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Abstract – We propose a mechanism allowing strategy diversity instead of a common combination
of cooperation and defection to study how cooperation evolves in public goods games. Each
individual is assigned a variable valued in the unit interval as its cooperation degree. Thus, diverse
cooperation degrees express the diversity of game strategies in the way of multiple contributions of
players, and the investment in the common pool is positively correlated with cooperation degrees
correspondingly. Moreover, we also define two particular roles named altruist and egotist defined
locally since they depend on the behavior of their neighboring players. Numerical simulations show
that the proposed diversity of strategies can substantially evoke the emergence and maintenance
of cooperation. Notably, we also find that no player will act as a long-term exploiter (egotist) or
exploitee (altruist) in the whole evolutionary process.

Copyright c© EPLA, 2010

Social dilemmas capture the fundamental puzzle of
the evolution of cooperation. Evolutionary game theory
provides a competent theoretical framework to address the
subtleties of cooperation among selfish individuals [1–4]
and the prisoner’s dilemma seems particularly suited in
this respect [4,5]. However, competitions among a group
of entities instead of two individuals are also widespread in
many realistic situations. The public goods game (PGG),
being proposed to illustrate the problem of cooperation
and cheating through group interactions, is regarded as a
prisoner’s dilemma game with more than two participants
and attracts also much attention to study the emergence
of cooperative behavior [6–9]. Cooperation and defection
are the two strategies that are usually at the heart of such
social dilemma. In a typical PGG played in interaction
groups of size N , each player must independently and
simultaneously make its decision, to cooperate (contribute
an amount c to the public goods) or to defect (contribute
nothing). The collected sum is multiplied by a factor
r (1< r <N) and is redistributed to the N players
equally, irrespective of their individual contributions. The
maximum total income is achieved if all players contribute
maximally. In this case each player receives rc, thus
the final payoff is (r− 1)c. Players are faced with the
(a)E-mail: zhcy@pku.edu.cn

temptation of being free-riders, i.e., to take advantage of
the common pool without contribution. In other words,
any individual investment is a loss for the player because
only a portion r/N < 1 will be repaid. Consequently,
rational players invest nothing —hence to establish a
social dilemma.
Various mechanisms aimed at find under what condi-

tions the cooperation emerges in the frame of PGG have
been explored. Among the more prominent are punish-
ment [10–13], optional participation [8,14,15], image score
effect [16–18] and different interaction topologies [19].
Hauert et al. have introduced the voluntary participation
in PGG [7,20]. They found that this voluntary participa-
tion efficiently prevents defectors from spreading within
the population and results in a substantial willingness to
cooperate. The study of Szabó et al. shows that the intro-
duction of loners leads to a cyclic dominance of the strate-
gies and promotes substantial levels of cooperation in the
PGG on a square lattice [21]. Social diversity by means
of heterogeneous graphs was introduced by Santos and
Pacheco, who have investigated that diversity associated
with the number and the size of the PGG can promote
strong cooperation [22,23].
However, herein it is worth mentioning that, to our

knowledge, in most previous studies of PGG, a common
simplifying assumption is that players can adopt one
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of the two feasible actions, cooperation and defection.
Note that these may not be realistic assumptions in
complicated real-life situations. Actually, agents often
have inhomogeneities in personal features, such as the
often-observed different economic status and contributive
inclinations in real world. They usually have various
choices to invest any part of their wealth according to
their own personal situations, instead of just none or all.
In addition, the act of giving may be more important than
the amount given in a more generalized perspective. This
may be of particular relevance whenever the survival of the
community is at stake, in which case any help is necessary.
Enlightened by this idea, within our model we consider

continuous set of strategies capable of representing a
remarkably rich variety of contributive behavior, by intro-
ducing a variable named cooperation degree. For the sake
of an easier depiction of cooperation degree, it is reason-
able to assume that the proportion of actual investment to
the total available possession is defined as the cooperation
degree. Evidently such setup leads the value of cooper-
ation degree to be distributed in the unit interval [0,1],
resulting the highly heterogeneous strategy distribution
and also the two aforementioned behavior are included in
both limits, 0 for full defectors and 1 for full cooperators
in the traditional definition.
Here it is worth referring to the following two new roles:
Altruists and Egotists. An altruist (A) is an individual
whose cooperation degree is the highest one in its neigh-
borhood, with the same idea, an egotist (E) is a player
whose cooperation degree is lower than any one of its
neighbors.
Now we would like to describe our presently introduced

evolutionary model in ample detail. To eschew effects
of complex host graph topologies, we employ a two-
dimensional lattice network to establish the compulsory
version of PGGs. Thus all individuals own the same k
neighboring interactions, where k is the average degree of
the underlying interaction topology. A given player x acts
as an organizer of the common pool x with size k+1,
where there occurs the PGG involving x itself and its
neighboring players. Besides the PGG organized by itself,
player x also engages in other k PGGs organized by its
neighbors [22].
In order to demonstrate the rich variety of possible

complex individual features, we consider the total wealth
of each player in the following two cases. In one instance
denoted by c-random, each player x has a randomly
assigned variable cx as its initial whole wealth, for simplic-
ity, cx ∈ [0, 1]. In the other instance denoted by c-fixed,
each one has the same fixed whole wealth cx, as an addi-
tional simplification but without loss of generality, we
normalize cx to unity. In any case, the total wealth cx of
player x is equally distributed among all the PGGs that
it engages in. After each contributing period, the collec-
tive sum in each PGG multiples by a constant factor η,
where η= r/(k+1) is a renormalized enhancement factor
on the public goods. Then the public goods of each PGG

Fig. 1: (Color online) Small part of the square lattice indicating
the relevant configuration for computing the maximum payoff
difference M between sites A and B.

is equally shared to all participants, irrespective of their
individual contributions. Thus the payoff Pxy of player x
associated with the neighborhood centered at individual y
can be expressed as

Pxy =
r
∑k
i=0 ciδi

k+1
− cxδx
k+1

, (1)

where ci and δi are the total wealth and the cooperation
degree of individual i, respectively. The accumulated
payoff Px of player x is the sum of gains from all
interactions in which it participates:

Px =
∑
y∈Ωx

Pxy, (2)

where Ωx denotes the community of x’s nearest neighbors
plus itself.
After this, each player imitates the strategy (namely, the

cooperation degrees) of those neighboring players who has
scored higher payoff. Evolution of strategies is performed
in accordance with a synchronous Monte Carlo simula-
tion procedure comprising the following elementary steps.
Agent x with strategy δx will shift over to the strategy
of another agent y, chosen randomly from x’s k near-
est neighbors with a probability wxy, iff y’s strategy has
yielded higher payoff Py, otherwise the original strategy
δx is maintained. The probability wxy can be written as

Wxy(δx← δy) = Py −Px
M

, (3)

whereM ensures the proper normalization and is given by
the maximum possible difference between the payoffs of x
and y.
Additionally, for the sake of clarity, we plot a small

part of the square lattice as shown in fig. 1. Based on the
statement mentioned in the above context, we take site A
and B, for example, and compute the collecting payoffs of
agents occupying the site of A plus B, and then compute
the maximum difference M between them. Player A will
participate k+1(k= 4 in this study) PGGs organized by
x, y, z, B and itself. Assuming that the total wealth and
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the cooperation degree of individual i is ci and δi, the
collecting payoff of A in the system is given by

Pa =
r
∑
ci∈Ωa ciδi
k+1

− (k+1)caδa. (4)

Similarly, the collecting payoff of B is given by

Pb =
r
∑
cj∈Ωb cjδj
k+1

− (k+1)cbδb. (5)

Thus,

|Pa−Pb| =
∣∣∣∣∣
r(
∑
ci∈Ωa ciδi−

∑
cj∈Ωb cjδj)

k+1

+ (k+1)(caδa− cbδb)
∣∣∣∣∣

�
∣∣∣∣ 8rk+1 +

(
k+1− 3r

k+1

)
(cb− ca)

∣∣∣∣ . (6)
Noticing 0� δ� 1 and 0� c� 1, we get

|Pa−Pb|� 5r

k+1
+ k+1. (7)

Since η= r/(k+1) and k= 4 in our adopted network, thus
we have

|Pa−Pb|� 5η+5. (8)

Therefore, M = 5η+5.
Initially, the computer simulations were started from a

random initial strategy distribution, where the coopera-
tion degrees (δ) are assigned to players at random. After
every such iteration cycle, the individual wealth for the
subsequent round robins remains fixed to initial cx for ∀x,
thus restarting the cycle. Simulations of the evolutionary
process via the Monte Carlo algorithm were performed for
a large enough number of iteration cycles 106 on networks
hosting N = 104 players. The structure of connectivity is
restricted to regular graphs with k= 4. The final results
shown below were averaged over 100 independent real-
izations of the initial conditions to warrant appropriate
accuracy.
We start the study by visually inspecting the character-

istic spatial distributions of the average cooperation degree
δave in the whole population as a function of the multipli-
cation factor η in two different cases of c-fixed (red line)
and c-random (blue line). The simulations presented in
fig. 2 indicate clearly that the average cooperation level
monotonously increases with the increment of η, albeit
that the rate of the increase differs slightly depending on
the two representative cases of total wealth. Note that
for a fixed value of initial wealth (red line), all the real-
izations lead the system to a configuration in which all
group members make the maximum contribution to the
group project. It is long known that a sharp transition
from defection to cooperation takes place at η= 1 in well-
mixed populations. Moreover, the outstanding importance
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Fig. 2: (Color online) The simulation results of average coop-
eration degree δave as a function of η for two different cases of
initial wealth c: c-random and c-fixed.

of social diversity for maintaining cooperative behavior
has been described in ref. [22], where it has been argued
that cooperators become predominant at η≈ 0.7 on regu-
lar graphs and η≈ 0.6 on scale-free graphs. While this
number decreases to η= 0.2 (red line) and η= 0.3 (blue
line) in our results (see fig. 2) which yield exclusive domi-
nance of cooperators who tend to contribute all the wealth
to the public goods even in highly unfavorable conditions.
Thus, irrespective of the two cases of c-fixed and c-random,
the presented results in fig. 2 evidence the sizable impact
of strategy diversity on the emergence and evolution of
cooperation.
The impact of the diversity of the initial wealth distrib-

ution on the evolution of cooperation is also corroborated
nicely by results presented in fig. 2. As shown in fig. 2,
the red line takes on a rising trend when η > 0.1, and the
maximum value 1 of δave may come into being when η
is approaching to 0.2. The blue line (c-random) monoto-
nously increase with a slightly lower ascending velocity
than the red line, while its maximum value is about 0.9.
Even more obvious differences brought by the two initial
wealth distributions are clearly demonstrated in fig. 2.
Forming a striking contrast to the various colors and slow
changing velocity in figs. 3(a)–(d), η� 0.15 are able to
sustain red clusters with green or blue borderlines scat-
tered across the spatial grid in figs. 3(e)–(h), indicating
that the majority of players have already been incline to
contribute all their wealth. In addition, η� 0.3 can facili-
tate cooperation to the point of domination and leads to
the extinction of defectors finally owning to the large single
contiguous cluster of cooperators in figs. 3(e)–(h), while
players adopting different cooperation degrees still coexist
on a square lattice for a wide range of η in figs. 3(a)–(d).
Cooperation can be better revitalized and maintained by
the equality of initial wealth (c-fixed) than the inequality
of initial wealth (c-random) in the collection activities of
public goods, as was found by results in fig. 3.
It is evident that individuals will follow with interest

in their partners’ payoff and strategies due to the selfish
and rational identity and the payoff-based strategy update
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Fig. 3: (Color online) The distribution illustration of coop-
eration degrees in dependence on different values of the
multiplication factor η and initial wealth c. The color code
indicates the value of the cooperation degree. The snapshots
are a contractible picture of a large image scale of the system
on the full 100× 100 lattices at a certain time when the system
reaches a steady state. Each data point on the lattice denotes a
player, and the color on the point correspondingly expresses as
the cooperation degree of the player. (a)–(d) c-random. (e)–(h)
c-fixed.
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Fig. 4: (Color online) The proportion distribution of cooper-
ation degrees for different values of the multiplication factor
η and initial wealth c. The X-axis represents the value of the
cooperation degree. The Y -axis is the proportion of individ-
uals with such cooperation degree to the whole population.
(a) c-random. (b) c-fixed.

rule. In particular, the latter will drive players to imitate
successful strategy most probably, and thus lead to no
much difference in the cooperation degrees among most
nodes after the system converges to the equilibrium. As
can be noticed, this conjecture can be strengthened by
the relatively monotonous colors presented in fig. 3(d) and
fig. 3(h), clearly evidencing that individual strategies do
not take on diversity when the system reaches the final
steady state. Importantly, the distribution of cooperation
degrees, presented in figs. 4, can help us intuitively observe
the strategy adoption in the population when the system
reaches its final stationary state. The wide range of
cooperation degrees in figs. 4(a) is largely in agreement
with the emergence of various colors in figs. 3(a)–(d).
Moreover, the results in figs. 4(b) are identical with those
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Fig. 5: (Color online) The proportions of A’s (blue line) and
E ’s (red line) to the whole population at the final stationary
state vs. the multiplication factor η and initial wealth c.
(a) c-random. (b) c-fixed.

in figs. 3(e)–(h) showing that a large portion of the players’
cooperation degrees are close to 1 for η� 0.25.
Furthermore, it remains of interest to investigate the

behavior of altruists and egotists defined in the previous
description. A more meaningful result in fig. 5 is that A’s
and E’s account for tiny ratios in the population for a wide
spectrum of η in the whole evolving process. E’s will gain
higher payoff than their neighbors by exploiting them, but
the intrinsic rational personality reminds the neighbors
to do not allow long-term exploitation by E’s. Therefore
the payoff-based strategy adoption rule will facilitate the
prevalence of E’s strategies in their neighborhood. Never-
theless, the widespread mutual exploitation will decline
of the number of E’s. Coming back to the real world,
when two coequal players or companies are playing with
each other, defection occurring at irregular intervals will
also not last for a long time. If one player fails by being
exploited by the counterpart, it will switch its strategy to
another to shake off the adverse circumstances in the next
round. So A’s and E’s are temporary roles played by indi-
viduals in a short period of time. In other words, there is
no node which acts as an A or E for a long time, thus
indicating the scenario where the number of A’s and E’s
keep a steady and small value in the population.
Another noteworthy phenomenon is the proportion of
A’s to the whole population is lower than E’s across the
long span of η. Evidently, the proportion of A’s gets an
upper hand than E’s when η < 0.2, yet it falls rapidly,
and then maintains at a lower value than that of E’s
henceforth. As we know A’s will get lower payoffs than
their neighbors, while E’s can obtain greater payoffs by
exploiting their neighbors. Therefore, A’s will abandon
their current strategies to adopt the successful strategies
of their neighbors in the next game ground. The number of
A’s is bound to decrease and maintains in a nearly extinct
state. Meanwhile, E’s with high payoffs will be easily
copied by their neighbors. Thus, E’s will get short-term
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increase in their number. However, mutual exploitation is
destructive to the improvement of the overall payoffs of
individuals participating within the PGG. So E’s cannot
be widely prevalent for a long time and will account for
only a small proportion to the population ultimately.
Finally, we take into account some interesting extensions

after presenting main results of the original model. Ulti-
matum Game (UG) is another kind of game extensively
used to model altruistic behavior [24]. Two players have to
agree on how to split a sum of money. The proposer makes
an offer. If the responder accepts, the deal goes ahead.
If the responder rejects, neither player gets nothing. In
both cases, the game is over. Obviously, rational respon-
ders should accept even the smallest positive offer, since
the alternative is getting nothing. Here we draw analogies
with the investigations in the frame of UG in ref. [25],
where the asymptotic behavior of pure populations with
different topologies using two kinds of strategic update
rules: natural selection and social penalty are investigated.
They have discussed the emergence of fairness in the differ-
ent settings and network topologies. Our model, with a
continuous strategy of PGG, can be seen as an expansion
of UG, that individuals contribute a certain percentage of
their wealth to the entire group, not to only one person.
Moreover, the abundance of highly generous individuals
observed dictate the emergence of fairness, thus coupling
our findings with considerations of continuous strategy
in the frame of PGG. Therefore, this presently extension
manifests a nice view on future studies to investigate the
thorough interplay between the two social dilemmas.
Summing up, we have investigated the effects of diverse

strategies on the emergence and evolution of cooperative
behavior in the frame of public goods games. Players
participate in games with cooperation degrees uniformly
distributed in the range [0,1]. Strategies are of diverse
choices and not just two options of cooperation and
defection. Furthermore, we define two special nodes named
altruist and egotist. Our study thus supplements previous
works examining the impact of diverse strategies and,
moreover, demonstrates that the observed promotion of
cooperation can be attributed to the proposed diverse
strategies in the public goods game. Interestingly, the
numerical investigations suggest that players acting as
altruist or egotist account for very small ratios in the
population. In addition, it should be emphasized that
the inequality of initial wealth distribution inhibits and
delays the emergence and evolution of cooperation to a
certain extent, being in contrast with the case that each
individual is assigned the same initial wealth. Our work
may provide an alternative way to promote cooperation by
the introduction of strategy diversity and may be helpful
in reflecting the realistic phenomenon in social systems.
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