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Inertia in strategy switching transforms the strategy evolution
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A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human
strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent
to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed
population of finite size. To address this issue, the “inertia bonus” (strategy switching cost) is added to the learner
payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that
stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned
by two inertia parameters. We also obtain the extended “1/3” rule with inertia and the speed criterion with
inertia; these two findings hold for a population above two. We illustrate the above results in the framework of
the Prisoner’s Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability
of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide
useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the
evolution of cooperation.
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I. INTRODUCTION

Evolutionary game theory incorporates a frequency-
dependent selection into the dynamics of genetic evolution [1].
For infinitely large well-mixed populations, the evolutionary
dynamics is commonly described by the celebrated replicator
equation [2]. For finite populations, many microscopic up-
dating rules are brought forward, of which the most widely
used are the Moran process [3,4] and the Fermi process
[5,6]. These processes not only characterize genetic evolution,
but also cultural evolution in human society. Payoff is not
directly converted into offspring, but into the fitness of
players, and their correlation is governed by a “selection
intensity parameter.” Recent studies demonstrate that some
evolutionary results pivot on the microscopic rules [7–9]. The
problem naturally arises as to which updating rule best portrays
imitation dynamics in the human world. Aiming at resolving
the problem, Traulsen et al. [10] conducted a behavioral
experiment and found that human strategy updating involves
both direct payoff comparison and the cost of switching
strategy.

In social settings, changing strategy involves real costs in
many economic contexts, such as firms’ investment decisions
(“setting up” or “shutting down” cost). But even in the absence
of such tangible costs, if playing a new strategy is complex,
then the switching strategy may impose mental pressure on
individuals.

In this paper, we adopt the Fermi process with the “inertia
bonus” (strategy switching cost) being added to learner payoff.
Inertia is essentially equal to the cost of strategy switching
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proposed by Szabó and Hauert [11] and the “stubbornness”
in strategy switching advanced by Fu et al. [12], but their
studies involve no or little effect of inertia. So far, a systematic
theoretical analysis of inertia is still lacking. We would like to
make a comprehensive investigation upon how inertia modifies
the strategy evolution. As a particular example, we also study
how inertia affects the cooperation evolution in the context
of the Prisoner’s Dilemma game [13–18]. The game depicts
the conflict of interest between what is best for the individual
(defection) and what is best for the group (cooperation), and
thus gives rise to the social dilemma. Spatially structured
populations [19–32] are extensively adopted to escape from
such a dilemma. To attain a clear-cut insight about how inertia
alone guides strategy evolution, we focus on a well-mixed
population, which offers a most disadvantageous environment
for the evolution of cooperation.

The paper is organized as follows. Section II briefly intro-
duces the Fermi process with inertia. Section III investigates
what influence inertia exerts upon the stationary distribution.
Section IV analyzes how inertia influences the stochastically
stable states in the limit of strong selection. Section V
shows the effect of inertia on the fixation probability and the
conditional fixation time. We draw conclusions in Sec. VI.

II. MODEL

Consider a symmetric 2 × 2 game, in which the payoffs are
given by the following matrix. An A individual playing the
game with another A individual receives payoff a, and two
interacting B individuals get d each. An A individual playing
the game with a B individual gets b, whereas B obtains c:

A B

A

B

(
a b

c d

)
.

(1)
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In a well-mixed population of finite size N , each individual
can play with every other individual equally likely. The
average payoffs of A individuals and B individuals are,
respectively,

PA(i) = a(i − 1) + b(N − i)

N − 1
, PB(i) = ci + d(N − i − 1)

N − 1
,

where i is the number of A individuals in the population. Note
that we exclude self-interaction in the above calculations.

We employ the Fermi process with inertia to describe
the population dynamics in social and cultural evolution,
and inertia substantially corresponds to the cost of switching
strategy. The specific evolutionary process is stated as follows:
At every time step, an individual, say the focal individual, is
randomly singled out. He shifts his strategy with probability μ,
otherwise he imitates the strategy of another randomly picked
individual, say the model individual, with the probability
denoted by the Fermi function with inertia. In the latter
case, the composition of the population is likely to change
only when the focal individual and the model individual
stick to strategies of different types. If the focal individual
takes strategy A, he switches to strategy B with probability

1
1+e−β(pB −pA−τ1) . If the focal individual employs strategy B, he

imitates the A individual with likelihood 1
1+e−β(pA−pB −τ2) . The

parameter β ∈ [0,∞) signifies the strength of selection. With
τ1 = 0, τ2 = 0, the above update rule recovers the traditional
Fermi process [6] which serves as the bench mark. Positive τ1

and positive τ2 represent that A individuals and B individuals
are reluctant to switch strategies, respectively. So τ1 and τ2

are called A’s inertia and B’s inertia, respectively. For the
sake of comprehensively analyzing, inertia parameters can be
negative, suggesting that individuals are desirous of copying
others’ strategies.

The variation of the number of A individuals can be
delineated by a Markov process. The state space is V =
{0, . . . ,N}.

When the mutation μ > 0, the transition matrix is
(pij )(N+1)×(N+1), where

pi,j = 0 if |i − j | > 1,

p0,1 = 1 − p0,0 = μ = pN,N−1 = 1 − pN,N ,

and, for i = 1, . . . ,N − 1,

pi,i+1 = μ
N − i

N
+ (1 − μ)

i

N

N − i

N

1

1 + e−β[PA(i)−PB (i)−τ2]
,

pi,i−1 = μ
i

N
+ (1 − μ)

i

N

N − i

N

1

1 + e−β[PB (i)−PA(i)−τ1]
,

pi,i = 1 − pi,i−1 − pi,i+1. (2)

As the process is ergodic, there exists a unique invariant
distribution expressed by π (μ) = [π (μ,0), . . . ,π(μ,N )]. The
distribution can be derived explicitly [33] for k = 0, . . . ,N :

π (μ,k) = λ(μ,k)

λ(μ,0) + · · · + λ(μ,N )
where

(3)

λ(μ,k) =
k−1∏
i=0

pi,i+1

pi+1,i

and λ(μ,0) = 1.

Here the quantities appealing to us are the stationary distribu-
tion and the stochastically stable states.

When the mutation μ = 0, the transition matrix is
(p̂i,j )(N+1)×(N+1), where

p̂i,j = 0 if |i − j | > 1,

1 = p̂0,0 = 1 − p̂0,1 = p̂N,N = 1 − ̂pN,N−1,

and, for i = 1, . . . ,N − 1,

p̂i,i+1 = i

N

N − i

N

1

1 + e−β[PA(i)−PB (i)−τ2]
,

p̂i,i−1 = i

N

N − i

N

1

1 + e−β[PB (i)−PA(i)−τ1]
, (4)

p̂i,i = 1 − p̂i,i−1 − p̂i,i+1.

The states v = 0 and N are absorbing states, and the quantities
of interest are the fixation probability and the conditional
fixation time.

We separably investigate how inertia acts upon the above
four quantities in detail.

III. THE FERMI PROCESS WITH SMALL MUTATION:
STATIONARY DISTRIBUTION

For arbitrary mutation, how inertia affects the shape of
the stationary distribution is difficult to quantitatively analyze.
However, for small mutation, the quantitative result can be
obtained on the basis of the following method. Given a small
mutation rate, the first-order approximation of λ(μ,k) is in
fact a discrete function of k and is expanded as a continuous
function in the interval of [1,99]. By analyzing the effect of
inertia on the monotonicity of the continuous function, we
determine the threshold values of inertia, which are crucial to
analyze how inertia transforms the profile of the distribution.

From Eqs. (3) and (4), in combination with pN,N−1 =
p0,1 = μ, we have, for small mutation rates,

∀k ∈ {1, . . . ,N − 1},

λ(μ,k) = μ

pk,k−1

k−1∏
i=1

pi,i+1

pi,i−1
≈ μ̂pk,k−1

k−1∏
i=1

p̂i,i+1

p̂i,i−1
= O(μ),

(5)

λ(μ,0) = 1, λ(μ,N ) =
N−1∏
i=1

pi,i+1

pi,i−1

=
N−1∏
i=1

p̂i,i+1 + μ
(

N−i
N

− p̂i,i+1
)

p̂i,i−1 + μ
(

i
N

− p̂i,i−1
)

≈
N−1∏
i=1

p̂i,i+1

p̂i,i−1
+ O(μ), (6)

where O(μ) stands for the infinitesimal of the same order of
μ. Intuitively, the process spends 1 − O(μ) of the time at full
states and O(μ) of the time at coexistence states.

Since π (μ,k) = λ(μ,k)
λ(μ,0)+···+λ(μ,N) , it is straightforward to

see that π (μ) = [π (μ,0), . . . ,π (μ,N )] is the normalized
vector of λ(μ) = [λ(μ,0), . . . ,λ(μ,N )]. In fact, given the
mutation rate, π (μ,k) and λ(μ,k) are discrete functions of
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k, whose corresponding continuous functions share the same
monotonicity. Let

F (k,c1,c2) = 1̂pk,k−1

k−1∏
i=1

p̂i,i+1

p̂i,i−1

= N

k

N

N − k
(1 + c1e

m×k+n)
k−1∏
i=1

1 + c1e
m×i+n

1 + c2e−m×i−n
,

(7)

where c1 = eβτ1 , c2 = eβτ2 , m = β a+d−c−b
N−1 , and n =

β −a−(N−1)d+Nb

N−1 . Then, λ(μ,k) = μF (k,c1,c2) for k =
{1, . . . ,N − 1}.

Let f (x,c1,c2) be a continuous and differentiable function
of x, and, for k ∈ {1, . . . ,N − 1},f (k,c1,c2) = F (k,c1,c2).
The explicit formula of f (x,c1,c2) is not obvious, but that
of ln f (x,c1,c2) can be effortlessly approximated as

ln f (x,c1,c2) ≈ 2 ln N − ln x − ln(N − x)

+
∫ x

0
ln(1 + c1e

ms+n)ds

−
∫ x

1
ln(1 + c2e

−ms−n)ds.

It is easy to verify that the derivative of f (x,c1,c2) with respect
to x has the same sign as that of ln f (x,c1,c2). Therefore, to
achieve the variety of the shape of the stationary distribution
under inertia, we can analyze how c1 and c2 affect the derivative
of ln f (x,c1,c2).

Denoting the derivative of ln f (x,c1,c2) by h(x,c1,c2), we
have

h(x,c1,c2) = ∂ ln f

∂x
= − 1

x
+ 1

N − x

+ ln(1 + c1e
mx+n) − ln(1 + c2e

−mx−n). (8)

Let h(x,c1,1) = 0, the threshold values of A’s inertia are
{c∗

1(1), . . . ,c∗
1(N − 1)}, where

c∗
1(x) = e

[
ln(1+e−mx−n)+ 1

x
− 1

N−x

]
− 1

emx+n
. (9)

Let h(x,1,c2) = 0, the threshold values of B’s inertia are
{c∗

2(1), . . . ,c∗
2(N − 1)}, where

c∗
2(x) = e

[
ln(1+emx+n)− 1

x
+ 1

N−x

]
− 1

e−mx−n
. (10)

Especially, inertia is illustrated to alleviate and even remove
the social dilemma whenever the interaction mode is character-
ized as the Prisoner’s Dilemma game (c > a > d >b). Strategy
A and B represent cooperation and defection, respectively. In
this case, we find that n = β −a−(N−1)d+Nb

N−1 is always negative,
while m = β a+d−c−b

N−1 can be positive or negative. Fixating b

and c, we pick two arrays of a and d to ensure that m of two
games enjoys different signs. Amazingly, some inertia makes
these two games exhibit profoundly different dynamics.

In the following two examples, the mutation rate μ =
0.0001, the selection intensity β = 1, and the population size
N = 100.

A sketch of the analysis upon the effect of A’s inertia is
as follows. In the first step, we determine the threshold values
of A’s inertia {c∗

1(1), . . . ,c∗
1(99)} by Eq. (9). The maximum

and minimum of {c∗
1(1), . . . ,c∗

1(99)} are denoted by c∗
1(M)

and c∗
1(m). In the second step, since h(k,c1,1) is an increasing

function of c1, we obtain the following conclusions:
(1) For c1 = eτ1 � c∗

1(m), we have h(k,eτ1 ,1) � 0 for any
k ∈ {1, . . . ,99}, then the stationary distribution has a unique
maximum at v = 0.

(2) For c∗
1(m) < c1 = eτ1 < c∗

1(M), the shape of the station-
ary distribution depends on the profile of c∗

1(x),x ∈ [1,99].
If c∗

1(x) decreases monotonously, the stationary distribution
simultaneously peaks at v = 0 and 100. If c∗

1(x) increases
monotonously, the stationary distribution peaks at the coexis-
tence state.

(3) For c1 = eτ1 � c∗
1(M), we have h(k,eτ1 ,1) � 0 for any

k ∈ {1, . . . ,99}, then the stationary distribution has a unique
maximum at v = 100.

Similarly, a sketch of the analysis upon the effect of
B’s inertia is as follows. In the first step, we determine the
threshold values of B’s inertia {c∗

2(1), . . . ,c∗
2(99)} by Eq. (10).

The maximum of {c∗
2(1), . . . ,c∗

2(99)} is denoted by c∗
2(M).

Meanwhile, we find that c∗
2(1) < c∗

2(2) < · · · < c∗
2(Z − 1) <

0 � c∗
2(Z). In the second step, since h(k,1,c2) is a decreasing

function of c2, we obtain the following conclusions:
(1) For c2 = eτ2 � c∗

2(M), we have h(k,1,eτ2 ) � 0 for any
k ∈ {1, . . . ,99}, then the stationary distribution has a unique
maximum at v = 0.

(2) For c2 = eτ2 < c∗
2(M), the shape of the stationary

distribution depends on the profile of c∗
2(x),x ∈ [1,99]. If

c∗
2(x) increases monotonously, the stationary distribution

simultaneously peaks at v = 0 and 100.
(3) Since c∗

2(1) < c∗
2(2) < · · · < c∗

2(Z − 1) < 0 � c∗
2(Z),

we have h(k,1,eτ2 ) � 0 for any τ2 and k ∈ {1, . . . ,Z − 1},
then the peak point v = 0 of the stationary distribution always
exists no matter how small τ2 is. This is because cooperators
always imitate defectors with a nonzero probability 1

1+e−β(pB −pA)

in the process only with τ2.
Example 1. Consider the Prisoner’s Dilemma game (a =

5,b = 0,c = 6,d = 2). Figure 1 indicates the monotonic
decrement of c∗

1(x) and the monotonic increment of c∗
2(x),

respectively:
(1) For eτ1 � c∗

1(99) [c∗
1(99) is the minimum point in

Fig. 1(a)], or for eτ2 � c∗
2(99) [c∗

2(99) is the maximum point in
Fig. 1(b)], the stationary distribution takes on the only maximal
value at the full defection state v = 0 and the dilemma is not
alleviated but worsened [e.g., Figs. 2(a) and 2(d)].

(2) For c∗
1(99) < eτ1 < c∗

1(1) [c∗
1(1) is the maximum point

in Fig. 1(a)], or for eτ2 < c∗
2(99), the stationary distribution

exhibits a U shape with two local maxima at the full states
v = 0 and 100 and the dilemma is lightened [e.g., Figs. 2(b)
and 2(e)].

(3) For eτ1 � c∗
1(1), the stationary distribution assumes the

single maximal value at the full cooperation state v = 100
and the dilemma is thoroughly eliminated [e.g., Fig. 2(c)].
Note that we show that the distribution under very small τ2

possesses the peak point v = 0 in Fig. 2(f).
Example 2. Consider the Prisoner’s Dilemma game (a =

4,b = 0,c = 6,d = 1). From Fig. 3(a), c∗
1(x) can be approxi-

mately seen as an increasing function. From Fig. 3(b), c∗
2(x)
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FIG. 1. (Color online) For the game (a = 5,b = 0,c = 6,d = 2),
stationary points c∗(x) [representing c∗

1(x) or c∗
2(x)] for the equilib-

rium probability of the state x given by Eqs. (9) and (10). (a) In the
absence of B’s inertia, i.e., c2 = 1, c∗

1(x) decreases monotonously
with x. (b) In the absence of A’s inertia, i.e., c1 = 1, c∗

2(x) increases
monotonously with x. Relevant parameters: β = 1, N = 100.

is not a monotone function, which results in quite interesting
phenomena:

(1) For eτ1 � c∗
1(8) [c∗

1(8) is the minimum point in Fig. 3(a)],
or for eτ2 � c∗

2(99) [c∗
2(99) is the maximum point in Fig. 3(b)],

a single maximum of the stationary distribution appears at
the full defection state v = 0 and cooperation is completely
inhibited [e.g., Figs. 4(a) and 4(d)].

(2) For c∗
1(8) < eτ1 < c∗

1(93) [c∗
1(93) is the maximum point

in Fig. 3(a)], a unique maximum value of the stationary
distribution arises at a coexistence state and cooperation is
supplied with an opportunity to survive [e.g., Fig. 4(b)].

(3) For c∗
2(16) � eτ2 < c∗

2(99) [c∗
2(16) is threshold 1 in

Fig. 3(b)], the local maxima of the stationary distribution turn
up at both the full defection state v = 0 and the full cooperation
state v = 100 but the latter is much smaller, so the dilemma is
slightly attenuated.

FIG. 3. (Color online) For the game (a = 4,b = 0,c = 6,d = 1),
stationary points c∗(x) [representing c∗

1(x) or c∗
2(x)] for the equilib-

rium probabilities of the state x depicted by Eqs. (9) and (10). (a) In
the absence of B’s inertia, i.e., c2 = 1, on the whole, c∗

1(x) increases
monotonously with x. (b) In the absence of A’s inertia, i.e., c1 = 1,
c∗

2(x) exhibits a varied monotonicity with x. Relevant parameters:
β = 1, N = 100.

(4) For c∗
2(81) � eτ2 < c∗

2(16) [c∗
2(81) is threshold 2 in

Fig. 3(b)], the relative maxima of the stationary distribution at
the full states v = 0 and 100 don’t disappear and another peak
appears at a coexistence state [e.g., Fig. 4(e)]; correspondingly
the relaxation of the dilemma is conspicuous.

(5) For eτ2 < c∗
2(81), the distribution again just carries two

local peaks at the full states v = 0 and 100, but the latter is
much larger, so the dilemma is significantly relieved [e.g.,
Fig. 4(f)].

(6) For eτ1 � c∗
1(93), the unique maximum point of the

distribution lies at the full cooperation state v = 100, so
cooperators totally win the victory against defectors [e.g.,
Fig. 4(c)].

For any given game, the quantitative effects of A’s inertia
and B’s inertia on the shape of the stationary distribution are

FIG. 2. (Color online) Stationary distribution of the game (a = 5,b = 0,c = 6,d = 2) under the influence of A’s inertia (τ1) or B’s inertia
(τ2). The distribution undergoes a qualitative change with increasing τ1 or decreasing τ2. Three different scenarios occur for the stationary
distribution in the absence of τ2 (i.e., τ2 = 0): (a) For τ1 � ln c∗

1(99), the stationary distribution reaches maximization at the absorbing state
v = 0; (b) for ln c∗

1(99) < τ1 < ln c∗
1(1), the local peak v = 0 is withheld and another local peak v = 100 comes into being; and (c) for

τ1 � ln c∗
1(1), the stationary probability distribution no longer has the relative maximum v = 0 and exhibits a single maximal value at the

boundary v = 100. Two different scenarios occur for the stationary distribution with τ1 = 0: (d) For τ2 � ln c∗
2(99), the stationary distribution

demonstrates its maximality at the Nash equilibrium v = 0; and (e) for τ2 < ln c∗
2(99), the system spends most of the time near two absorbing

states, leading to local maxima of the stationary distribution at v = 0 and 100. In addition, (f) the local peak v = 0 in the distribution exists
under very small τ2 (see inset for detail). In all six cases, the numerical result (obtained by the Monte Carlo simulation average over 108 time
steps) depicted by lines accords well with the analytical result [obtained by Eq. (3)] given by symbols. Relevant parameters: μ = 0.0001,
β = 1, N = 100.
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FIG. 4. (Color online) Stationary distribution of the game (a = 4,b = 0,c = 6,d = 1) under the influence of A’s inertia (τ1) or B’s inertia
(τ2). The distribution undergoes a qualitative change with increasing τ1 or decreasing τ2. Three different scenarios occur for the stationary
distribution in the absence of B’s inertia (i.e., τ2 = 0): (a) For τ1 � ln c∗

1(8), the system expends most of the time near the state of all B

individuals; (b) for ln c∗
1(8) < τ1 < ln c∗

1(93), τ1 leads the system away from the state v = 0 and the distribution is centered at a coexistence
state; and (c) for τ1 � ln c∗

1(97), the stationary probability distribution has a single absolute maximum at the boundary v = 100. Four different
scenarios occur for the stationary distribution with τ1 = 0: (d) For τ2 � ln c∗

2(99), the stationary distribution has a single maximum value at
the endpoint v = 0 [note that we don’t portray the case for ln c∗

2(16) � τ2 < ln c∗
2(99), where the stationary distribution keeps a maximum at

v = 0, and a second maximum (smaller) appears at the other absorbing state v = 100]; (e) for ln c∗
2(81) < τ2 < ln c∗

2(16), the system not only
keeps the relative maxima v = 0 and 100, but also another local peak appears for intermediate values; and (f) for τ2 � ln c∗

2(81), the peak at
a coexistence state disappears, while the maximum at v = 100 and a second (smaller) maximum at v = 0 are held (see inset for detail of the
distribution near v = 0). In all six cases, the numerical result (obtained by the Monte Carlo simulation average over 108 time steps) depicted
by lines accords well with the analytical result [obtained by Eq. (3)] given by symbols. Relevant parameters: μ = 0.0001, β = 1, N = 100.

considered separately. In particular, the influences of both on
the same Prisoner’s Dilemma game are slightly different. The
dilemma under A’s inertia can be alleviated or even thoroughly
eliminated. Whereas B’s inertia always provides defection
with an opportunity of survival and the dilemma can’t be
entirely removed. The effects of inertia on two Prisoner’s
Dilemma games with a + d − b − c of different signs are
strikingly different. For a + d − b − c > 0, inertia can lead
the stationary distribution to simultaneously peak at two full
states. For a + d − b − c < 0, inertia can lead the stationary
distribution to peak at a coexistence state.

Remark 1. As an alternative of the above discussion, the
approximation formula for the probability density function
can be obtained by the Kolmogorov-Fokker-Planck forward
equation [33]. The probability density, p(x,t), which gives us
that the fraction of individuals playing strategy A is x at time
t , satisfies

∂p(x,t)

∂t
= −∂[b(x)p(x; t)]

∂x
+ 1

2

∂2[a(x)p(x; t)]

∂x2
, (11)

where b(x) = pxN,xN+1 − pxN,xN−1 and a(x) =
1
N

(pxN,xN+1 + pxN,xN−1).
The probability density function is easily found to be

p(s)(x) = Ce
2

∫ x

0
b(s)
a(s) ds

/a(x). (12)

The constant C follows from the constraint
∫ 1

0 p(s)ds = 1.
By the Itô calculus, Eq. (11) is equivalent to a Langevin

equation [34]:

ẋ = a(x) + b(x)ξ, (13)

where ξ is uncorrelated Gaussian noise and b(x) = 0 for both
x = 0 and 1.

The stochastic dynamics of a system described by Eq. (13)
can be easily analyzed by the Gibbs form of the stationary
probability function [35]:

p(s)(x) ∝ eVeff . (14)

The extremes of the effective potential Veff correspond to the
stationary fixed points of the noise-sustained dynamics.

IV. THE FERMI PROCESS WITH μ → 0:
STOCHASTICALLY STABLE STATE

The stochastically stable equilibrium was originally put
forward by Foster and Young [36], whereafter the concept has
been extensively researched by Kandori et al. [37] and Mikisz
et al. [38–41]. The former proposed a similar model where
the risk-dominant strategy is stochastically stable. The latter
required that individuals should only play one game at every
time step, and found that the population undergoes several
equilibrium transitions with the transformed population size.

A state v ∈ V is stochastically stable if π∗(v) =
limμ→0 π (μ,v) > 0.

From Eq. (5), we see λ∗(k) = limμ→0 λ(μ,k) = 0 for k ∈
{1, . . . ,N − 1}. Since λ(μ,0) = 1 and by Eq. (3), π (μ,k) �
λ(μ,k). It follows that π∗(k) = limμ→0 π (μ,k) = 0 for k ∈
{1, . . . ,N − 1}.

By Eq. (6), we have λ∗(0) = limμ→0 λ(μ,0) = 1 and
λ∗(N ) = limμ→0 λ(μ,N ) = ∏N−1

i=1
p̂i,i+1

p̂i,i−1
. It follows that

π∗(0) = 1

1 + λ∗(N )
, π∗(N ) = λ∗(N )

1 + λ∗(N )
. (15)

Let π∗ = [π∗(0),π∗(1), . . . ,π∗(N − 1),π∗(N )]. As dis-
cussed above, the stationary distribution π (μ) approaches
π∗ = [π∗(0),0, . . . ,0,π∗(N )] as the mutation rate μ goes
to zero (for the Moran process, Fudenberg et al. [42] have
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obtained the same result). Consequently, the possible stochas-
tically stable states are v = 0 and N , and λ∗(N ) is critical for
the detailed analysis of how inertia alters the stochastically
stable states.

We are interested in the stochastic stability under strong
selection and the expression of λ∗(N ) is annoyingly compli-
cated; therefore the limit of the approximation of ln λ∗(N ) as
β tends to +∞ is our focus.

We see λ∗(N ) = limμ→0 λ(μ,N ) = ∏N−1
i=1

p̂i,i+1

p̂i,i−1
. Inserting

Eq. (4) into λ∗(N ) leads to

λ∗(N ) =
N−1∏
i=1

1 + e−β[pB (i)−pA(i)−τ1]

1 + e−β[pA(i)−pB (i)−τ2]
=

N−1∏
i=1

1 + eβ(ρi+ζ )

1 + eβ(−ρi+η)
,

(16)

where ρ = a+d−c−b
N−1 , ζ = � + τ1, η = −� + τ2, and � =

−a−(N−1)d+Nb

N−1 . Taking the natural logarithm of Eq. (16) and
replacing the sums by integrals induces

ln λ∗(N ) ≈
∫ N−1

0
ln[1 + eβ(ρx+ζ )]dx

−
∫ N−1

0
ln[1 + eβ(−ρx+η)]dx. (17)

For a + d − b − c 
= 0, the integral of transcendental func-
tions in Eq. (17) can’t be written down explicitly. To calculate
the limit of ln λ∗(N ), we exchange the order of the limit and
the integral. The following two theorems, whose proofs are
introduced in Appendix A, guarantee the rationality of the
swap.

Theorem 1. Let h(x,β) = ln[1 + eβω(x)] where ω(x) � 0
for all x in a measurable set χ , then limβ→+∞

∫
χ

h(x,β)dx =∫
χ

limβ→+∞ h(x,β)dx.

Theorem 2. Let h(x,β) = ln[1 + eβω(x)] where ω(x) � 0
for all x in a measurable set χ , then limβ→+∞

∫
χ

h(x,β)dx =∫
χ

limβ→+∞ h(x,β)dx.
We rearrange Eq. (17):

ln λ∗(N ) ≈
∫

χ1

ln[1 + eβ(ρx+ζ )]dx +
∫

χ2

ln[1 + eβ(ρx+ζ )]dx

−
∫

χ3

ln[1 + eβ(−ρx+η)]dx

−
∫

χ4

ln[1 + eβ(−ρx+η)]dx.

where χ1, χ2, χ3, and χ4 are measurable intervals which sat-
isfy ∀x ∈ χ1,ρx + ζ � 0, ∀x ∈ χ2,ρx + ζ � 0, ∀x ∈ χ3, −
ρx + η � 0, and ∀x ∈ χ4, − ρx + η � 0.

By Theorem 1, together with the equivalent relation of limit,
we have

lim
β→+∞

∫
χ1

ln[1 + eβ(ρx+ζ )]dx =
∫

χ1

lim
β→+∞

ln[1 + eβ(ρx+ζ )]dx

= lim
β→+∞

∫
χ1

β(ρx + ζ )dx,

lim
β→+∞

∫
χ3

ln[1 + eβ(−ρx+η)]dx =
∫

χ3

lim
β→+∞

ln[1 +eβ(−ρx+η)]dx

= lim
β→+∞

∫
χ3

β(−ρx + η)dx.

Due to Theorem 2, along with the equivalent relation of
limit, we get

lim
β→+∞

∫
χ2

ln[1 + eβ(ρx+ζ )]dx

=
∫

χ2

lim
β→+∞

ln[1 + eβ(ρx+ζ )]dx = lim
β→+∞

∫
χ2

eβ(ρx+ζ )dx,

lim
β→+∞

∫
χ4

ln[1 + eβ(−ρx+η)]dx

=
∫

χ4

lim
β→+∞

ln[1 + eβ(−ρx+η)]dx = lim
β→+∞

∫
χ4

eβ(−ρx+η)dx.

We only investigate the case for a + d − b − c > 0. For
the game fulfilling a + d − b − c < 0, we can explore a
transformed game where A and B are interchanged. In the limit
of strong selection (β → +∞), the possible values of ln λ∗(N )
are +∞, 0, and −∞. Therefore, the resulting stochastic
stability falls into three regimes: “only A is stochastically
stable,” “only B is stochastically stable,” and “both A and B are
stochastically stable with the same equilibrium probability.”
The detailed analysis (see Appendix B) shows that the plane
spanned by τ1 and τ2 is subdivided into 21 domains, and each
regime covers seven domains.

For a + d − b − c = 0, Eq. (17) reduces to ln λ∗(N ) =
(N − 1) ln(1 + eβζ ) − (N − 1) ln(1 + eβη). Then,

(1) If ζ > η and ζ > 0 (i.e., τ1 − τ2 > −2� and τ1 >

−�), then limβ→+∞ ln λ∗(N ) = +∞. We say that only A is
stochastically stable. In addition, if ζ = 0 and η < 0 (i.e., τ1 =
−� and τ2 < �), then limβ→+∞ ln λ∗(N ) = (N − 1) ln 2. For
a large population, the system spends much more time at the
state v = N and it is approximate that only A is stochastically
stable.

(2) If η > ζ and η > 0 (i.e., τ1 − τ2 < −2� and τ2 > �),
then limβ→+∞ ln λ∗(N ) = −∞. We say that only B is stochas-
tically stable. In addition, if η = 0 and ζ < 0 (i.e., τ2 = �

and τ1 < −�), then limβ→+∞ ln λ∗(N ) = −(N − 1) ln 2. For
a large population, the system spends much more time at the
state v = 0 and it is approximate that only B is stochastically
stable.

(3) If ζ = η � 0 (i.e., τ1 − τ2 = −2� and τ1 � −�),
or if ζ < 0 and η < 0 (i.e., τ1 < −� and τ2 < �), then
limβ→+∞ ln λ∗(N ) = 0. We say that both A and B are
stochastically stable, and the population spends equal time
at both states v = 0 and N in the long run.

It is well known that the simplified Prisoner’s Dilemma
game (a = 1,b = 0,c = 1 + u,d = u) satisfies the condition
a + d = b + c. When there exists no inertia in the process,
only defection is stochastically stable, while, according to the
above conclusions, approximate inertia parameters τ1 and τ2

make cooperation stochastically stable.
Remark 2. Fudenberg and Imhof [43] demonstrated that

π∗ = [π∗(0), . . . ,π∗(N )] is a good approximation of π (μ) =
[π (μ,0), . . . ,π (μ,N )] for sufficiently small mutation rates. In
view of how small the mutation rate for the approximation is,
Wu et al. determined the critical mutation rate under which the
total variation distance between π (μ) and π∗ [44] is smaller
than the given tolerance of the error.
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V. THE FERMI PROCESS WITHOUT MUTATION:
THE FIXATION PROBABILITY AND THE

CONDITIONAL FIXATION TIME

In the no-mutation process, v = 0 and N are absorbing
states. A mutant either replaces the other type or is eliminated.
We are keen on how inertia influences fixation probabilities
and conditional fixation times.

A. Fixation probabilities

The probability of a single A mutant taking over a
population of B individuals is called A’s fixation probability
and denoted by ρA. Similarly, the probability of a single B

mutant taking over a population of A individuals is called
B’s fixation probability and expressed as ρB . Since the Fermi
process with inertia is a birth-death process, the fixation
probabilities have simple explicit expressions [45]:

ρA = 1

1 + ∑N−1
k=1

∏k
j=1

̂pj,j−1̂pj,j+1

, ρB =
∏N−1

j=1
̂pj,j−1̂pj,j+1

1 + ∑N−1
k=1

∏k
j=1

̂pj,j−1̂pj,j+1

.

(18)

The most widely used updating rules in a finite population
are the Moran process and the Fermi process.

For the Moran process, Nowak et al. [4] found the “1/3”
and “1/2” rules for large populations under weak selection.
The 1/2 rule means that, if at an A frequency of 1/2 the fitness
of A is greater (or smaller) than that of B, then ρA > ρB (or
ρA < ρB). The 1/3 rule reads that, if at an A frequency of
1/3 the fitness of A is greater (or smaller) than that of B, then
ρA > 1/N (or ρA < 1/N ). The case where the fitness of A

is identical with that of B at an A frequency of 1/3 has been
investigated by Bomze and Pawlowitsch [46].

For the Fermi process, the 1/2 rule is extended to any
selection intensity and the 1/3 rule still holds [5,6,47].
However, to our best knowledge, no study has worked on
the fixation probability for the case where the fitness of A is
equal to that of B at an A frequency of 1/3.

For weak selection, from Eq. (4), the ratio of the transition
probabilities can be approximated as

p̂i,i−1

p̂i,i+1
∼ 1 + β(PB − PA + τ2/2 − τ1/2). (19)

Then, the payoff matrix Eq. (1) can be rescaled as

A B

A

B

(
a + τ1/2 b + τ1/2
c + τ2/2 d + τ2/2

)
.

(20)

Corresponding to Eq. (20), the respective payoffs are P
′
A(i) =

PA(i) + τ1
2 and P

′
B(i) = PB(i) + τ2

2 , and the respective transi-
tion probabilities are

p
′
i,i−1 = i

N

N − i

N

1

1 + e−β[P
′
A(i)−P

′
B (i)]

,

(21)

p
′
i,i+1 = i

N

N − i

N

1

1 + e−β[P
′
B (i)−P

′
A(i)]

.

By Eq. (21), we again get, under weak selection (β 
 1),

p
′
i,i−1

p
′
i,i+1

∼ 1 + β(PB − PA + τ2/2 − τ1/2). (22)

This is why the payoff matrix Eq. (1) is rescaled as the payoff
matrix Eq. (20) when ρA and ρA

ρB
are considered.

The 1/2 rule is applied to the rescaled matrix Eq. (20),
which generates the 1/2 rule with inertia for weak selection
(the rescaled matrix only holds for weak selection) and
sufficiently large populations:
If a

2 + b
2 − c

2 − d
2 > (τ2−τ1)

2 , then ρA > ρB , i.e., A is more
likely to replace B than vice versa.
If a

2 + b
2 − c

2 − d
2 � (τ2−τ1)

2 , then ρA � ρB , i.e., B is more
likely to replace A than vice versa.

A strategy is risk-dominant if it has a higher payoff
against a player equiprobably choosing feasible strategies. The
original 1/2 rule tells us that the risk-dominant strategy takes
over the whole population with a higher fixation probability.
Nevertheless, the above outcome says that we can modify
inertia parameters τ1 and τ2 so that the risk-dominant strategy
no longer has the advantage.

Homoplastically, the 1/3 rule is applied to the rescaled
matrix Eq. (20), which creates the 1/3 rule with inertia for
weak selection and sufficiently large populations:
If a

3 + 2b
3 − c

3 − 2d
3 > 1

2 (τ2 − τ1), then ρA > 1/N , i.e., selec-
tion favors strategy A.
If a

3 + 2b
3 − c

3 − 2d
3 < 1

2 (τ2 − τ1), then ρA < 1/N , i.e., selec-
tion doesn’t favor strategy A.

A problem is naturally posed as to what will happen in
the case of a

3 + 2b
3 − c

3 − 2d
3 = 1

2 (τ2 − τ1). We consider the
inverse of ρA(β):

1

ρA(β)
= 1 +

N−1∑
k=1

k∏
j=1

p
′
j,j−1

p
′
j,j+1

= 1 +
N−1∑
k=1

exp

{
−β

[
k2

N − 1
s + k

N − 1
(s + t)

]}
,

(23)

where

s = a − b − c + d

2
,

(24)

t = −a + bN − d(N − 1) + N − 1

2
(τ1 − τ2),

and perform a Taylor series expansion of 1
ρA

at β = 0:

1

ρA(β)
= 1

ρA(0)
+

[
1

ρA(0)

]′
β +

[
1

ρA(0)

]′′

2!
β2 + O(β2).

After some easy calculations,

1

ρA(0)
= N,[

1

ρA(0)

]′
= −N

6
[(N − 2)a + (2N − 1)b − (N + 1)c

− (2N − 4)d − 3

2
(N − 1)(τ2 − τ1)]. (25)
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For the case a
3 + 2b

3 − c
3 − 2d

3 = 1
2 (τ2 − τ1), the first-order

derivative Eq. (25) reduces to −N
6 [−2a − b − c + 4d +

3
2 (τ2 − τ1)]. If −2a − b − c + 4d + 3

2 (τ2 − τ1) > 0, then
ρA > 1/N . When the formula a

3 + 2b
3 − c

3 − 2d
3 = 1

2 (τ2 − τ1)
is taken into consideration, this inequality can be simplified as
b − c − 1

2 (τ2 − τ1) > 0. Likewise, if b − c − 1
2 (τ2 − τ1) < 0,

then ρA < 1/N .
When a

3 + 2b
3 − c

3 − 2d
3 = 1

2 (τ2 − τ1) and b − c − 1
2 (τ2 −

τ1) = 0, i.e., [ 1
ρA(0) ]

′ = 0, the first-order approximation does
not allow us to assess ρA relative to 1/N . From Eq. (26), we
get that the second-order approximation is positive for N > 2,
namely, ρA < 1/N in such a case:[

1

ρA(0)

]′′
= N (6N3 − 9N2 + N + 1)

30(N − 1)
s2 + N2

2
s(s + t)

+ 2N2 − N

6(N − 1)
(s + t)2

= N (2N3 − 3N2 − 3N + 2)

135(N − 1)
s2. (26)

To sum up the above arguments, we acquire the extended
1/3 rule with inertia for weak selection (β 
 1) and a
population whose size exceeds two:
If

a

3
+ 2b

3
− c

3
− 2d

3
>

1

2
(τ2 − τ1),

or if

a

3
+ 2b

3
− c

3
− 2d

3
= 1

2
(τ2 − τ1), b − c − 1

2
(τ2 − τ1) > 0,

then ρA > 1/N , i.e., selection favors cooperation.
If

a

3
+ 2b

3
− c

3
− 2d

3
<

1

2
(τ2 − τ1),

or if

a

3
+ 2b

3
− c

3
− 2d

3
= 1

2
(τ2 − τ1), b − c − 1

2
(τ2 − τ1) � 0,

then ρA < 1/N , i.e., selection doesn’t favor cooperation.

B. The conditional fixation time

Given that the Markov process reaches the absorbing state
v = N , the time that it takes when starting in the state
v = 1 is called A’s conditional fixation time and denoted
by T A. Similarly, given that the Markov process reaches the
absorbing state v = 0, the time that it takes when starting in
the state v = N − 1 is called B’s conditional fixation time and
expressed as T B . Antal and Scheuring confirmed a surprising
and interesting result T A = T B [48], hence the conditional
fixation time for the birth-death process has a unified explicit
form Tfix:

Tfix(N ) =
N−1∑
n=1

y0,n−1yn,N−1̂pn,n+1qny0,N−1
, (27)

where

qn =
n∏

i=1

p̂i,i−1

p̂i,i+1
, yn,m =

m∑
k=n

k∏
i=1

p̂i,i−1

p̂i,i+1
,

∀n,m ∈ {0, . . . ,N},
1̂pn,n+1

= N

n

N

N − n
(1 + e−β(PA−PB−τ2)),

where the empty sum is defined to be zero and the empty
product is defined to be one.

The conditional fixation time for the neutral game is
an important reference. Neutrality results from vanishing
selection intensity (i.e., β = 0), which means (1) no game
is being played, (2) all individuals have the same fitness, or
(3) inertia is not introduced. In this case, it is easy to see

qn = 1, yn,m = m − n + 1, ∀n � m ∈ {0, . . . ,N},
1̂pn,n+1

= 2N × N

n × (N − n)
.

Substituting these into Eq. (27), the conditional fixation
time for the neutral game is 2N (N − 1), which measures
the average “speed” of fixation and is different from the
corresponding quantity N (N − 1) for the Moran process.

The conditional fixation time without inertia has been
studied by Altrock and Traulsen [49]. Here, we investigate
how inertia transforms the conditional fixation time. Note that
we can not employ the rescaled matrix Eq. (20) in this case.

For weak selection (β 
 1), let x(n) = n(n+1)
N−1 s + n

N−1 t and
z(n) = 2n

N−1 s + 1
N−1 t − τ1−τ2

2 where s and t have been given
in Eq. (24); the first-order approximations of all factors in
Eq. (27) are expounded below:

qn ≈ 1 − β × x(n),

yn,m ≈ m − n + 1 − β ×
m∑

k=n

x(k), (28)

1̂pn,n+1
≈ N × N

(N − n) × n
{2 − β × [z(n) − τ2]}.

Inserting Eq. (28) into Eq. (27), we have

Tfix ≈ 2N (N − 1) − β
N (N − 2)

18

×
[

(N + 3)(a − b − c + d) − 9
N − 1

N − 2
(τ1 + τ2)

]
.

(29)

As a consequence, the speed criterion with inertia for weak
selection is
If

(N + 3)(a − b − c + d) > 9
N − 1

N − 2
(τ1 + τ2),

then tfix < 2N (N − 1), i.e., fixation is fast.
If

(N + 3)(a − b − c + d) < 9
N − 1

N − 2
(τ1 + τ2),

then tfix > 2N (N − 1), i.e., fixation is slow.
When inertia is not introduced into the Fermi process

(i.e., τ1 = τ2 = 0), A’s fixation probability and the conditional
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fixation time are seen as benches and denoted by ρB
A and T B

fix. In
the case of τ1 = τ2 under weak selection, we get ρA = ρB

A , and
so A’s fixation probability is unaffected if two strategies have
the same inertia. In the case of τ1 = −τ2, we get Tfix = T B

fix
under weak selection, and so the conditional fixation time is
unaffected if two strategies have the oppositive inertia.

In particular, for the Prisoner’s Dilemma games satisfying
a + d < b + c, we have ρB

A < 1/N and T B
fix > 2N (N − 1),

hence cooperation is not favored by selection and fixation is
slow. In consideration of the extended 1/3 rule with inertia and
the speed criterion with inertia, we can regulate inertia so that
cooperation is favored by selection and and fixation is fast.

VI. DISCUSSIONS AND CONCLUSIONS

The costs of switching strategy were originally proposed
by Szabó and Hauert [11], but their roles were not addressed
at length. It has been experimentally substantiated that inertia
does exist in the human imitation behavior and possesses the
property of asymmetry; i.e., the cost for A switching to B may
differ from that for the reverse process [10]. The costs actually
correspond to A’s inertia and B’s inertia in our model, which
are governed by tunable quantities τ1 and τ2, respectively.
We make a comprehensive analysis upon the effect of inertia
on the quantities of interest: the stationary distribution, the
stochastically stable state, the fixation probability, and the
conditional fixation time.

We analyzed how inertia quantitatively varies the profile of
the stationary distribution where the threshold values of inertia
are crucial.

We found that inertia leads the stochastic stability in
the limit of strong selection to demonstrate three possible
regimes, “only A is stochastically stable,” “both A and B

are stochastically stable with an equal equilibrium proba-
bility,” and “only B is stochastically stable.” Correspond-
ingly, the plane spanned by τ1 and τ2 is divided into 21
regions, seven of which correspond to one regime. Substan-
tially, a methodical analysis upon the impact of inertia on
π∗(0)/π∗(N ) is constructed. It is easy to verify that ρA/ρB is
equal to π∗(0)/π∗(N ). Consequently, a systematic analysis
of how inertia works on ρA/ρB can correspondingly be
furnished.

We obtained the extended 1/3 rule with inertia and the
speed criterion with inertia for weak selection. In our model,
strategy A’s imitation probability 1

1+e−β(�π−τ1) varies from that

of strategy B 1
1+e−β(�π−τ2) , where �π is the payoff difference

between the focal individual and the model individual. As
for the fixation probability under weak selection, the rescaled
matrix is applied and the switching probability has a unified
form g(β�π ) = 1

1+e−β�π . Consequently, the extended 1/3 rule
with inertia holds for such pairwise comparison processes
satisfying g′(0) > 0 and g(0) > 0 according to the conclu-
sion in [50]. For the conditional fixation time under weak
selection, the rescaled matrix no longer applies and the unified
form of imitation probability can’t characterize the pairwise
comparison process integrating inertia. Nonetheless, adopting
the discussion similar to [50], the speed criterion with inertia
can also be extended for a special class of pairwise comparison
processes.

We illustrated the above conclusions by taking the
Prisoner’s Dilemma game. The effects of two strategies’ inertia
are slightly different. The dilemma under cooperation’s inertia
can be alleviated or even entirely removed, while that under
defection’s inertia can’t be thoroughly eliminated. The impacts
of inertia upon the game with a + d − b − c of different signs
are significantly different. For a + d − b − c > 0, the station-
ary distribution under inertia can simultaneously maximize
at two full states, while, for a + d − b − c < 0, its largest
value can be achieved at a coexistence state. Appropriate
inertia makes it possible that the state of full cooperation is
stochastically stable. In the absence of mutation, under the help
of appropriate inertia, selection favors cooperation and fixation
is fast.

In conclusion, we made a thorough analysis on what
influence inertia executes upon the strategy evolution and,
particularly, the evolution of cooperation.
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APPENDIX A

We are now in a position to prove formally Theorems 1 and
2, and we first introduce four necessary lemmas for them.

Lemma 1 [51]. If {fn} is a sequence of non-
negative measurable functions and fn(x) � fn+1(x), then
limn→+∞

∫
fn(x)dx = ∫

limn→+∞ fn(x)dx.
Lemma 2 [52]. Let f (x) increase monotonically,

suppose that limn→+∞ xn = +∞, then limx→+∞ f (x) =
limn→+∞ f (xn).

Lemma 3 [51]. If |fn(x)| � g(x) for all n, and g(x) is
integrable, then limn→+∞

∫
fn(x)dx = ∫

limn→+∞ fn(x)dx.
Lemma 4 [52]. If arbitrarily choosing a sequence {xn} and

limn→+∞ xn = +∞, we have that limn→+∞ f (xn) = A. Then
we say that f (x) approaches A as x approaches +∞; or f (x)
has limit A at +∞ and write f (x) → A as x → +∞. And the
reverse is also true.

Proof of Theorem 1
Proof. Let (βn)+∞

n=1 be an increasing sequence and βn →
+∞. Then, {h(x,βn)} is a sequence of non-negative mea-
surable functions, and h(x,βn) � h(x,βn+1) since ω(x) � 0
for all x ∈ χ . So Lemma 1 implies limn→+∞

∫
χ

h(x,βn)dx =∫
χ

limn→+∞ h(x,βn)dx.
According to ω(x) � 0 for all x ∈ χ , we also get

that
∫
χ

h(x,β)dx is an increasing function with respect
to β. Then Lemma 2 suggests limβ→+∞

∫
χ

h(x,β)dx =
limn→+∞

∫
χ

h(x,βn)dx.
Again applying Lemma 2 to h(x,βn), we

have limβ→+∞ h(x,β) = limn→+∞ h(x,βn). Then
limβ→+∞

∫
χ

h(x,β)dx = ∫
χ

limβ→+∞ h(x,β)dx.
Proof of Theorem 2
Proof. For every sequence (βn)+∞

n=1 such that βn →
+∞. |h(x,βn)| � ln 2 for all n since ω(x) � 0, ∀x ∈ χ .
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Apparently ln 2 is integrable in χ . By Lemma 3, we have
limn→+∞

∫
χ

h(x,βn)dx = ∫
χ

limn→+∞ h(x,βn)dx.
Due to the arbitrariness of {βn}, Lemma 4 suggests

limβ→+∞
∫
χ

h(x,β)dx = ∫
χ

limβ→+∞ h(x,β)dx.

APPENDIX B

Let φ(x) = ρx + ξ and ϕ(x) = −ρx + η. The sketch of the
analysis process is as follows.

In the first step, we determine the interval χ1 where
φ(x) � 0, the interval χ2 where φ(x) � 0, the interval
χ3 where ϕ(x) � 0, and the interval χ4 where ϕ(x) �
0. Since φ(x) is an increasingly continuous function, the
intervals χ1 and χ2 depend on the endpoint values φ(0)
and φ(N − 1).

If φ(0) � 0, then χ1 = [0,N − 1].
If φ(0) < 0 and φ(N − 1) > 0, then χ1 = [M,N − 1] and

χ2 = [0,M] where φ(M) = 0.
If φ(N − 1) � 0, then χ2 = [0,N − 1].
Similarly, since ϕ(x) is a decreasingly continuous function,

the intervals χ3 and χ4 depend on the endpoint values ϕ(0) and
ϕ(N − 1).

If ϕ(N − 1) � 0, then χ3 = [0,N − 1].
If ϕ(0) > 0 and ϕ(N − 1) < 0, then χ3 = [0,G] and χ4 =

[G,N − 1] where ϕ(G) = 0.
If ϕ(0) � 0, then χ4 = [0,N − 1].
In the second step, we exchange the order of the limit and

the integral and calculate limβ→+∞ ln λ∗(N ).

lim
β→+∞

∫
χ1

ln[1 + eβφ(x)]dx

= lim
β→+∞

∫
χ1

βφ(x)dx = lim
β→+∞

∫
χ1

β(ρx + ζ )dx

= lim
β→+∞

β

(
1

2
ρx2 + ζx

)∣∣∣∣
χ1

lim
β→+∞

∫
χ2

ln[1 + eβφ(x)]dx

= lim
β→+∞

∫
χ2

eβφ(x)dx = lim
β→+∞

∫
χ2

eβ(ρx+ζ )dx

= lim
β→+∞

eβ(ρx+ζ )

βρ

∣∣∣∣
χ2

lim
β→+∞

∫
χ3

ln[1 + eβϕ(x)]dx

= lim
β→+∞

∫
χ3

βϕ(x)dx = lim
β→+∞

∫
χ3

β(−ρx + η)dx

= lim
β→+∞

β

(
−1

2
ρx2 + ηx

)∣∣∣∣
χ3

lim
β→+∞

∫
χ4

ln[1 + eβϕ(x)]dx

= lim
β→+∞

∫
χ4

eβϕ(x)dx = lim
β→+∞

∫
χ4

eβ(−ρx+η)dx

= lim
β→+∞

eβ(−ρx+η)

−βρ

∣∣∣∣
χ4

In the third step, we obtain the stochastic stability.
If limβ→+∞ ln λ∗(N ) = +∞, then only A is stochastically

stable.
If limβ→+∞ ln λ∗(N ) = 0, then both A and B are stochas-

tically stable with the same equilibrium probability.
If limβ→+∞ ln λ∗(N ) = −∞, then only B is stochastically

stable.
Following the above analysis process, the plane spanned

by τ1 and τ2 is divided into 21 regions in accordance with
limβ→+∞ ln λ∗(N ).

In the following seven regions, only A is stochastically
stable:

(1) τ1 � −�, τ2 � � + ρ(N − 1) and τ2 − τ1 < 2� +
ρ(N − 1).

(2) τ1 � −�, � < τ2 < ρ(N − 1) + � and (N − 1)τ1 −
Gτ2 > − 1

2ρ(N − 1)2 − 1
2ρG2 − (N − 1)� − G�.

(3) τ1 � −� and τ2 � �.
(4) −� − ρ(N − 1) < τ1 < −�, τ2 � � + ρ(N − 1)

and (N − 1 − M)τ1 − (N − 1)τ2 > 1
2ρM2 − ρ(N − 1)2 −

(2N − 2 − M)�.
(5) −�− ρ(N − 1) < τ1 < −�, � < τ2 < �+ ρ(N − 1)

and (N − 1 − M)τ1 − Gτ2 > − 1
2ρ(N − 1)2 − 1

2ρG2 +
1
2ρM2 − (N − 1 − M + G)�.

(6) − 1
2ρ(M + N − 1) − � < τ1 < −� and τ2 � �.

(7) τ1 � −� − ρ(N − 1) and � < τ2 < � + 1
2ρG.

In the following seven regions, both A and B are stochasti-
cally stable:

(1) τ1 � −�, τ2 � � + ρ(N − 1) and τ2 − τ1 = 2� +
ρ(N − 1).

(2) τ1 � −�, � < τ2 < ρ(N − 1) + � and (N − 1)τ1 −
Gτ2 = − 1

2ρ(N − 1)2 − 1
2ρG2 − (N − 1)� − G�.

(3) −� − ρ(N − 1) < τ1 < −�, τ2 � � + ρ(N − 1)
and (N − 1 − M)τ1 − (N − 1)τ2 = 1

2ρM2 − ρ(N − 1)2 −
(2N − 2 − M)�.

(4) −�− ρ(N − 1) < τ1 < −�, � < τ2 < �+ ρ(N − 1)
and (N − 1 − M)τ1 − Gτ2 = − 1

2ρ(N − 1)2 − 1
2ρG2 +

1
2ρM2 − (N − 1 − M + G)�.

(5) τ1 = − 1
2ρ(M + N − 1) − � and τ2 � �.

(6) τ1 � −� − ρ(N − 1) and τ2 = � + 1
2ρG.

(7) τ1 < −ρ(N − 1) − �, τ2 < �.
In the following seven regions, only B is stochastically

stable
(1) τ1 � −�, τ2 � � + ρ(N − 1) and τ2 − τ1 > 2� +

ρ(N − 1).
(2) τ1 � −�, � < τ2 < ρ(N − 1) + � and (N − 1)τ1 −

Gτ2 < − 1
2ρ(N − 1)2 − 1

2ρG2 − (N − 1)� − G�.
(3) −� − ρ(N − 1) < τ1 < −�, τ2 � � + ρ(N − 1)

and (N − 1 − M)τ1 − (N − 1)τ2 < 1
2ρM2 − ρ(N − 1)2 −

(2N − 2 − M)�.
(4) −� − ρ(N − 1) < τ1 < −�, � < τ2 < � + ρ(N −

1) and (N − 1 − M)τ1 − Gτ2 < − 1
2ρ(N − 1)2 − 1

2ρG2 +
1
2ρM2 − (N − 1 − M + G)�.

(5) −� − ρ(N − 1) < τ1 < − 1
2ρ(M + N − 1) − � and

τ2 � �.
(6) τ1 � −� − ρ(N − 1) and τ2 � � + ρ(N − 1).
(7) τ1 � −� − ρ(N − 1) and � + 1

2ρG < τ2 < � +
ρ(N − 1).
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[8] G. Szabó and G. Fáth, Phys. Rep. 446, 97 (2007).
[9] C. P. Roca, J. A. Cuesta, and A. Sanchez, Phys. Life Rev. 6, 208

(2009).
[10] A. Traulsen, J. Semmann, R. D. Sommerfeld, H. J. Krambeck,

and M. Milinski, Proc. Natl. Acad. Sci. 107, 2962 (2010).
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