minimum flame radius 

used in the experimental measurements, leading to invalid flame speed extrapolation. The 

results also show that there is a critical Karlovitz number beyond which a spherical flame 

cannot exist, due to quenching caused by the combined effects of flame curvature and 

stretch. Furthermore, the ignition energy is shown to have a significant impact on the 

flame trajectory. It is found that the unsteady flame transition at different ignition 

energies causes a flame speed reversal phenomenon near the maximum Karlovitz 

number. The occurrence of flame speed reversal greatly narrows the experimental data 

range for flame speed extrapolation. Moreover, it is found that the compression induced 

flow can greatly affect both the instantaneous stretched and extrapolated unstretched 

flame speeds. When the compression effect is neglected, the choice of the flame radii 

range significantly affects the extrapolated unstretched flame speed. Due to the flow 

compression effect, the maximum flame radius, below which accurate measurements can 

be gathered in experiment, is severely restricted. An analytical expression is derived to 

evaluate the compression-induced flow velocity via the flame front history. A 

Compression-Corrected Flame Speed (CCFS) method for flame speed measurement is 

proposed. Numerical simulations using detailed chemical mechanisms for hydrogen/air, 

methane/air, and propane/air flames demonstrate that the present CCFS method not only 

increases the accuracy of the measured flame speed but also extend the parameter range 

of experimental conditions. For high pressure experiments in which small chambers are 

used, CCFS should be utilized to obtain accurate flame speed measurements. 
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2. For the constant volume method, an analytical expression is derived to evaluate 

the stretch effect on the determination of flame speeds. It is found that the stretch effect is 

proportional to the Markstein length and inversely proportional to the flame radius. For 

mixtures with Lewis numbers greatly deviating from unity, the stretch effect on the flame 

speed is significant. A Stretch-Corrected Flame Speed (SCFS) model is then proposed to 

obtain accurate flame speed directly from the experimental measurement. The accuracy 

of the measured flame speed is greatly improved by using the SCFS method, which is 

demonstrated by detailed numerical simulation. 

The present results indicate that extrapolation of unstretched flame speeds in 

larger bombs at low pressures using typical flame radius ranges yield accurate results 

(within 5%) without consideration of compression effects. However, in smaller bombs, 

they reveal that the extrapolation is subject to large errors (~15%) if these effects are not 

considered. Moreover, the errors become even more serious. The proposed improvements 

to the theoretical models not only increases the accuracy of flame speed measurements 

but also enable flame speed measurements to be gathered from small bombs, which have 

significant advantages in terms of the pressure range, cost, and reduction of flame 

wrinkling and radiation effects, without sacrificing accuracy. 

Note that the effect of radiative heat loss on the accuracy of flame speed 

measurement utilizing propagating spherical flames is not included in the present study. 

It has been shown in (Chen et al. 2008c) that radiation has three effects: 1) to decrease the 

flame temperature and thus flame speed; 2) to induce inward flow and slow down the 

flame propagation; and 3) to preheat the reactants due to absorption. The first effect is 

found to be important only for near-limit mixtures having very low laminar flame speed 
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(less than 10 cm/s) and the second effect is found to be important only for highly 

radiative mixture (for example, CO2 diluted mixture in oxy-fuel combustion). The third 

effect will be discussed in the next chapter. For most mixtures (H2/air, CH4/air, C3H8/air, 

etc.) not close to their flammability limits and without CO2 dilution, the effects of 

radiation can be neglected. 
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Figure 5.1: Normalized flame speed as a function of (a) flame radius and (b) Karlovitz 

number predicted by different models for different Lewis numbers. 
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Figure 5.2: The critical flame radius above which the relative discrepancies between LM 

and DM and between SM and DM are less than 5% at different Lewis numbers. 
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Figure 5.3: Flame speed as a function of (a) flame radius and (b) stretch rate for H2/air at 

different equivalence ratios: results from simulation. 
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Figure 5.4: Critical flame radii and Lewis numbers for H2/air at different equivalence 

ratios. Data denoted by open triangles are from (Law 2006) and those by squares are from 

(Joulin and Mitani 1981). 
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Figure 5.5: Normalized flame speed as a function of Karlovitz number: (a), from 

simulation of H2/air for different equivalence ratios and ignition hot pocket sizes; (b), 

from theory for Le=2.0 and different ignition powers. 
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Figure 5.6: Variation of flame thickness during flame propagation from different 

initiation kernels for H2/air (φ=4.5). 
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Figure 5.7: Normalized flame speed as a function of Karlovitz number for H2/air (φ=5.0) 

at different pressures and ignition hot pocket size. 
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Figure 5.8: Change of flow field during flame propagation (velocity normalized by planar 

laminar flame speed and length normalized by spherical chamber radius).  

 

 

-20%

-15%

-10%

-5%

0%

5%

0 0.1 0.2 0.3 0.4 0.5 0.6

Rf/R0

N
or

m
al

iz
ed

 c
om

pr
es

sio
n 

in
du

ce
d 

flo
w

, a
*U

b/S
L

0

  0.01   0.02        0.05         0.1            0.2
Relative pressure increase, (P-P0)/P0

from
theory

from
simulation

 

Figure 5.9: The compression induced flow velocity during the propagation of a 

spherical stoichiometric CH4/air flame. 

 

 147



0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4
Normalized stretch rate, K'

N
or

m
al

iz
ed

 fl
am

e 
sp

ee
d,

 S
u/

S L
0

           0.5    0.4    0.3            0.2                                         0.1

Normalized flame radius, Rf/R0

Su=a*(dRf/dt-Ub)
Su=a*dRf/dt

Su=a(Tu)*(dRf/dt-Ub)

 
 

Figure 5.10: Normalized stretched flame speed as a function of normalized stretch rate 

and flame radius for a stoichiometric CH4/air flame. 
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Figure 5.11: Accuracy of the unstretched flame speed with and without compression 

correction using different flame radius ranges for a stoichiometric CH4/air flame. 
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Figure 5.12: Accuracy of the unstretched flame speed with and without compression 

correction using different flame radius ranges for (a), a stoichiometric H2/air flame; (b), a 

stoichiometric C3H8/air flame. 

 149



0%

5%

10%

15%

20%

25%

30%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized flame radius, Rf/R0

St
re

tc
h 

ef
fe

ct
 o

n 
fla

m
e 

sp
ee

d,
 1

-
/S

u0

1.01  1.02   1.05    1.1      1.2            1.5           2       3   4  5   8
Normalized pressure, P/P0

St
re

tc
h 

ef
fe

ct
 o

n 
fla

m
e 

sp
ee

d,
 1

-S
u/

S u
0

 
 

Figure 5.13: The stretch effect on the flame speed according to equation (5.34) with 

Pe/P0=8.27, γ=1.4, Lu=0.25 mm, R0=6 cm.
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Figure 5.14: The change of (a) normalized flame radius and (b) fraction of burned gas 

with normalized pressure during the propagation of a spherical H2/air flame of φ=4 in a 

closed spherical bomb. 
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Figure 5.15: (a) Flame speed with and without stretch correction and (b) normalized 

stretch rate as a function of normalized flame radius and pressure for a H2/air flame of 

φ=4. 
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Figure 5.16: Flame speed with and without stretch correction as a function of normalized 

flame radius and pressure for (a), a H2/air flame of φ=1; (b), a H2/air flame of φ=0.45; 

(c), a C3H8/air flame of φ=0.8. 
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Chapter 6: Effect of Radiation on Flame Propagation 

and Extinction 
 

In this chapter, the effect of radiation on flame propagation and extinction is 

investigated. In the first part, the effect of radiative heat loss on both outwardly and 

inwardly propagating spherical flames is studied using asymptotic analysis for a 

simplified quasi-planar thermo-diffusion flame structure. In the second part, the effects of 

spectral-dependent radiation and absorption on the flammability limits and flame speed 

are investigated experimentally and numerically for CO2 diluted outwardly propagating 

CH4/O2/He flames at normal and elevated pressures. In the third part, the combined 

effects of radiation, curvature, and stretch on the extinction of premixed counterflow and 

tubular flames are analyzed.    

6.1 Radiation Effect on Propagating Spherical Flames 

6.1.1 Introduction 

Radiation heat transfer is well known to be a dominant mechanism for near-limit 

flames. Extensive studies have been conducted to investigate the effects of radiation, 

stretch, and curvature on flame extinction by using the counterflow flames, outwardly 

propagating spherical flames (OPF), and tubular flames, all of which have positive flame 

stretch rate. To study the effect of negative flame stretch rate, the inwardly propagating 

spherical flames (IPF) can be utilized. The quenching of IPF has been studied 

theoretically and numerically in (Frankel and Sivashinsky 1984; Flaherty et al. 1985; Sun 

and Law 1998). The quenching was found to take place at non-zero velocity of the flame 

front for mixtures with Lewis number less than unity due to the negative stretch rate of 
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IPF. For mixtures with Lewis number larger than unity, it was shown that extinction also 

occurs for IPF due to depletion of the upstream mixture (Sun and Law 1998). Both the 

OPF and IPF were studied in (Sun et al. 1999) to show the linear relationship between 

stretched flame speed and flame stretch rate. However, radiative heat loss was not 

considered in all of the above studies on IPF. As a result, how radiation affects the 

propagation and extinction of IPF is not well understood. Furthermore, as discussed in 

the previous chapter, the method utilizing propagating spherical flames in a closed 

chamber is currently one of the most favourable methods for measuring laminar flame 

speeds and Markstein lengths. Radiation transfer is inevitable in practical experiments 

and the effect of radiation on flame speed measurements has been investigated in 

previous studies (Taylor 1991; Chen et al. 2007a; Chen et al. 2008c). However, there is 

no study about radiation effect on the Markstein length. Therefore, how the Markstein 

length is affected by radiation remains unclear.    

The objective of this study is to answer the above two questions. Both the OPF 

and IPF with radiative loss will be investigated and the emphasis is on studying the 

effects of radiative loss and preferential diffusion on the flame propagation speed, 

Markstein number, and flame extinction. 

6.1.2 Mathematical Model and Asymptotic Solutions 

Figure 6.1 shows the schematic diagrams of the OPF and IPF investigated in the 

present study. The mathematical model for the OPF and IPF is similar to that presented in 

Chapter 2. Unlike Chapter 2 where emphasis is on the initiation of OPF, here we focus on 

the propagation and extinction of OPF and IPF. The large flame radius assumption used 

in (Frankel and Sivashinsky 1983; Frankel and Sivashinsky 1984) is employed here, 
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under which the nondimensional governing equations, (2.9a, 2.9b), can be simplified as   

ω
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where )(tRr −=ξ  is the moving coordinate attached to the propagating flame front, 

R=R(t), in which the thermo-diffusion structure of the flame is quasi-planar, i.e. R>>ξ 

(Frankel and Sivashinsky 1983).  

Following the same asymptotic analysis procedure presented in Chapter 2, the 

following algebraic system of equations for normalized flame propagation speed, U 

(U=│dR/dt│=│V-2/R│), normalized flame radius, R, and normalized flame temperature, 

Tf, are obtained (the normalization is presented in Chapter 2)  
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where ‘+’ is for OPF and ‘–’ for IPF. Eliminating the flame temperature and setting 

L=2Zh, where h~O(1/Z) and L~O(1), we have 

L
Rdt

dR
LeR

Z
Rdt

dR
Rdt

dR
−+−−=++ )2)(11(2)2(])2ln[()2( 22         (6.4) 

Using the above relationship, the effect of radiative loss on OPF and IPF could be 

investigated by comparing the normalized flame propagation speed, U=│dR/dt│, at 

different flame radii, R, and radiative loss intensities, L. The preferential diffusion effect 

can also be studied by changing the Lewis number in equation (6.4). The general theory 

presented in Chapter 2, equation (2.14), which works for OPF for all flame radii range, is 

found to reduce to the present result, equation (6.4), in the limit of R>>1 for OPF. Figure 
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6.2 shows the flame propagation speed as a function of flame radius for OPF predicted by 

the present simplified model, equation (6.4), and the detailed model, equation (2.14). It is 

seen that the prediction from the simplified model agrees well with that from the detailed 

model at different Lewis numbers and radiative losses. It is noted that the detailed model 

only works for OPF and there is no counterpart theory for IPF; while the simplified 

model under the assumption of large flame radius works for both OPF and IPF.  

The present simplified model recovers previous results in different limiting cases. 

Without radiative loss, L=0, equation (6.4) reduces to that of adiabatic propagating 

spherical flames studied in (Frankel and Sivashinsky 1983). Moreover, by changing the 

curvature from 2/R to 1/R in equation (6.4), the same result for nonadiabatic propagating 

cylindrical flames as that presented in (Mitani 1980) is obtained. In the limit of ∞→R , 

equation (6.4) recovers the classical theory of flammability limit for planar flames (Joulin 

and Clavin 1979) 

LUU −=])ln[()( 2020                        (6.5) 

where U0 is utilized to denote the nondimensional (normalized by adiabatic planar flame 

speed) plane flame speed with radiative loss. According to equation (6.5), the 

flammability limit for planar flame is eL /1* =  and . 2/10* −= eU

 For both OPF and IPF, the Karlovitz number is defined as K=(2/R)(dR/dt) 

(Clavin 1985; Law 2006). When it is small, │K│<<1, there is a linear relationship 

between U and K (Clavin 1985) 

KMaUU ⋅−≈ 0                           (6.6) 
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where Ma is the Markstein number. Using Taylor expansion for equation (6.4) at small K, 

the linear relationship, equation (6.6), as well as the following expression for the 

Markstein number is obtained  

]1)ln(2)[(
)1)(12/(1

00

1

0 +
−−

−=
−

UU
LeZ

U
Ma                    (6.7) 

According to equations (6.5) and (6.7), it is seen that the Markstein number is 

affected not only by the Lewis number but also by the radiative loss. For adiabatic case 

(L=0, U0=1), the adiabatic Markstein length is (the subscript 0 means at zero radiative 

loss, i.e. adiabatic; while the superscript 0 means at zero stretch rate, i.e. unstretched)   

)1)(2/( 11
0 −−= −− LeZLeMa                     (6.8) 

which is the same as that derived for adiabatic counterflow premixed flames (Law 2006). 

In (Law 2006) , the following relationship is proposed for stretched premixed flames with 

small radiative losses (L<<1) 

2
)]11(

2
1[1 LK

Le
Z

Le
U −−−−≈                    (6.9) 

according to which the Markstein length is not affected by radiative loss and is a constant 

given by equation (6.8). This is not contradictory with the present result. The relationship 

given by equation (6.9) works only for small radiative loss, while the results given by 

equations (6.6) and (6.7) work well not only for small radiative loss but also for large 

radiative loss. As a result, the present theory works for a broader range of radiative loss 

and thus the radiation effect on flame propagation speed as well as Markstein length at 

different Lewis numbers can be investigated using equation (6.4).  
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6.1.3 Results and Discussions 

Figure 6.3 shows the normalized flame propagation speed as a function of flame 

radius for OPF and IPF with different radiative loss intensities, L, and Lewis numbers, 

Le. The same Zel’dovich number, Z=10, as used in Chapter 2 is used here. The results for 

OPF are consistent with those shown in figures 2.3(a), 2.4(a), and 2.5(a). At a given 

Lewis number and radiative loss, there are two solutions of flame propagation speed for 

one specific flame radius: the fast stable one and the slow unstable one (only the fast 

branch is shown for Le=1.0). Extinction occurs at the turning point where the fast branch 

meets the slow branch (there is no extinction for Le=1.0). Figure 6.3 clearly shows that 

the U-R relation and flame extinction is strongly affected by the Lewis number and 

radiative loss. For the same Lewis number, the U-R diagram of OPF shows totally 

opposite trends compared with that of IPF. This is because the OPF has positive stretch 

rate, K=(2/R)(dR/dt)>0, while the IPF has negative stretch rate, K=(2/R)(dR/dt)<0. For a 

Lewis number less (larger) than some critical Lewis number, Le* (which is less than 1.0), 

the positive stretch rate of OPF strengths (weakens) the flame while the negative stretch 

rate of IPF weakens (strengths) the flame (Law 2006). As a result, for Le=0.5, the flame 

propagation speed (the fast stable branch) of both OPF and IPF decreases monotonically 

during the propagation; while for Le=1.0 and Le=2.0, it monotonically increases during 

the propagation (note that the magnitude of stretch rate change inversely with flame 

radius).  

To investigate the effects of radiation and flame stretch on spherical flame 

propagation and extinction, the normalized flame propagation speed as a function of 

stretch rate is shown in figure 6.4. As shown in figures 6.3 and 6.4, for Le=0.5, the flame 
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extinction occurs for IPF even when the radiative heat loss is smaller than the one 

corresponding to the planar flame flammability limit, eL /1* = ; while OPF (which is 

called self-extinguish flame, SEF) still exits even for mixtures below the flammability 

limit, . For OPF, the existence of SEF for small Lewis numbers is 

because the flame stretch enhancement is greater than radiative loss when the flame 

radius is small (Ronney 1985; Ronney 1988). For IPF, extinction is caused by the 

continuously decreasing flame stretch rate (it is negative and its absolute value increasing 

during flame propagation) which weakens the flame during flame propagation before the 

extinction point is reached. The opposite trend is shown for Le=2.0. Similar results from 

simulations of adiabatic IPF at different Lewis numbers were found in (Flaherty et al. 

1985; Sun and Law 1998), which confirms the validity of the present theoretical 

prediction. Furthermore, figures 

*/14.0 LeL =>=

6.3 and 6.4 also show that the radiative loss strongly 

affects both OPF and IPF and flame extinction occurs earlier at higher radiative loss. 

Therefore, at the same radiative loss, for mixture with small Lewis number 

(Le<Le*), the OPF/IPF propagates faster/slower than the planar propagating flame and 

the flammability limit is extended/narrowed due to the positive/negative flame stretch; 

while for mixture with large Lewis number (Le>Le*), the opposite trend happens. The 

change of flammability limit caused by stretch rate coupled with preferential diffusion 

effect (Lewis number effect) is further shown in figures 6.5. The turning point on the 

solid curve, which is the solution as R→∞, corresponds to the flammability limit for the 

planar flame, and only the upper fast branch is stable and thus physically realistic. The 

dashed and dash-dotted lines represent solutions for flames at finite radii (thus finite 

stretch rate). The flammability region is either extended or reduced, depending on the 
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value of the Lewis number and the sign of stretch rate: for mixture with small Lewis 

number (Le<Le*), it is extended for positive stretch (OPF) and reduced for negative 

stretch (IPF); while for mixture with large Lewis number (Le>Le*), it is extended for 

negative stretch (IPF) and reduced for positive stretch (OPF). The present results on 

stretch rate and Lewis number effects for OPF and IPF are consistent with those for OPF 

in (Bechtold et al. 2005) and counterflow flames presented in (Law 2006). 

Figure 6.4 shows that the Markstein length (which is equal to -1.0 multiplying the 

gradient in the U-K plot at K close to zero) is strongly affected by radiative loss. The 

Markstein length can be evaluated based on equation (6.7). Figure 6.6 shows the 

Markstein number for different Lewis numbers and radiative loss. It is seen that for small 

radiative loss, the Markstein length is close to that of the adiabatic flame, Ma0. However, 

when the radiative loss is large, the Markstein length is strongly affected by radiative 

loss, especially when L is close to the value corresponding to the flammability limit, L*. 

Moreover, the change of the Markstein length due to radiative loss also strongly depends 

on the Lewis number.  

Figure 6.7 shows the normalized Markstein number as a function of Lewis 

number for different radiative loss. It is found that the normalized Markstein number 

varies non-monotonically with the Lewis number and it reaches infinity at Le=0.8 due to 

the appearance of zero Ma0 for Z=10 (according to equation (6.8), Ma0 is zero at 

Le=1-2/Z). With increasing radiative loss, the magnitude of the Markstein number always 

increases for Le<0.8. For 0.8<Le<1.0, the magnitude of the Markstein length can be 

smaller than the adiabatic Markstein length. For Le>1.0, the normalized Markstein 

number is always greater than unity and increases with radiative loss. 
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6.1.4 Summary 

The OPF and IPF at large flame radii were studied using asymptotic analysis. A 

general correlation between flame propagation speed and flame radius for both OPF and 

IPF was derived and utilized to study the effects of radiative loss and preferential 

diffusion on the flame propagation speed, Markstein number, and flame extinction. The 

following conclusions are made: 

1. The flame propagation speed, Markstein number, and flame extinction are 

strongly affected by the Lewis number as well as the radiative loss. Opposite trends for 

the change of flame propagation speed during flame propagation are shown for OPF and 

IPF for different Lewis numbers. The positive/negative stretch rate of OPF/IPF is shown 

to enhance/weaken the flame at small Lewis numbers and to weaken/enhance the flame at 

large Lewis numbers.  

2. The flammability region is found to be extended for positive stretch (OPF) and 

reduced for negative stretch (IPF) for mixtures with small Lewis numbers; and it is 

extended for negative stretch (IPF) and reduced for positive stretch (OPF) for mixtures 

with large Lewis number.  

3. A correlation for the Markstein length at different Lewis numbers and radiative 

loss was presented. The Markstein length is strongly affected by radiative loss and Lewis 

number. 
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6.2 Radiation Reabsorption Effect on Flame Speed and Flammability 

Limits 

6.2.1 Introduction 

In the previous section, radiative loss is simplified as a linear function of 

temperature in theoretical analysis. However, in practical problems, thermal radiation not 

only changes nonlinearly with temperature but also strongly depends on the mixture 

composition and pressure. Furthermore, radiation has a strong spectral dependence and 

can act not only as a heat sink due to emission but also as a heat source due to absorption. 

In this part, the CO2 diluted outwardly propagating CH4/O2/He flames will be used to 

study the effects of the spectral dependent radiation and absorption on flame speed and 

flammability limit.  

6.2.2 Experimental and Numerical Specifications 

The experimental measurements of flame speed were conducted in a 

dual-chambered, pressure-release type high pressure combustion facility at normal 

gravity (Qin and Ju 2005). This type of dual chamber design was first reported by Tse et 

al. (Tse et al. 2000). Due to the effect of buoyancy, the maximum test pressure was 

limited to 5 atm. The combustible mixture was spark-ignited at the center of the inner 

chamber with minimum ignition energy so as to minimize ignition disturbances. The 

flame propagation sequence was imaged with Schlieren photography and a high-speed 

digital video camera (Photron Fastcam APX) with 4 μs shutter speed and a framing rate 

of 8000 fps. 1024 pixels were used for 5 cm width domain in the horizontal direction. 

Data reduction was performed only for flame radii between 1.0 and 2.5 cm. Pressure 

increase is negligible since the volume of the chamber is approximately 100 times larger 
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than the flame size at which the flame speed was measured. Therefore, the CCFS is not 

employed here. The reactant mixtures were prepared using the partial pressure method. 

Helium was introduced to adjust the mixture Lewis number and to suppress the flame 

instability (Law 2006). Mixtures of CH4-(0.3O2+0.2He+0.5CO2) were examined and all 

runs were performed in a quiescent environment at an initial temperature of 298±3 K and 

initial pressures ranging from 1 to 5 atm. The results presented at each point were the 

average of three tests. 

For the spherical flame simulation, A-SURF was used here to simulate the 

outwardly propagating spherical CH4/O2/He/CO2 flames at different equivalence ratios 

and pressures. For methane oxidation, the GRI-MECH 3.0 mechanism (Smith et al.) was 

used and the detailed transport and thermodynamic properties were predicted from the 

CHEMKIN database (Kee et al. 1989). To initiate the computation, a hot spot with radius 

of 1.5 mm and temperature of 1800 K was set in the center initially to mimic the spark 

ignition in the experiments. The stretched flame speed was first obtained from the flame 

front (point of maximum heat release) history and then linearly extrapolated to zero 

stretch rate to yield the unstretched flame speed. The most accurate and efficient radiation 

modeling, FSNB-CK (Chen et al. 2007a), was incorporated into A-SURF to investigate 

the effect of spectral-dependent radiation. 

6.2.3 Results and Discussions 

Figure 6.8 shows Schlieren photographs of CH4-(0.3O2+0.2He+0.5CO2) flames at 

different equivalence ratios at 1 atm. For fast-burning mixtures (stoichiometric or near 

stoichiometric mixtures, φ=0.8 in figure 6.8), buoyancy effect is not observed from flame 

images and the flame front is spherically symmetric. For lean mixtures, the effect of 
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buoyancy is noticeable and the flame front reaches the top edge of the photograph before 

reaching the bottom. Here, we define the 1-g downward flammability limit, Φd, as in the 

limiting mixture in which the flame can propagate throughout the entire chamber. For the 

present CH4-(0.3O2+0.2He+0.5CO2) mixture, the downward flammability limit is 

Φd=0.50. Below this limit, e.g. for leaner mixtures (φ=0.49 in figure 6.8), the flame 

cannot propagate downward against buoyancy forces. After reaching the top of the inner 

chamber, the flame spreads out and propagates downward. Although the mixture at this 

condition is still flammable, the flame front location is hard to determine and flame speed 

data are not extracted for these cases. At elevated pressures, buoyancy effect is enhanced 

with the increase of mixture density. For example, at 5 atm the downward flammability 

limit becomes Φd=0.57.  

Figure 6.9 shows the measured and predicted flame speeds of 

CH4-(0.3O2+0.2He+0.5CO2) flames at different equivalence ratios at 1 atm. For 

comparisons, three radiation models were employed. First is the optically thin model 

(OPTM) (Ju et al. 1997) in which no radiation absorption is considered. The second is the 

SNB gray band model in 1D planar geometry (SNB-GB1D) (Kim et al. 1991; Liu et al. 

1998) in which gray gas model is used at each band (375 bands in total) and radiation 

absorption is solved in the one-dimensional slab rather than in spherical geometry. The 

third one is the FSNB-CK model (Chen et al. 2007a) in which spectral radiation is solved 

in the spherical coordinate. Furthermore, the volumetric radiative loss and temperature 

distributions predicted from OPTM, SNB-GB1D and FSNB-CK for a flame at 

equivalence ratio of 0.6 and flame radius of 2.4 cm are plotted in figure 6.10.  

Figure 6.9 shows that the optically thin model under-predicts the flame speed. 
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This is because OPTM model over-predicts the radiative heat loss and the flame 

temperature decreases significantly in the burned zone (figure 6.10). However, for the 

FSNB-CK model, it is seen that because of radiation absorption, the radiative loss in the 

burned zone becomes much smaller. A significant amount of radiative loss from the 

burned zone is reabsorbed by the unburned mixture (see the part with negative heat loss 

in figure 6.10). This means that the radiation absorption in CO2-diluted flames increases 

the flame speed by reducing the net heat loss and that the optically thin model is not 

applicable. As the equivalence ratio decreases, figure 6.9 shows that radiation absorption 

plays an important role in increasing the flame speed and extending the flammability 

limit. On the other hand, the SNB gray band model in 1D geometry over-predicts the 

flame speed. This over-prediction comes from two sources. One is that the employment 

of one-dimensional radiation geometry in which less radiation emission in the burned gas 

than that in the spherical flame was calculated (compare the radiation predicted by 

FSNB-CK(planar) and FSNB-CK(spherical) in figure 6.10); and the second is that the 

gray narrow band assumption increases the radiation absorption (compare the radiation 

predicted by FSNB-CK(planar) and SNB-GB1D in figure 6.10). The present FSNB-CK 

model greatly improves the accuracy of the flame speed prediction. A slight 

over-prediction may result from the linear extrapolation method for flame speed because, 

strictly speaking, the radiation enhancement does not linearly increase with the flame 

radius. This improvement is because the radiation in spherical flame geometry is 

appropriately solved and the spectral radiation in each band is accurately treated by using 

the cumulative function of k-distribution from the direct Laplace transform instead of the 

simple gray gas assumption.  
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 Theoretical analysis in (Joulin and Deshaies 1986) shows that radiation 

absorption has less effect as pressure increases because the total chemical heat release 

increases with the pressure. In order to examine the effect of pressure, the radiation 

absorption effect and comparison of different radiation models for 

CH4+(0.3O2+0.2He+0.5CO2) mixtures at 2 atm and 5 atm is shown in figure 6.11. It is 

seen that radiation absorption becomes much stronger than that at 1 atm. Different from 

the theory (Joulin and Deshaies 1986), the present result shows that radiation absorption 

increases with pressure. This is because an infinite optical thickness was assumed in the 

theory (Joulin and Deshaies 1986) so that all the radiative loss from the burned zone is 

absorbed by the unburned mixture. In the present experiment, the optical thickness is 

finite (about 1.0~6.0 estimated from OPTM) so that the increase of pressure enlarges the 

optical thickness and radiation absorption. Again, for the same reason, it is clearly seen 

that the present FSNB-CK model predicts the flame speed much better than SNB-GB1D. 

With a further increase of pressure to 5 atm, figure 6.11 shows that the radiation 

absorption effect further increases.  

To further demonstrate the pressure effect on radiation absorption, the normalized 

flame speed increase due to radiation absorption at different equivalence ratios is plotted 

in figure 6.12. It is seen that radiation absorption enhancement on the flame speed is 

linearly dependent on pressure. This linear dependence is caused by the increase of the 

optical thickness. In addition, figure 6.12 shows that with decreasing equivalence ratio, 

the effect of radiation absorption on flame speed becomes more significant. Therefore, it 

can be concluded that although the pressure increase leads to an increased chemical heat 

release, the effect of radiation absorption on flame speed enhancement still increases and 
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it becomes increasingly important for lean flames.  

 As discussed above, radiation absorption depends on the optical thickness. 

Therefore, it is of interest to show how radiation absorption enhancement on the flame 

speed depends on the flame size so that a flamelet model can be used to correct the 

radiation absorption effect in turbulence modeling. According to the theory in (Joulin and 

Deshaies 1986), the flame speed is related to the Boltzmann number, B, by 

     ( ) BSSSS LLLL =00 /ln)/( ,        ()2/()( 20
0

4
0

4
adPLad TCSRTTEB ρσ −= 6.10) 

where E, R, σ, and CP denote the activation energy, universal gas constant, 

Stefan-Boltzmann constant, and the specific heat, respectively. Tad is the adiabatic flame 

temperature, and ρ0 and T0 are the unburned gas density and temperature. Therefore, B 

represents the radiation absorption effect on the increase of flame speeds. The effective B 

numbers estimated from theory (Joulin and Deshaies 1986) and computation (by using SL 

from simulation and the first equation of equation (6.10)) as a function of flame size are 

plotted in figure 6.13. Note that in calculating the B number, the flame stretch effect is 

already excluded by comparing the radiative flames with the adiabatic flames. It is seen 

that the radiation absorption effect predicted by the theory is two orders of magnitude 

higher than that predicted by the FSNB-CK model. In addition, the theory predicts a 

constant B number with increasing flame radius. This is also because of the assumption 

of large optical thickness. The FSNB-CK model predicts a negative B number at small 

flame radius and an increasing dependence of B on the flame radius. This means that at 

small flame radius, although radiation absorption can enhance the flame speed, the final 

flame speed remains below the adiabatic flame speed. However, with increasing flame 

radius, the optical thickness increases, yielding an increase in the B number. Again, for 
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the optically thin model, the predicted B number is much lower. At high pressures, 

similar trends are also found except that the B number becomes positive at 2 atm. 

Therefore, by computing the B number for a given optical thickness, the radiation 

absorption effect could be employed in flamelet models for turbulent modeling. 

6.2.4 Summary 

The spectral-dependent radiation absorption effect on flame speed enhancement 

was measured by using CO2-diluted CH4–O2 mixtures at normal and elevated pressures. 

The following conclusions are drawn from this study: 

1. Radiation absorption increases the flame speed and extends the flammability 

limit. This enhancement effect also increases with pressure. The spectral-dependent 

radiation absorption needs to be included in any quantitative predictions of flame speed 

and flammability limit with CO2 addition. 

2. The FSNB-CK radiation model can well reproduce the measured flame speed. 

The SNB narrow-band gray model over-predicts the flame speed while the optically thin 

model significantly under-predicts the flame speed. 

3. The radiation absorption effect increases with flame size and pressure. The 

theory based on gray gas model over-predicts the radiation absorption by two-orders. The 

effective Boltzmann number is extracted from the present radiation modeling and can be 

applied to flamelet modeling in turbulent flow. 

4. Flame geometry has a significant effect on flame radiation. In spherical flame 

modeling, the one-dimensional slab radiation model over-predicts the radiation 

absorption. 
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6.3 Radiation Effect on Premixed Counterflow and Tubular Flames 

6.3.1 Introduction 

It is well known that curved flame fronts prevail in turbulent combustion and the 

effect of curvature on flame propagation is important, especially for near-limit flames. 

Therefore, in order to extend the flammability and to improve flame stability, it is 

particularly important to understand how the coupling of thermal radiation, flame 

curvature, and stretch affects the flame speed and extinction limits. In the previous two 

sections, the effect of radiation is studied for propagating spherical flames, in which the 

flame stretch and flame curvature both change and it is difficult to investigate the pure 

curvature effect. In this part, the steady tubular and counterflow flames are investigated 

and by comparing the flame dynamics of these two flames at the same stretch rate and 

radiation intensity, the curvature effect on the near-limit radiative flames are 

demonstrated.  

6.3.2 Mathematical Model and Asymptotic Solutions 

In order to study the effect of flame curvature, two kinds of flame configurations 

are considered in this study. The first one is the premixed tubular flame shown in figure 

6.14(a). Combustible mixture is injected toward the concentric inner tube (stagnation 

surface) from the inner wall of the porous outer tube. A positively stretched tubular flame 

with well-defined flame curvature can be stabilized between the inner and outer tubes 

(Takeno et al. 1986; Mosbacher et al. 2003; Wang et al. 2006). The inner tube is 

introduced here to change the flame curvature (Mosbacher et al. 2003; Wang et al. 2006; 

Yokomori et al. 2006). The second configuration is the premixed planar counterflow 

flame shown in figure 6.14(b). This flame is also positively stretched but has no flame 
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curvature. Therefore, by comparing the flame dynamics of these two flames at the same 

stretch rate and radiation intensity, the curvature effect on the near limit radiative flames 

can be readily demonstrated.  

For both flame geometries, the potential flow assumption, which is commonly 

used in the large activation energy asymptotic analysis (Sohrab and Law 1984; Ju et al. 

2000; Matthews et al. 2006), is employed here. By introducing a geometry factor N with 

N=0 for the counterflow flame and N=1 for the tubular flame (with IR~  and OR~  being 

the inner and outer tube radius, respectively), the potential flow field for both 

configurations can be written as 

]~)1/[()~~(~~ 22 rNRrku I +−−=                    (6.11) 

zkw ~~~ =                                     (6.12) 

where  and  are velocities in the radial (u~ w~ r~ -axis for tubular flame with N=1, 

-axis for counterflow flame with N=0, x~ rx ~~ = , 0~ =IR , and ∞→OR~ ) and the axial 

directions ( z~ -axis), respectively, and  is the inlet velocity gradient.  k~

According to the definition of flame stretch rate (Williams 1985) and the 

simplified expression derived by Matalon (Matalon 1983), the flame stretch rate can be 

written as:  

)()]([~
~

~
1 nvnnV

td
Ad

A n
vvvvvv

⋅∇+⋅××∇−=                  (6.13) 

where V
v

is the flow velocity and nv  is the unit normal vector of the flame surface,  

is the normal component of the flame front propagating velocity and  is the flame 

curvature. For the steady flames considered in this study,  is zero. Therefore, the 
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v
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stretch rate, which only depends on the flow field given by equations (6.11) and (6.12) 

becomes 
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which indicates that the two flame configurations will have the same stretch rate  if 

the inlet velocity is specified according to equations (

k~

6.1) and (6.2). Note that the flame 

stretch rate  is independent of the inner tube radius k~ IR~ . Therefore, by fixing  and 

varying 

k~

IR~  for the tubular flame configuration (N=1), flames at the same stretch rate 

but different curvatures (different flame radii fR~ ) can be obtained (Takeno et al. 1986; 

Kobayashi and Kitano 1989; Mosbacher et al. 2003; Yokomori et al. 2006). When 

∞→IR~  and N=1, the tubular flame has zero flame curvature and it becomes 

counterflow flame (N=0); when 0~ =IR  and N=1, the flame curvature reaches its 

maximum value and it is the traditional tubular flame configuration (without the inner 

tube) employed in previous studies (Takeno and Ishizuka 1986; Takeno et al. 1986; 

Nishioka et al. 1988; Kobayashi and Kitano 1989; Nishioka et al. 1991; Kobayashi and 

Kitano 1993; Ju et al. 1999b; Matthews et al. 2006). Therefore the present model is more 

general and it will be shown that previous results on both counterflow flames and tubular 

flames can be recovered. 

Since we are interested in the dynamics of the near-limit flames, the combustible 

mixture is sufficiently off-stoichiometric so that the flame strength is only determined by 

the concentration of the fuel. By assuming constant density, constant thermal properties, 

and one-step irreversible chemical reaction, the nondimensional conservation equations 

for energy and fuel mass fraction can be written as 
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Parameters with and without the carrot symbol denote the dimensional and 

non-dimensional variables, respectively. The variables, r, T and Y are, respectively, the 

axial coordinate, temperature, and fuel mass fraction normalized by 0~
fδ , PCQY ~/~~

∞ , and 

∞Y~ , where )~~~/(~~ 00
LPf SCρλδ =  is the flame thickness of adiabatic planar flame,  the 

thermal conductivity, 

λ~

ρ~  the density, PC~  the specific heat capacity at constant 

pressure, Q~  the reaction heat-release per unit mass of fuel, and ∞Y~  the fuel mass 

fraction in the fresh mixture. Additionally, DCLe P
~~~/~ ρλ=  is the Lewis number and D~  

the mass diffusivity of fuel. The normalized stretch rate is ]~)1/[()~(~~~ 20 λδρ += NCkk fP . 

The adiabatic laminar burning velocity 0~
LS  for a first-order one-step reaction is 

(Williams 1985): 
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where  is the Zeldovich number, 2/ ada TTZ = B~  the pre-factor of the Arrhenius 

expression, Tad the normalized adiabatic flame temperature, and Ta the normalized 

activation temperature. 

On the right-hand side of equation (6.15), qr is the nondimensional volumetric 

radiative heat loss. It is approximated by using the optically thin grey gas model of (Ju et 

al. 1997) 
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where σ~  is the Stefan-Boltzmann constant, pK~  the Planck mean absorption 

coefficient of the mixture, and ∞T~  the temperature of the incoming fresh mixture. 

In the limit of large activation energy, chemical reaction occurs only within a very 

thin zone of high temperature, whose thickness is much smaller than that of the radiation 

zone (Sohrab and Law 1984; Ju et al. 1997). Therefore, the reaction rate can be replaced 

by the Dirac Delta function (Sivashinsky 1977; Joulin and Clavin 1979; Law 2006) 
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where Tf and Rf are the flame temperature and radius, respectively. By integrating the 

conservation equations (6.15) and (6.16) around the flame front (r=Rf), the jump relations 

for temperature and fuel mass fraction can be obtained as (Sivashinsky 1977; Joulin and 

Clavin 1979) 
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The symmetric (for RI=0) or adiabatic (for RI>0) condition is used at the inner 

boundary (r=RI). At the inlet (r=RO), the Hirschfelder boundary condition for the fuel 

concentration, as suggested by Matthews et al. (Matthews et al. 2006), is used instead of 

the plug flow boundary condition. By defining the flame as the location where fuel 

concentration goes to zero, the boundary conditions for temperature and fuel mass 

fraction can be given as 
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It should be noted that for the counterflow flame (R0→∞), the inlet boundary 

condition (6.21c) reduces to the plug flow boundary condition (Y=1), which is used in 

previous theoretical studies of counterflow flames (Ju et al. 2000).  

In the limit of large activation energy, it is reasonable to assume that the 

magnitude of the radiative loss term in the energy equation is one-order smaller than 

those of the convection and diffusion terms. This assumption has been widely used in 

combustion theory (Joulin and Clavin 1979; Buckmaster 1997) and its validity has been 

confirmed by previous analysis. The radiation term given by equation (6.18) can be 

written as 

)( 44
∞−= TThqr , 1)~~/(~~)~(~~4 33320 <<= ∞ PfP CQYKh λδσ          (6.22) 

The validity of h<<1 is shown in (Chen and Ju 2008). It is noted that the 

nonlinear radiative heat loss is considered in the present study. It was shown by Ju et al. 

(Ju et al. 2000) that the linearized radiative heat loss results in a narrower flammable 

region and a larger flammability limit compared with the nonlinear radiative heat loss 

model. Therefore, by using the nonlinear radiation model, the present model can more 

accurately demonstrate the dynamics of radiation dominated near-limit flames. 

Since the delta-function model for reaction rate is used here, in the limit of large 

activation energy, the governing equations can be solved analytically in the burned gas 

(RI ≤r≤ Rf) and unburned gas (Rf ≤r≤RO) regions separately. The fuel mass fraction in the 

burned gas region is zero according to the fuel lean assumption and that in the unburned 

gas region is obtained by solving equation (6.16) together with the boundary conditions 

in equation (6.21), which gives 
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Here the superscripts ‘+’ and ‘−’ denote the states on the unburned and burned 

sides of the flame front, respectively. To determine the temperature distribution, the 

energy equation (6.15) with boundary conditions in equation (6.21) can be solved 

asymptotically, i.e. T=T0+hT1+O(h2),  with the accuracy to the first order, O(h). The 

temperature distribution in the burned gas region (RI ≤ r ≤ Rf) is 
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and that in the unburned gas region (Rf ≤ r ≤ RO) is 
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The gradients of temperature and fuel mass fraction at the flame front can be 

obtained from their distributions given by equations (6.23-6.27). By using the jump 

relations in equation (6.20), one obtains the following algebraic system of equations for 

the flame radius, Rf, and flame temperature, Tf  
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Equations (6.28) and (6.29) yield a general solution for both tubular flames (N=1) 

and counterflow flames (N=0). The solution for the flame radius, Rf, and flame 

temperature, Tf, as a function of stretch rate, k, can be obtained by solving the above 

equations numerically for different h, RI, RO, N and Le. The flame speed, which is equal 

to the flow speed at the flame front, can be calculated from the flame radius and the 

potential flow field given by equations (6.11) and (6.12). According to equation (6.29), 

the term on the left-hand side of equation (6.28) denotes the total chemical heat release. 

The first term on the right-hand side of equation (6.28) represents the heat flux induced 

by thermal conduction to the unburned side, while the second and third terms represent 

the heat flux induced by radiative loss in the unburned and burned regions, respectively. 

The adiabatic flame temperature of stretched flames can be obtained by setting the 

radiative loss terms (L± or h±) to zero.  

Equations (6.28) and (6.29) reduce to previous results of adiabatic tubular flames 

(Matthews et al. 2006) in the limit of N=1, RI=0, and L±=0; and those of counterflow 

flames (Sohrab and Law 1984; Ju et al. 2000) in the limit of N=0, RI=0, and R0→∞. 

Furthermore, by specifying RI>RO (now the outer tube is of radius RI while the inner one 

of radius RO), solutions to tubular flames of negative curvature (unlike the tubular flame 
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of positive curvature shown in figure 6.14(a), a tubular flame of negative curvature is 

established when combustible mixture is injected toward the outer tube through the 

porous inner tube) can be obtained from the present results. 

6.3.3 Results and Discussions 

The present results, equations (6.28) and (6.29), provide a general theoretical 

description of flame speed, flame temperature and extinction limits. By specifying 

different flame curvatures (by changing RI or N), flame stretches (by changing k), and 

radiative heat loss intensities (by changing fuel concentration or the concentrations of 

radiative gases, h±), the effects of flame curvature, radiation, and stretch rates can be 

systematically investigated. Furthermore, the preferential diffusion effect can be 

demonstrated by comparing results at different Lewis numbers (by changing Le).  

In the following calculations, the integrations in equations (6.28) and (6.29) are 

evaluated by using QUADPACK (Piessens et al. 1983) and the thermal and chemical 

parameters are chosen to mimic methane/air mixture. They are KgJQ /1075.4~ 7⋅= , 

KKgJCP //1400~ = , , smolmB //105.2~ 310⋅= 3/0.1~ mKg=ρ , KT 300~ =∞ , 

KTa 25000~ = , 10.2~ −= mK P , and smCP /105)~~/(~ 25−⋅=ρλ . The Lewis number of 

methane/air flames is close to unity. Therefore, unit Lewis number is utilized in the 

following except in the last subsection, in which the effects of Lewis number is 

investigated and different Lewis numbers could be obtained by adding Helium into the 

methane/air mixture (Chen et al. 2007a).    

In the following, the effects of flame curvature, radiation, stretch, and Lewis 

number on flame extinction will be discussed. Note that the outer tube radius is set to be 

infinity (RO = ∞), so the heat conduction to the outer tube, which was studied by 
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Kobayashi et al. (Kobayashi and Kitano 1989) and Matthews et al. (Matthews et al. 

2006), is not considered here. Besides, in the present study and all previous studies, the 

surface radiation is not considered in the tubular geometry. The existence of the inner and 

outer tubes could interact with the gas-phase radiation losses. This is a subject for future 

study. 

6.3.3.1 Flame Extinction and Bifurcations of Tubular Flames 

It is well known that radiative heat loss depends strongly on the volume of the hot 

emitting gas. Therefore, the appearance of flame curvature in tubular flame yields a 

smaller volume of the burned gas per unit area of the flame front than that of the planar 

counterflow flame. As a result, an increase of flame curvature reduces the radiative heat 

loss and thus improves the combustion. On the other hand, an increase of flame curvature 

increases the heat conduction loss from the burned gas side to the unburned gas side 

(caused by the so-called defocusing effect) and the flame speed is decreased. So flame 

curvature also weakens the flame strength. The above two competing effects of flame 

curvature, together with that of radiation will be shown to greatly affect the flame 

extinction.   

To quantitatively evaluate the effect of radiative heat loss, the fraction of radiative 

heat loss is introduced (Ju et al. 1997; Chen and Ju 2007): 
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where the numerator denotes the total radiative heat loss in both the unburned and burned 

zones and the denominator denotes the total chemical heat release rate.  

Figure 6.15 shows the dependences of flame radius, flame temperature and 

fraction of radiative heat loss of tubular flames (RI=0, RO=∞, N=1) on stretch rate at 
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Le=1.0 and ∞Y~ = 0.0376. It is seen that the non-adiabatic tubular flames exhibit an isola 

response, with dual extinction limits at higher and lower values of stretch rate (b and d). 

According to previous stability analysis mentioned in (Matthews et al. 2006), the branch 

of large flame radius (thus large flame speed) is stable (solid lines in figure 6.15) while 

the branch of small flame radius (thus small flame speed) is unstable (dashed lines in 

figure 6.15).  

It is seen that the mixture can burn in a range of stretch rate between 1.3 s-1 and 

6.7 s-1. For stretch rates larger than 3.5 s-1 (point a), an increase of the stretch rate causes 

the decrease of flow residence time and flame radius. Therefore, the fraction of radiative 

heat loss decreases and flame temperature increases. Flame extinction occurs at point b. 

For counterflow flames, this extinction is usually called stretch-induced extinction limit 

(Sohrab and Law 1984; Sung and Law 1996; Buckmaster 1997; Ju et al. 1997; Ju et al. 

1999a; Ju et al. 2000). However, for tubular flames the flame curvature (inverse of flame 

radius) reaches its maximum value at the extinction point b and thus the curvature effect 

might also help to accelerate flame extinction. The validity of this conclusion will be 

proved in the next section.  

On the other hand, with the decrease of stretch rate (from point a to c to d), the 

flow residence time increases, which enhances the radiative heat loss; while the flame 

curvature also increases, which reduces radiation by decreasing the volume of radiation 

emitting gas. The two processes compete with each other and result a non-monotonic 

change of radiation fraction and flame temperature, as shown in figure 6.15. From point a 

to c, the effect of residence time dominates and thus radiation fraction increases and 

flame temperature decreases; from point c to d, the effect of curvature dominates and thus 
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radiation fraction decreases and flame temperature increases. The flame is eventually 

quenched at point d. Therefore, unlike the counterflow flame whose low stretch rate 

extinction limit is only caused by an increase of radiation, that of tubular flame is caused 

by the combined effects of flame curvature and radiation. Therefore, both the stretch and 

radiation extinction limits of tubular flames are strongly affected by flame curvature. 

Results of tubular flames at other fuel concentrations ( ∞Y~ = 0.0392, 0.04) are 

shown in figure 6.16 in order to demonstrate the effect of different radiation intensities (h 

= 0.017, 0.011, 0.009 for ∞Y~ = 0.0376, 0.0392, 0.04, respectively). Different flame 

regimes are predicted. For ∞Y~ = 0.0376, the flammable region is an isola with flame 

position near the stagnation line (r=0). This is usually called Near Stagnation Flame 

(NSF). However, with the increase of fuel concentration and thus decrease of radiative 

heat loss intensity, figure 6.16 shows that there are two distinct flame branches for ∞Y~ = 

0.0392: one branch is a NSF similar to that of ∞Y~ = 0.0376, the other one is far from the 

stagnation line and thus is called a FSF. For both branches, the sold lines stand for stable 

solutions while the dashed lines are unstable solutions. With the decrease of radiative 

heat loss intensity h (or increase of ∞Y~ ),  the flame can survive radiation from emitting 

volume much larger than that of NSF, which is the reason why the FSF appears. With 

further decrease of radiative heat loss intensity, the strength of FSF increases and its 

extinction limit moves to the higher stretch rate side. At the same time, the NSF is also 

strengthened and it can survive despite the larger radiation emitting volume (thus large 

fR~ ). Therefore, flame branch bifurcations appear with the increase of fuel concentration 

(decrease of radiative heat loss intensity). Figure 6.16 shows that, for ∞Y~ = 0.04, the FSF 
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branch ag and NSF branch hb merge with each other to form branch ab, and so do the 

FSF branch fg and NSF branch hd to form branch fed. It is seen that for ∞Y~ = 0.04 there 

are two stable solutions for stretch rate between 0.33 s-1 and 2.72 s-1, of which the one of 

higher temperature (on ab branch) is call normal flame, while the one of lower 

temperature (on de branch) is called the weak flame (Ju et al. 1999a; Ju et al. 1999b).  

Similar flame bifurcations shown in figure 6.16 have also been found in the 

detailed numerical simulation of tubular and counterflow methane-air flames (Ju et al. 

1997; Ju et al. 1999b) and theoretical analysis of counterflow flames (Buckmaster 1997), 

which confirms the validity of the present general theoretical description of the combined 

effects of flame curvature, radiation, and stretch given by equations (6.28) and (6.29). 

The different flame regions of counterflow flames predicted by the present theoretical 

correlation is the same as those shown in Buckmaster’s analysis (Buckmaster 1997) and 

thus are not repeated here. 

6.3.3.2 Curvature and Radiation Effects on Extinction Limits 

To further study the combined effect of flame curvature and radiation, the tubular 

flames of different inner tube radii IR~  are studied for mixture of Le=1.0 and ∞Y~ = 

0.0376. The dependence of flame position (stable branches in solid lines and unstable 

branches in dashed lines) and flame temperature (only stable branches) on stretch rate are 

shown in figure 6.17. It is seen that by continuously increasing the inner tube radius, the 

isola response for counterflow flames is recovered. Note that the flame position If RR ~~ −  

and the flame temperature are strongly affected by the inner tube size. Flame position 

If RR ~~ −  and flame temperature both increase with the increase of flame curvature 

(decrease of IR~ ) since flame curvature reduces the radiative heat loss.  
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Furthermore, the flame position, flame temperature, and stretch rate at both 

extinction limits are significantly changed by choosing different inner tube radii. As 

shown in figure 6.18, the stretch rate at the upper extinction limit (stretch extinction limit) 

decreases monotonically with the increase of flame curvature (decrease of the inner tube 

radius). However, it is interesting to note that the dependence of the lower extinction 

limit (radiation extinction limit) on flame curvature is not monotonic. Similar 

non-monotonic dependences for flame position and flame temperature on flame curvature 

at the radiation extinction limits can also be seen in figure 6.17. This result shows that 

flame curvature and radiation coupling has distinct effects on the stretch extinction limit 

and the radiation extinction limit. 

For extinction at high stretch rate, when the inner tube radius is large, flame is 

very close to the stagnation surface ( 0~~ ≈− If RR  for IR~ =1, 5 mm in figure 6.17) and 

the radiation fraction reaches its minimum value (according to figure 6.15(3)). So the 

radiation effect at upper extinction limit could be negligible. This is further confirmed by 

the nearly constant flame temperature at the stretch extinction limit for different IR~  

shown in figure 6.17. Therefore, the change of extinction stretch rate is purely caused by 

flame curvature. When the inner tube radius is smaller than 1 mm, the If RR ~~ −  at 

extinction increases significantly with decrease of IR~ , and then flame temperature 

decreases because of the increase of radiative heat loss. Therefore, the change of 

extinction stretch rate is caused by combined effects of flame curvature and radiation. 

For extinction at low stretch rate, flame extinction is also caused by the combined 

effects of flame curvature and radiation. As mentioned before, an increase of flame 

curvature has two effects: (1), the reduction of the radiative heat loss and consequent 
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improvement in combustion; and (2), the decrease of flame speed and consequent 

reduction in the flame strength. The two processes compete with each other in the 

determination of the low stretch rate extinction limits. For large inner tube radius 

( IR~ >1.6 mm), the first effect dominates, thus the stretch rate at extinction decreases with 

the increase of flame curvature (decrease of inner tube size); while for small inner tube 

radius ( IR~ <1.6 mm), the second effect dominates, thus the stretch rate at extinction 

increases with the increase of flame curvature (decrease of inner tube size). 

Therefore, flame curvature has significant effects on extinction of premixed 

tubular flames since the extinction limits can be greatly changed by choosing different 

inner tubes to change flame curvature. Note that all the cases studied above are for 

mixtures of Le=1.0, so the stretch effect caused by preferential diffusion is not covered. 

The Lewis number effect will be demonstrated in the next section.  

6.3.3.3 Effects of Preferential Diffusion (Lewis Number Effect) 

The impact of radiation and flame curvature coupling on near limit flames will be 

enriched by the appearance of preferential diffusion. The effects of Lewis number on the 

tubular flames are shown in figure 6.19. It can be seen that the flammable region is 

greatly expanded by decrease of Lewis number. With decrease in the Lewis number, the 

stretch rate at upper limit increases while that at lower limit decreases. Furthermore, the 

flame radius decreases and flame temperature increases with the decrease of Lewis 

number at both extinction limits. This effect can be easily understood from equations 

(6.28) and (6.29). Equations (6.28) and (6.29) shows that the lower the Lewis number, the 

higher the adiabatic flame temperature and thus flame can survive much larger radiative 

heat loss and flame curvature. Note that the flame temperature increase at upper 

 185



extinction limit is much larger than that at lower extinction limit. This is because the 

Lewis number effect is proportional to the magnitude of stretch rate. Similar results for 

counterflow flames are also obtained from the present theory and are consistent with 

those of the previous study (Ju et al. 2000). 

To demonstrate further the effects of Lewis number, radiation, and curvature on 

the extinction of tubular flames, the stretch rates at two different extinction limits for 

different inner tube radii and Lewis numbers are shown in figure 6.20. For fixed inner 

tube radius, the Lewis number effect is the same: the stretch rate at the upper limit 

increases while that at the lower limit decreases with decreasing Lewis number. 

Therefore, the preferential diffusion of mass over heat (Le<1) extends the flammable 

region for all the tubular flames with different curvatures. For fixed Lewis number, the 

stretch rate at the upper stretch extinction limit decreases monotonically. However, 

depending on the Lewis number, the radiation extinction limit can be either 

monotonically or non-monotonically dependent on the flame curvature. At large Lewis 

numbers (e.g. Le=1.1), the stretch effect is dominant. Therefore, an increase of flame 

curvature leads to a monotonical increase of the extinction limit. There is a critical 

curvature above which no premixed tubular flames can be obtained (for Le=1.1, no 

solution for RI<1.5 mm). However, at lower Lewis numbers (e.g. Le=0.9 and 1.0), the 

effect of radiation and flame curvature coupling becomes dominant. The radiation 

extinction limit varies non-monotonically with the flame curvature. In addition, flame 

curvature does not lead to flame extinction. As shown in figure 6.20, at a large flame 

radius, the decrease of the flame radius causes a decrease (or broadening) of the 

extinction limit. As the flame curvature increases, the radiation extinction limit reaches a 

 186



minimum value. A further increase of the flame curvature causes an increase of the 

extinction limit. Therefore, there is a critical Lewis number that separates the monotonic 

and nonmonotonic curvature dependence regimes. This critical Lewis number will be 

larger than unity and increases with increasing radiation intensity. 

6.3.4 Summary 

The flame dynamics of near-limit premixed tubular flames are studied by using 

the large activation energy asymptotic method. A general correlation for flame speed, 

flame temperature and extinction limits is obtained and it is used to study the combined 

effects of flame curvature, radiation, and stretch on flame extinction. The following 

conclusions are made: 

1. The coupling between radiation and flame curvature leads to multiple flame 

bifurcations and extinction limits at different radiation intensities (different fuel mass 

concentrations). For mixtures with high radiation intensity, the flammable region is an 

isola and only the NSF is observed. With decreasing radiative loss intensity, two distinct 

flame branches NSF and FSF are first predicted and then they will merge with each other.  

2. It is shown that both the stretch and radiation extinction limits are strongly 

affected by flame curvature. The stretch extinction limit is found to monotonically 

decrease with increasing flame curvature. However, depending on the Lewis number, the 

radiation extinction limit can be either monotonically or non-monotonically dependent on 

the flame curvature. For Lewis numbers larger than a critical value, increasing flame 

curvature results in a monotonic increase of the extinction limit and there is a critical 

curvature at which flame extinguishes. For Lewis numbers smaller than the critical value, 
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increasing flame curvature leads to a non-monotonic dependence of the radiation 

extinction limit and flame curvature does not lead to flame extinction. 
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Figure 6.1: The schematic diagrams of (a) the outwardly propagating spherical flame 

(OPF) and (b) the inwardly propagating spherical flame (IPF) (Frankel and Sivashinsky 

1983). 
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Figure 6.2: The flame propagation speed as a function of flame radius for OPF predicted 

by different models.  
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Figure 6.3: The flame propagation speed as a function of flame radius for OPF and IPF at 

different radiative loss intensities and Lewis numbers.
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Figure 6.4: The flame propagation speed as a function of Karlovitz number for OPF and 

IPF at different radiative loss intensities and Lewis numbers. 
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Figure 6.5: The flame propagation speed as a function of radiative loss intensity for OPF 

and IPF at different flame radii and Lewis number. The solid curve corresponds to the 

planar configuration.
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Figure 6.6: The effect of radiative loss on Markstein number. 
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Figure 6.7: The normalized Markstein number as a function of Lewis number at different 

radiative losses. 

 

 
Figure 6.8: Schlieren photographs of CH4-(0.3O2+0.2He+0.5CO2) flames at different 

equivalence ratios at 1 atm. 
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Figure 6.9: Measured and predicted laminar flame speeds of CH4-(0.3O2+0.2He+0.5CO2) 

flames as a function of equivalence ratio at 1 atm. 
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Figure 6.10: Temperature and volumetric heat loss distributions in spherical 

CH4-(0.3O2+0.2He+0.5CO2) flame at φ=0.6 and P=1 atm. 
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Figure 6.11: Measured and predicted laminar flame speeds of CH4-(0.3O2+0.2He+0.5CO2) 

flames as a function of equivalence ratio at 2 atm and 5 atm. 
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Figure 6.12: Effects of radiation absorption on flame speed at different pressure and 

equivalence ratios. 
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Figure 6.13: The predicted effective Boltzmann number versus flame size at 1 atm.
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Figure 6.14: The schematic diagrams of the (a) tubular and (b) counterflow flames. 
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Figure 6.15: Dependences of flame radius (1), flame temperature (2), and fraction of 

radiative heat loss (3) of tubular flames (RI=0, RO=∞, N=1) on stretch rate for mixture of 

Le=1.0 and ∞Y~ =0.0376. 
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Figure 6.16: Flame radius (1) and flame temperature (2) of tubular flames (RI=0, RO=∞, 

N=1) as a function of stretch rate for mixtures of different fuel mass fractions and 

Le=1.0. 
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Figure 6.17: Flame radius (a) and flame temperature (b) as a function of stretch rate for 

tubular flames (N=1, different RI) and counterflow flames (N=0) at Le=1.0, ∞Y~ =0.0376, 

and RO=∞. 
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Figure 6.18: Stretch rate at extinction limits as a function of inner tube size for tubular 

flames and counterflow flame at Le=1.0, ∞Y~ =0.0376, and RO=∞. 
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Figure 6.19: Flame radius (a) and flame temperature (b) of tubular flames (RI=0, RO=∞, 

N=1) as a function of stretch rate for mixtures of ∞Y~ =0.0376 and different Lewis 

numbers. 
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Figure 6.20: Stretch rate at extinction limits as a function of inner tube size for tubular 

flames at ∞Y~ =0.0376, and RO=∞. 
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Chapter 7: Ignition and Burning Properties of 

DME/methane Mixtures  
 

In previous chapters, the ignition and burning properties of different fuel/air 

mixtures were studied. The transport effects on the flame dynamics were emphasized 

while the chemical kinetic effect was covered. In this chapter, we shall demonstrate the 

potential role of chemical kinetics on the ignition and burning intensity of flames by 

using dimethyl ether/methane mixtures as an example.    

7.1 Introduction  

The objective of the present study is to investigate kinetic coupling effects of 

DME addition on the high-temperature ignition and burning properties of methane–air 

mixtures. First, experimentally measured laminar flame speeds of DME-air and CH4-air 

mixtures are compared with predictions by different existing DME mechanisms including 

a recently developed high temperature model by Zhao et al. (Zhao et al. 2008). This 

mechanism is then used to study the effects of DME addition on the ignition 

enhancement in both homogeneous and non-homogeneous systems. Finally, the flame 

speeds of DME/CH4-air mixtures were measured using outwardly propagating spherical 

flames. The results are compared with model predictions and the effect of kinetic 

coupling on the burned Markstein length is discussed.  

7.2 Experimental/numerical Specifications and Kinetic Model Selection  

The laminar flame speed and Markstein length of DME/CH4-air premixed flames 

were measured by using outwardly propagating spherical flames in the dual-chambered, 
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pressure-release-type, high pressure combustion chamber (Qin and Ju 2005). 

Pre-mixtures were prepared by using the partial pressure method from pure methane and 

DME compressed gas sources. The purities of the DME and CH4 were 99.8% and 99.9%, 

respectively. Experiments were conducted for DME/CH4-air mixtures: (αCH3OCH3 + 

(1-α)CH4 + air), with values of the volume fraction, α, ranging from zero to unity. The 

combustible mixture was spark-ignited at the center of the chamber with the minimum 

ignition energy so as to preclude significant ignition disturbances. The flame propagation 

sequence was imaged by using Schlieren photography. A high-speed digital video camera 

operating at 8000 frames per second was used to record the propagating flame images. 

The stretched flame speed was first obtained from the flame history and then linearly 

extrapolated to zero stretch rate to obtain the unstretched flame speed. The results 

presented here are the averaged value of at least two tests for each experimental condition. 

All experiments were performed at an initial temperature of 298±3 K and atmospheric 

pressure. In order to examine the available kinetic mechanisms, the measured flame 

speeds were compared with the numerical results obtained using PREMIX (Kee et al. 

1985). Furthermore, A-SURF is utilized to carry out simulations of outwardly 

propagating spherical DME/methane/air flames at atmospheric and elevated pressures. 

The laminar flame speed and burned Markstein length were obtained from numerical 

simulations. 

The effect of adding DME on the ignition enhancement of methane was 

investigated numerically in two different systems, a homogeneous flame configuration to 

examine the kinetic ignition enhancement, and a nonpremixed counterflow configuration 

to examine the effect of transport. The ignition time of homogeneous mixtures at constant 
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pressure and enthalpy was calculated by using SENKIN (Lutz et al. 1987). For the 

nonpremixed simulations, the quasi-steady temperature and species distributions of 

counter flowing DME/CH4 (298 K at the boundary) and hot air jets (1400 K at the 

boundary) were determined under a frozen flow constraint. At time zero, chemical 

reactions were allowed in the pre-calculated frozen flow field. Ignition time was recorded 

when the first increase in the temperature field exceeded 400 K, indicating thermal 

runaway. Simulations were conducted using an unsteady potential counterflow flame 

code described by Ju et al. (Ju et al. 1997). To further examine the effect of flow 

residence time on ignition enhancement, the stretch rate in the frozen flow configuration 

was varied from low stretch to that near the ignition limit.  

In order to properly model and interpret the present work, the chemical kinetic 

model used in the calculations must be capable of predicting the pure fuel–air laminar 

flame speed and high temperature shock tube ignition properties. One might expect that 

comprehensively developed detailed mechanisms for DME oxidation would also be 

capable of predicting high temperature kinetic properties for methane oxidation. The 

measured laminar flame speeds of pure DME-air and CH4-air mixtures at atmospheric 

pressure and room temperature are shown in figures 7.1 and 7.2, respectively, along with 

the predictions utilizing a number of different DME mechanisms.  

It is seen that the earlier DME mechanisms published by Curran and co-workers 

(Curran et al. 1998; Curran et al. 2000; Fischer et al. 2000; Zheng et al. 2005) 

(2000-Mech and 2003-Mech) are not able to well reproduce the measured flame speeds 

for both lean and rich mixtures. Although a more recently updated version (Curran 2005), 

2005-Mech, predicts flame speeds much better than the previous ones, there is still a 
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large discrepancy for lean DME–air and CH4–air flames. Recently, a new 

high-temperature model that includes the revised decomposition parameters, updates in 

the sub-model and thermo-chemistry for the hydrogen oxidation, and a revised C1-C2 

species sub-model developed in recent experimental and modelling studies on ethanol 

pyrolysis and oxidation, has been developed (Zhao et al. 2008). The mechanism was 

constructed and tested hierarchically against a large volume of high temperature 

experimental data for hydrogen, carbon monoxide, formaldehyde, and methanol 

oxidation. The new high-temperature DME reaction mechanism (denoted here as 

2008-Mech) consists of 263 reversible elementary reactions and 46 species, and its 

predictions compare well with the high-temperature flow reactor data for DME pyrolysis 

and oxidation, for oxidation at high temperatures in a jet-stirred reactor, for 

high-temperature shock tube ignition, for species profiles from burner-stabilized flames 

and for laminar flame speeds of DME–air flame (figure 7.1). The model also results in 

excellent prediction of CH4-air flame speed data (figure 7.2). On the basis of the ability to 

reproduce these same reference conditions, we utilize the 2008-Mech in the remainder of 

comparisons reported in this chapter. 

7.3 Results and Discussions 

7.3.1 Ignition Enhancement by DME Addition 

Figure 7.3 shows the effects of DME and hydrogen addition on the ignition delay 

of homogeneous DME/CH4–air and H2/CH4–air mixtures. The results show that the 

addition of DME to CH4–air has a dramatic enhancement in CH4–air ignition, particularly, 

at small amounts of DME addition. It is seen that for 10% of DME addition, the ignition 

time can be reduced by at least an order of magnitude. As the DME addition level reaches 
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40%, a further increase in DME blending has little effect on reducing the ignition time. It 

is noted that the enhancement due to DME addition can be much larger than that of 

hydrogen addition, given that the volume fraction of the added fuel is below 70%. 

In order to understand the factors involved in the enhancement of methane 

ignition by DME addition, radical path analysis was conducted. Figures 7.4 and 7.5 show 

the radical pool development and CH3-reaction path analysis during the ignition of 

DME/CH4-air mixtures for 0% and 10% (in volume) DME addition, respectively (the 

contribution to d[CH3]/dt by the ith reaction is defined as the generation or production rate 

of CH3 due to ith reaction, 
i

dtCHd /][ 3 , normalized by the summation of the absolute 

value due to all the reactions, ∑
i

i
dtCHd /][ 3 ). It is seen that addition of 10% DME 

drastically increases the radical pool concentration growth. As the DME concentration 

further increases, however, this effect is lessened which gives rise to the nonlinear 

ignition enhancement observed in figure 7.3 (more results on radical pool development 

and sensitivity analysis are shown in figures 4 and 5 in (Chen et al. 2007c)).  

For CH4–air mixtures without DME, figure 7.4, the initial radical production is 

governed by the reaction CH4+O2→CH3+HO2, which has no significant contribution to 

the radical pool growth later in the induction period. The methyl radicals formed react 

with O2 to yield CH2O and OH, or CH3O and O, with CH3O decomposing to form CH2O 

and H. Through abstraction reactions, CH2O forms HCO which subsequently yields HO2 

and CO through oxidation. The recombination reaction 2CH3(+M)→C2H6(+M) is the 

main channel opposing the initial radical pool growth. When both CH3 and HO2 are 

available in sufficient concentrations, CH3+HO2→CH3O+OH becomes an important 

radical source. The above processes all depend on developing a significant pool of CH3 
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and HO2 before radical pool growth of OH, O, and H can occur. Since the governing 

reaction CH4+O2→CH3+HO2 is slow relative to the similar reaction and/or thermal 

decomposition rates of higher alkanes, the ignition time for pure CH4–air mixtures is, in 

comparison, relatively longer.  

Once a small amount of DME is present, the system is strongly driven by the 

unimolecular decomposition of DME (figure 7.5). This reaction is the major initial source 

of radicals and continues to contribute to radical production thereafter. With DME 

addition to methane, the radical pool growth occurs much more rapidly (figure 7.5), as it 

is not limited by the rate with which methyl radicals alone can produce more reactive 

species. In the case of DME addition, unimolecular decomposition yields CH3O and CH3 

at the above temperatures, and subsequent abstraction reactions of CH3 and radicals 

generated from CH3O produce CH3OCH2 which in turn yields additional radical growth 

through decomposition to CH3 and CH2O. These reaction sequences lead to a relatively 

large concentration of HO2, which in turn provides an alternative mechanism for CH3 to 

yield radicals (CH3+HO2 vs. CH3+O2). CH2O reacts with OH, H or CH3 through 

CH2O+X→HCO+HX (X = OH, O, H, CH3). Formyl radicals further oxidize to produce 

CO and HO2. CH3O decomposes through CH3O+M→CH2O+H+M, or reacts with O2 to 

obtain CH2O and HO2. Moreover, the large concentrations of HO2 also produce H2O2 and 

subsequent production of OH through H2O2+M→OH+OH+M. Thus, by adding DME to 

methane not only is CH3 more easily generated, other sources and channels are also 

available for generating radicals, as a result it enhances ignition. 

Figure 7.6 shows the evolution of temperature and H-radical mass fraction in 

nonpremixed ignition. The ignition kernel is seen to develop on the hot air side (the 
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stagnation plane is located at x=2.26 cm). The effect of DME addition on the ignition 

time in nonpremixed counterflow systems is shown in figure 7.7. It is seen that, unlike 

the homogenous case, the ignition enhancement strongly depends on the stretch rate. At 

large stretch rates, the ignition is kinetically limited (the characteristic transport time is 

shorter than that of ignition) so that a small amount of DME addition causes a rapid 

reduction of the ignition time. For example, at a high stretch rate (a = 300 s-1), the short 

flow residence time prevents the slow radical process from quickly building up the 

radical pool, so that the ignition time of pure methane in nonpremixed counterflow is 

considerably long. It is a kinetic limited process. However, at low stretch rates, the 

ignition time is limited by the characteristic transport time (transport limited). In this 

regime, the ignition time only slightly decreases with increasing DME concentration. 

Furthermore, it is noted that for both low and high stretch rates, the minimum ignition 

times for large amounts of DME addition are of the same order, indicating the limiting by 

transport as the kinetic ignition time is shortened. Therefore, it can be concluded that for 

nonpremixed ignition, there are two different regimes. In the kinetic limited regime, 

DME addition significantly reduces the ignition time. However, in the transport limited 

regime, the ignition enhancement by DME addition is less significant.  

Furthermore, figure 7.7 shows that, for very low DME percentages, the 

homogeneous ignition time is larger than that of nonpremixed ignition at low strain rates. 

This is caused by the presence of transport in nonpremixed ignition. For nonpremixed 

ignition, thermal and mass transports have two effects: 1) to bring heat to the ignition 

kernel and preheat the fuel by the hot air, and 2) to remove the radicals produced in the 

ignition kernel, hence slowing down the radical pool growth. In cases of low strain rates 
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of large ignition delay times, the first effect becomes important because the endothermic 

decomposition reactions of DME are enhanced by the convective heat transfer and the 

radical transported away from the ignition kernel is low at small radical gradients. 

To further demonstrate the effects of stretch and DME addition on methane 

ignition in nonpremixed configuration, the evolution of the maximum mass fraction of 

CH3, the major radical species controlling the ignition time, as discussed previously, is 

shown in figure 7.8. It is seen that with increasing DME addition (from 2% to 10%), 

similar to the homogeneous case, the ignition time is reduced. Its effect, however, greatly 

depends on the stretch rate. For example, at low stretch rates (20 s-1), the ignition is only 

slightly enhanced when the DME addition changes from 2% to 10%, although the initial 

CH3 concentration is heavily affected. On the other hand, at high stretch rates (200 s-1), 

ignition time is significantly shortened by increasing the DME addition from 2% to 10%. 

This result further confirms the existence of two different regimes for non-premixed 

ignition. 

7.3.2 Flame Speed and Burned Markstein Length of DME/CH4 Dual Fuel 

Figure 7.9 shows the dependence of the measured and predicted laminar flame 

speeds of DME blended methane-air flames on the DME addition level at different 

equivalence ratios. It is seen that with increasing DME, the laminar flame speeds of 

DME/CH4–air flames increase almost linearly with the addition, although the rate of 

increase is slightly larger at small DME addition levels. It is well known that the 

magnitude of the laminar flame speed depends on the thermal diffusivity, Lewis number, 

activation energy and chemical heat release of the fuel/air mixture (Law 2006). The 

increase of laminar flame speeds caused by DME addition is mainly due to the relatively 
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lower activation energy and higher chemical heat release of DME compared with 

methane. As found in (Chen et al. 2007b), the adiabatic flame temperature increases 

monotonically while the activation energy decreases monotonically with the amount of 

DME addition in the dual fuel. Besides, the same trend of flame speed changing with 

DME addition for rich DME/CH4–air flames is also found (Chen et al. 2007b).  

Figure 7.9 also shows that the numerical results calculated from the 2008-Mech 

agree reasonably well with the experimental data. This result indicates that although 

DME addition can increase the initial radical production for the acceleration of ignition, 

the fuel oxidation rate which is dominated by chain-propagation and termination 

reactions does not change significantly. As a result, the burning rate of a binary fuel 

mixture can be approximated as a linear function of the mixture fraction of the blended 

fuel. 

The burned Markstein length of DME/methane dual fuel at atmospheric pressure 

and room temperature, obtained from numerical simulation using A-SURF, is shown in 

figure 7.10. Unlike the laminar flame speed, the change of the burned Markstein lengths 

of the dual fuel shows different trends: increase at fuel lean (φ=0.8), decrease at fuel rich 

(φ=1.2), and slight increase at stoichiometric (φ=1.0). The Markstein length is 

interpreted as the sensitivity of the flame response to stretch rate variations and is closely 

related to the global Lewis number of the mixture. The change of the burned Markstein 

length with DME addition implies that the global Lewis number, Le, is sensitive to DME 

addition. The relationship of the global Lewis number and the burned Markstein length is 

given by the following equation (Clavin 1985): 
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where δf
0 is the flame thickness, Z the Zel’dovich number, and σ the density ratio between 

burned and unburned gases. Since there is only slight change of the density ratio, σ, due 

to DME addition, the change of the burned Markstein length, Lb, is mainly caused by that 

of δ and Z(Le-1). With increasing DME addition, the thermal diffusivity, λ/ρCP, decreases 

and the flame speed, Su
0, increases. Therefore, the flame thickness, δ=λ/ρCPSu

0, will 

decrease with DME addition. Moreover, as shown in (Chen et al. 2007b), the overall 

activation energy monotonously decreases with DME addition; thus the Zel’dovich 

number, Z, also decreases with increasing DME addition.  

Furthermore, the mass diffusivity of the dual fuel decreases with increasing DME 

addition. However, it only changes Lewis number for the lean case (to increase the global 

Lewis number) because the global Lewis number depends strongly on the mass 

diffusivity of the fuel for the lean case and oxygen for the rich case, respectively. 

Consequently, there is only slight change of the global Lewis number with DME addition 

for rich case because it depends on the mass diffusivity of oxygen. For the fuel lean case 

(φ=0.8), the increase of burned Markstein length is mainly due to the large increase of 

the global Lewis number, which dominates over the decrease of the flame thickness and 

the Zel’dovich number. For the stoichiometric case (φ=1.0), the increase of the global 

Lewis number is nearly balanced by the decrease of the flame thickness and the 

Zel’dovich number. Therefore there is only slight change of the burned Markstein length. 

For the fuel rich case (φ=1.2), the Lewis number depends on the mass diffusivity of 

oxygen and DME addition has little effect on the global Lewis number. So the decrease 

of the flame thickness and Zel’dovich number results in a decrease of the burned 

Markstein length with DME addition.  
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Figure 7.11 shows the laminar flame speeds and burned Markstein lengths of 

DME/CH4/air flames at different equivalence ratios (φ=0.8, 1.0, 1.2) and pressures (P = 

1, 2, 4, 8 atm). All the results are from numerical simulation using A-SURF. It is seen that 

the laminar flame speeds of DME/CH4/air flames decrease rapidly with increasing 

pressure, showing a similar trend to other hydrocarbon fuels. The flame speeds at 8 atm 

are only half of those at 1 atm for all the equivalence ratios and DME blending levels. 

Similar to the results at atmospheric pressure, the laminar flame speeds of DME/CH4/air 

flames monotonously increase with DME addition for all the equivalence ratios and 

pressures. It is also due to the relatively lower activation energy and higher chemical heat 

release of DME compared with methane. However, unlike the laminar flame speeds, the 

burned Markstein length of the binary fuel at elevated pressures shows different trends 

with increasing DME addition: increase at fuel lean (φ=0.8), decrease at fuel rich (φ=1.2), 

and little increase at stoichiometric (φ=1.0). The results are consistent with those at 

atmospheric pressure. The different trends for fuel lean and rich cases are caused by the 

same fact that the global Lewis number depends strongly on the mass diffusivity of fuel 

for lean case and oxygen for rich case, respectively, and thus it changes with DME 

addition only for fuel lean cases. For fuel rich case, the decrease of the flame thickness 

and Zel’dovich number results in the decrease of the burned Markstein length with DME 

addition according to equation (7.1). 

To reveal the pressure effect, the normalized laminar flame speeds and burned 

Markstein lengths of DME/CH4-air mixtures at different pressures for fuel lean and rich 

cases are shown in figure 7.12. All the laminar flame speeds and burned Markstein 

lengths are normalized by the corresponding results of pure CH4/air mixtures (α=0%) at 
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the same pressure. It is shown that for both fuel lean and rich cases, the enhancement of 

laminar flames due to DME addition becomes stronger at higher pressures. As to the 

burned Markstein lengths, the changes at low pressures (1 atm and 2 atm) are similar, 

while with further increase of pressure, the changes (increase for fuel lean case and 

decrease for fuel rich case) become larger. Therefore, relative changes in both laminar 

flame speeds and unburned Markstein lengths are greatly affected by pressure. 

7.4 Conclusions 

In the present work, the effects of DME addition to methane-air mixtures on 

ignition, flame speeds, and burned Markstein length were studied experimentally and 

computationally. New experimental data were obtained for the study of the kinetic 

coupling between DME and methane and for the validation of existing chemical 

mechanisms. The following conclusions can be drawn from the present work: 

1. In homogeneous ignition, small amounts of DME addition to methane lead to a 

significant decrease in the ignition time. The effect is even more profound than that of 

hydrogen addition. This significant ignition enhancement is caused by the rapid build-up 

of CH3 and HO2 radicals when DME addition is present in the system. The resulting 

chain propagation reaction via CH3 and HO2 replaces the slow reactions via CH3 and O2 

in the pure methane case and thus accelerates the ignition. 

2. In non-homogeneous ignition, it is found that the ignition enhancement is 

strongly affected by the stretch rate. There exist two ignition regimes: a kinetic limited 

regime and a transport limited regime. In the kinetic limited regime, small amounts of 

DME addition cause a dramatic decrease of ignition time. However, in the transport 

limited regime, ignition enhancement by DME addition is much less effective. 
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3. In contrast to the nonlinear behaviour in ignition enhancement, the flame 

speeds of DME/CH4-air mixture are linearly proportional to the DME fraction. It is also 

found that the enhancement of flame speed by DME addition becomes stronger at higher 

pressures. Unlike the laminar flame speeds, the Markstein lengths of the binary fuel 

change dramatically at small DME concentrations and have different trends: increase at 

fuel lean (φ=0.8), decrease at fuel rich (φ=1.2), and little increase at stoichiometric 

(φ=1.0). These changes are also found to be significantly affected by pressure. 

4. The comparison between the experimental data with model predictions showed 

that the 2000-Mech, 2003-Mech, and 2005-Mech do not well reproduce the flame speed 

data for both DME and methane-air flames, although the 2005-Mech performs much 

better than its previous versions. The results also showed that the high temperature 

mechanism (2008-Mech) is able to reproduce the speeds of both DME-air and 

methane-air flames, and those for DME addition to methane. 
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Figure 7.1: Laminar flame speeds of DME/air mixtures as a function of equivalence ratio 

at 298K, atmospheric pressure. 
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Figure 7.2: Laminar flame speeds of CH4/air mixtures as a function of equivalence ratio 

at 298K, atmospheric pressure.
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Figure 7.3: Effects of DME and hydrogen addition on homogeneous ignition delay of 

methane/air. 
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Figure 7.4: Radical pool growth and CH3-reaction path analysis during homogeneous 

ignition of DME/CH4-air mixtures (without DME addition). 
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Figure 7.5: Radical pool growth and CH3-reaction path analysis during homogeneous 

ignition of DME/CH4-air mixtures (vol. 10% DME addition). 
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Figure 7.6: Evolution of temperature and H-radical mass fraction in non-premixed 

ignition (10% DME addition).
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Figure 7.7: Effects of DME addition on ignition delay of methane at atmospheric 

pressure. 
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Figure 7.8: Evolution of the maximum mass fraction of CH3 in non-premixed ignition at 

different stretch rates and DME addition levels. 
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Figure 7.9: Variation of laminar flame speeds of DME/CH4-air mixtures at different 

equivalence ratios and DME blending at 298K, atmospheric pressure. 
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Figure 7.10: Burned Markstein lengths of DME/CH4-air mixtures at different equivalence 

ratios and DME blending at atmospheric pressure. 
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Figure 7.11: Laminar flame speeds and burned Markstein lengths of DME/CH4-air 

mixtures at different equivalence ratios and pressures. 
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Figure 7.12: Normalized laminar flame speeds and burned Markstein lengths of 

DME/CH4-air mixtures at different equivalence ratios and pressures. 
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Chapter 8: Summary and Recommendations  
 

8.1 Summary  

In this dissertation, initiation, propagation, and extinction of premixed flames are 

systematically investigated using asymptotic theoretical analysis, detailed numerical 

simulations, and/or experimental measurements.   

Specifically, in Chapter 2, a general theory to describe different flame regimes 

and transitions among the flame kernel, the flame ball, the self-extinguishing flame, the 

outwardly propagating spherical flame, and the propagating planar flame is obtained. 

Based on this general theory, the dynamics of flame kernel evolution with and without 

ignition energy deposition is studied and the effects of radiative heat loss and Lewis 

number on flame propagation are investigated. It is found that the radiative heat loss from 

the unburned and burned zones play different roles in affecting the flame propagation 

speed. With the increase of flame radius, the radiative heat loss from the burned zone 

increases, while that from the unburned zone decreases. As a result, there is a peak 

radiation loss at an intermediate flame radius, which dramatically affects the flame 

regimes. It is also found that the radiative heat loss from the unburned zone results in a 

new flame regime: the isolated self-extinguishing flame with two radiation extinction 

limits at small and large flame radii, respectively. In addition, radiative loss is found to 

significantly affect the transition history of flame initiation when an external energy is 

deposited.  

In Chapter 3, a time-accurate and space-adaptive numerical solver for Adaptive 

Simulation of Unsteady Reactive Flow (A-SURF) has been developed. It is shown that 
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A-SURF can accurately and efficiently simulate one-dimensional propagating flames 

with detailed chemical mechanisms. A-SURF is currently the only numerical solver 

which simulates propagating flames based on the compressible governing equations (thus 

resolving acoustics) using detailed chemical mechanisms and adaptive meshes.  

In Chapter 4, the controlling factor for spherical flame initiation and how it relates 

to the minimum ignition energy are investigated by asymptotic analysis and detailed 

numerical simulations. The results show that it is the critical flame radius, rather than the 

flame thickness or flame ball radius, that controls the spherical flame initiation. The 

minimum ignition energy for successful spherical flame initiation is found to be 

proportional to the cube of the critical flame radius. Furthermore, preferential diffusion 

between heat and mass (Lewis number effect) is found to play an important role in the 

spherical flame initiation and it strongly affects the flame kernel evolution after ignition. 

It is shown that both the critical flame radius and the minimum ignition energy increase 

significantly with the Lewis number. Therefore, for transportation fuels with large Lewis 

numbers, blending of small molecule fuels will significantly reduces ignition energy. 

In Chapter 5, the constant pressure and constant volume methods utilizing 

propagating spherical flames for laminar flame speed measurements are studied 

theoretically and numerically. For the constant pressure method, the validity of the linear 

relationship between flame speed and stretch and the effects of ignition, unsteady flame 

transition, and compression on the accuracy of flame speed determination are 

investigated. Theoretical analysis reveals a critical flame radius; only above which is the 

linear or non-linear extrapolation for flame speeds valid. It is found that the critical radius 

changes non-monotonically with the Lewis number and that, at large Lewis numbers, it 
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can be larger than the minimum flame radius used in experiments, leading to invalid 

flame speed extrapolation. Besides, the ignition energy is shown to have a significant 

impact on flame trajectories. It is found that the unsteady flame transition at different 

ignition energies causes a flame speed reversal phenomenon that greatly narrows the 

experimental data range for flame speed extrapolation. Furthermore, the compression 

induced flow is shown to greatly affect both the instantaneous stretched and extrapolated 

unstretched flame speeds. A Compression-Corrected Flame Speed (CCFS) method for 

flame speed measurement is proposed to include the compression effect. It is 

demonstrated that the present CCFS method not only increases the accuracy of the 

measured flame speed but also extends the parameter range of experimental conditions. 

For the constant volume method, the stretch effect is studied and an analytical expression 

is derived to evaluate the stretch effect on the determination of laminar flame speeds. It is 

shown that the stretch effect is proportional to the Markstein length and inversely 

proportional to the flame radius. A Stretch-Corrected Flame Speed (SCFS) model is then 

proposed to obtain accurate flame speed directly from the experimental measurements.  

In Chapter 6, the effect of radiation on flame propagation and extinction is 

investigated. In the first part, the outwardly and inwardly propagating flames (OPF and 

IPF) are studied with the emphasis on the effects of radiative loss and preferential 

diffusion on the flame propagation speed, Markstein number, and flame extinction. 

Opposite trends for the change of the flame propagation speed and flame 

extinction/flammability limits are found for the OPF and IPF at different Lewis numbers 

and a correlation for Markstein length at different Lewis numbers and radiative losses is 

obtained. In the second part, the spectrally dependent radiation absorption effect on flame 
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speed enhancement is measured by using CO2-diluted CH4/O2 mixtures at normal and 

elevated pressures. The radiation absorption is found to increase the flame speed and to 

extend the flammability limit. It is also shown that the spectrally dependent radiation 

absorption needs to be included for quantitative predictions of flame speed and 

flammability limit with CO2 addition: the FSNB-CK radiation model can well reproduce 

the measured flame speed, while the SNB narrow-band gray model over-predicts the 

flame speed and the optically thin model significantly under-predicts the flame speed. In 

the third part, the flame dynamics of near limit premixed tubular flames are investigated 

to reveal the combined effects of flame curvature, radiation, and stretch on flame 

extinction. The coupling between radiation and flame curvature is found to lead to 

multiple flame bifurcations and extinction limits for different radiation intensities. It is 

also shown that both the stretch and radiation extinction limits are strongly affected by 

flame curvature: the stretch extinction limit monotonically decreases with the increase of 

flame curvature; while the radiation extinction limit, depending on the Lewis number, 

either monotonically or non-monotonically changes with flame curvature. 

In Chapter 7, the effects of DME addition to methane/air mixtures on the ignition, 

flame speeds, and Markstein lengths are studied experimentally and computationally. In 

homogeneous ignition, small amounts of DME addition to methane are found to 

significantly decrease the ignition time. This significant ignition enhancement is caused 

by the rapid build-up of CH3 and HO2 radicals when a small amount of DME is added to 

the system. In non-homogeneous ignition, it is found that the ignition enhancement is 

strongly affected by the stretch rate and there exist two ignition regimes: a kinetic limited 

regime and a transport limited regime. In contrast to the nonlinear behaviour appeared in 
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ignition enhancement, the flame speeds of DME/CH4-air mixture are found to be linearly 

proportional to the DME fraction. Moreover, it is found that the enhancement of the 

flame speed by DME addition becomes stronger at higher pressures. Unlike the laminar 

flame speeds, the Markstein lengths of the dual fuel change dramatically at small DME 

concentrations and have different trends: increase at fuel lean (φ=0.8), decrease at fuel 

rich (φ=1.2), and little increase at stoichiometric (φ=1.0). These changes are also found to 

be significantly affected by the pressure. 

8.2 Recommendations for Future Work  

Based on the results of the present study, the following are some 

recommendations for potential improvements on our understanding of premixed flame 

initiation, propagation, and extinction.  

For ignition, our theoretical and numerical analyses show that there exists a 

critical flame radius controlling the spherical flame initiation and that the minimum 

ignition energy is proportional to the cube of the critical flame radius. However, very few 

experiments have been conducted to study the critical flame radius and its relationship to 

the minimum ignition energy. Recent experiments by Kelly et al. (Kelley et al. 2008) on 

hydrogen/air ignition at different equivalence ratios and pressures confirmed that there 

was a critical flame radius for spherical flame initiation and successful ignition depended 

on whether the initially ignited flame kernel could attain this critical radius. However, the 

minimum ignition energy was not measured and thus its relationship with the critical 

flame radius was not examined. Similar to the detailed numerical simulations shown in 

Chapter 4, ignition experiments on different H2/O2/He/Ar and CH4/O2/He/Ar mixtures 

are currently on our laboratory’s schedule. By changing the helium and argon fractions 

 225



while fixing their combined volume, the preferential diffusion effect as well as the 

correlation between the critical flame radius and the minimum ignition energy will be 

revealed. Moreover, it is of practical interest to study the ignition of fuel mixtures since 

different fuel blends could be utilized for ignition control. According to the present study, 

both the critical flame radius and the minimum ignition energy increase significantly with 

the Lewis number. Therefore, for transportation fuels with large Lewis numbers, adding 

small-molecule fuel will significantly reduces the ignition energy.  

For flame propagation, either the constant pressure method or the constant volume 

method was used in all the previous experiments. With the help of the 

Compression-Corrected Flame Speed (CCFS) and the Stretch-Corrected Flame Speed 

(SCFS) developed in Chapter 5, both methods could be utilized for the same run by 

experiments conducted in a spherical chamber with windows for Schlieren imaging and 

sensors for pressure recording (i.e. both the flame front and pressure histories could be 

recorded). Using these methods, accurate flame speed data should be experimentally 

determined at high pressures and high temperatures since many practical combustion 

devices operate near these conditions. Moreover, compared with the laminar flame 

speeds, the discrepancies among the Markstein lengths obtained from measurements are 

much larger. Therefore, efforts need be spent on accurately measuring the Markstein 

length using the constant pressure method. In addition, comparison between the constant 

pressure method and the counterflow flame method needs to be conducted since different 

laminar flame speeds and Markstein lengths are reported from experiments for the same 

mixture at the same conditions. 
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For flame extinction, the combined effects of radiation, stretch, and curvature are 

only investigated theoretically based on the premixed tubular flames. Experiments 

utilizing a tubular burner should be conducted to validate the theoretical predictions. 

Besides, numerical simulations of premixed tubular flames with detailed chemical 

mechanisms will also help to understand these combined effects on flame extinction. In 

addition, experiments on radiation absorption effect reported in Chapter 6 were 

conducted at normal gravity. For near-limits flames, the laminar flame speeds are lower 

than 10 cm/s and thus the buoyancy effect can not be neglected. Microgravity 

experiments should be conducted to further understand the radiation absorption effect on 

laminar flame speeds and flammability limits. These experiments will also help to reveal 

the radiation effect on the accuracy of flame speed measurements using propagating 

spherical flames. Furthermore, the correlation between the Markstein length and the 

radiative heat loss derived in Chapter 6 could be checked by results from microgravity 

experiments.   
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