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ASYNCHRONOUS RENDEZVOUS ANALYSIS VIA SET-VALUED
CONSENSUS THEORY∗

FENG XIAO† AND LONG WANG‡

Abstract. This paper presents the design and analysis result for asynchronous rendezvous
control of multiagent systems with continuous-time dynamics and intermittent interactions. The
protocol-designing strategies only impose weak restrictions on anticipated-way-point sets (from which
the way-points are selected) and path-planning of each agent and can be applied to the networks of
arbitrary dimensional subsystems. Explicitly, the anticipated-way-point sets are in a polytope-like
form and the path between any two consecutive way-points is required to be included within the min-
imum convex region covering the two associated anticipated-way-point sets. Under the assumption
of directed and switching interaction topology and the assumption of intermittent and asynchronous
interactions with time-varying delays, we perform the set-valued consensus analysis on the evolution
of anticipated-way-point sets with respect to update times and provide mild sufficient conditions for
the solvability of the asynchronous rendezvous problem. The proof techniques rely much on graph
theory and nonnegative matrix theory. The obtained result extends greatly the existing work in
the literature and several examples demonstrate its broad potential applications. Particularly, addi-
tional distributed control rules, different from the circumcenter algorithm, are devised for network
connectivity maintenance.
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1. Introduction. The objective of this paper is to provide the design and anal-
ysis result for asynchronous rendezvous control of networks of dynamic agents with
mild constraints, such as switching interaction topology, time-varying information de-
lays, and general agent dynamics. The convergence analysis is within the framework
of set-valued consensus theory, developed in this paper.

The rendezvous problem generally falls within the field of decentralized coor-
dination of multiagent systems, which has attracted the attention of a number of
researchers and has become a popular research topic because of its theoretical chal-
lenges and potential applications, such as cooperative control of unmanned air vehi-
cles, formation control of mobile robots, design of sensor networks, and swarm-based
computing. The rendezvous problem was formally studied by Ando et al. in [1], where
a distributed memoryless algorithm with the concern of a connectivity-preserving con-
straint was proposed for a group of mobile robots with limited visibility. The proposed
algorithm was later called the circumcenter algorithm and its validity for driving all
robots to gather at a common location was proved under the assumptions that each
robot is able to track its neighbors’ positions instantaneously and every pair of robots
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is mutually visible. The algorithm was extended to the synchronous and the asyn-
chronous cases with continuous-time dynamics by Lin, Morse, and Anderson in [2]
and [3], respectively. The synchronous algorithm was further extended by Conte and
Pennesi [4]. There are also some other kinds of cooperative rendezvous algorithms ap-
plicable in different cases, such as those for networks of nonholonomic unicycles [5, 6].
To achieve the aim of rendezvous as well as minimize the total travel cost, Litus,
Zebrowski, and Vaughan proposed a simple heuristic controller for each agent [7].
Other related work includes rendezvous control via communication over quantized
channels [8] or in an organized convergence formation [9].

From a different perspective, rendezvous problem can be viewed as a special case
of consensus problem. The latter emphasizes more the abstract agreement quantities,
instances of which other than positions include anticipated attitude in multiple space-
craft alignment, velocity in flocking control, and processing rate in distributed task
management [10, 11, 12, 13]. The work of this paper is a contribution to the theory
of asynchronous consensus and set-valued consensus.

Pioneering work related to asynchronous consensus was conducted by Borkar
and Varaiya [14] and Tsitsiklis and Athans [15] in the field of distributed decision-
making systems. In [16], Vicsek et al. proposed a simple but interesting discrete-time
consensus model of multiple agents moving in the plane with a constant absolute
velocity. Each agent’s heading is updated using a local rule based on the average
of its own heading as well as its neighbors’. In subsequent study, many researchers
investigated various extended versions of the Vicsek model and presented their associ-
ated convergence analysis [17, 18, 19, 20]. Particularly, Fang and Antsaklis presented
asynchronous nonlinear protocols for a generalized Vicsek model and showed that
the consensus is reachable under directed and time-varying topologies by the asyn-
chronous iteration methods for nonlinear paracontractions [21]. In their paper, the
delayed information of neighbors can be used in the feedback and a robot rendezvous
algorithm was presented as an application. In [22], Cao, Morse, and Anderson studied
another version of the asynchronous Vicsek model, in which each agent independently
updates its desired way-point at the discrete time instants determined by its own clock
and then the agent changes its heading from its current value to its desired way-point
in a monotonic and at least piecewise-continuous manner. In related literature [23],
Xiao and Wang developed the work of [24] and proposed an asynchronous consensus
protocol for the systems with intermittent information transmission and time-varying
delays. For other work related to time-delayed information, see [25, 26, 27], where
the frequency-domain approach and linear matrix inequalities were employed, respec-
tively.

This paper presents a new and general protocol-designing framework for the ren-
dezvous control of networks of multiple agents moving in any dimensional space,
whose effectiveness is shown by the newly developed set-valued consensus analysis.
Compared with the existing ones, such as the synchronous and asynchronous circum-
center algorithms [2, 3], the decentralized control protocols to be designed here stress
their validity in the case with directed switching topology, delayed information, and
intermittent interactions, and they are also applicable in the case with asymmetrical
information and network connectivity-preserving constraint. In addition, the studied
model includes the asynchronous consensus model studied in [23] and also covers the
asynchronous Vicsek model [22] and other generalized versions of the Vicsek model,
studied, for example, in [17, 18, 28], as its special cases.

In this paper, each agent is associated with a set-valued function in a polytope-like
form, called anticipated-way-point set. It is assumed that way-points are selected from



198 FENG XIAO AND LONG WANG

anticipated-way-point sets, and the path between any two consecutive way-points is
inside the minimum convex region, covering the two associated anticipated-way-point
sets. The weak assumptions improve the flexibility of agents’ path planning and en-
large the application area of the protocols, such as in the networks of non-holonomic
dynamic agents, second-order or higher-order dynamic agents, and heterogeneous
agents.

The other contribution of this paper involves the set-valued consensus analysis of
anticipated-way-point sets by graph theory and nonnegative matrix theory. We em-
phasize that the proof techniques are different from the traditional analytic synchro-
nization method, employed in [3, 22, 23], although they are all based on some common
preliminary works, such as merging the update times of n agents into a single ordered
time sequence. One obvious difference between the two approaches is that the evolu-
tion process of anticipated-way-point set of each agent is not a traditional dynamical
system, whose input does not depend directly on other agents’ anticipated-way-point
sets. To get the convergence result, we introduce a delay operator and associate the
anticipated-way-point set of each agent with n vectors, which enable us to represent
the state of the system by nnN vectors in a mathematically equivalent way. The
“dimension-expanding” approach converts the set-valued consensus problem into its
equivalent discrete-time consensus representation in the traditional sense. The equiv-
alent model follows higher dimensional dynamics and possesses some special network
structures, which add much more new content and challenges into consensus analy-
sis. By studying a set of identity-like matrices and introducing a dimension-reducing
map, we establish a connection between the interaction topology of the original asyn-
chronous set-valued system and the state matrix of the equivalent augmented system,
and by the convergence result on the product of a compact set of infinite stochastic
matrices, developed in [20], we provide mild sufficient conditions for the solvability of
the asynchronous rendezvous problem.

This paper is organized as follows. The model is set up in section 2. The main
result is given in section 3 and its set-valued consensus analysis is postponed to sec-
tion 4. Simulation examples are given to illustrate the theoretical result in section 5.
Finally, concluding remarks are stated in section 6. In the appendix, proofs of some
related conclusions are assembled.

2. Problem formulation. In this section, the model under study is set up.
Subsection 2.1 defines detection times and update times and associates them with two
assumptions, corresponding to frequency of update actions and maximum allowable
time delay of valid information, respectively. Subsection 2.2 gives the definition of
interaction topology and discusses its properties. The restrictions on way-points and
allowable motion regions between any two consecutive way-points are gathered in
subsections 2.3.

2.1. Detection time and update time. The system studied in this paper
consists of n autonomous agents, labeled 1 through n. All these agents share a
common state space RN , N = 1, 2, or 3, representing the positions of agents. The state
of agent i is denoted by xi, i ∈ In, where In denotes the index set {1, 2, . . . , n}. Each
agent has a limited sensing range and detects the relative positions of its neighboring
agents intermittently. Based on the available detected information, agent i, i ∈ In,
calculates and updates its temporary anticipated destination, called the way-point
[2, 3, 22], at update times tik, k = 0, 1, 2, . . . . Then it plans its path and moves
toward the way-point before its next update time tik+1. Suppose that the update time
sequences ti0, t

i
1, t

i
2, . . . , i ∈ In, with t10 = t20 = · · · = tn0 = 0, satisfy the following
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assumption:
(A1) There exist positive real numbers τmin and τmax such that τmin ≤ tik+1−tik ≤

τmax for all i, k.
The existence of upper bound τmax and lower bound τmin in the above assumption

guarantees that the frequencies of agent update actions cannot differ much from each
other. Similar assumptions can be found in [22, 23]. One counterexample will be given
in section 3 to show the necessity of the above constraint in solving the rendezvous
problem.

At detection time, for example, td, of agent i, agent i may detect the relative
positions of all or part of its neighboring agents within its sensing range according to
the hardware capability. If agent j is a neighboring agent and the relative position
vector xj(td) − xi(td) is obtained by agent i, then at subsequent update time tik,
(xj(td) − xi(td)) − (xi(t

i
k) − xi(td)), namely, xj(td) − xi(t

i
k), becomes the allowable

information of agent i, used to calculate its anticipated way-point, where xi(t
i
k)−xi(td)

is the displacement of agent i over the time-interval [td, t
i
k]. In what follows, data like

xj(td)− xi(t
i
k) will also be called relative position information.

Denote the information set of agent i available at update time tik by Ai
k, which

includes the data obtained at and before update time tik. Clearly, its current definition
does not exclude the case that Ai

k includes more than one piece of relative position in-
formation about the same agent. To decrease the algorithm’s complexity and increase
the efficiency, the members in Ai

k should be refined. One possible way to refine is the
most-recent-data strategy, which requires that if xj(t

′)− xi(t
i
k), xj(t

′′)− xi(t
i
k) ∈ Ai

k

such that t′ < t′′, then xj(t
′)−xi(t

i
k) should be removed from Ai

k. We emphasize that
in Ai

k, the data related to different agents or the data obtained at different detection
times are treated as different, although they may have equal numerical values; in other
words, the data are distinguished by their symbolic expressions, and the ownerships
and detection times are the only basis in data refining. The remainder of this paper
supposes that information set Ai

k has already been refined and dropped the redun-
dant information about the same agent. Furthermore, the information in Ai

k must be
sufficiently new, that is, Ai

k should satisfy the following assumption:
(A2) If xj(td)− xi(t

i
k) ∈ Ai

k, then 0 ≤ tik − td ≤ τd, where τd is the maximum
allowable time-delay.

Note that consecutive information sets Ai
k and Ai

k+1 may intersect with each other.
Finally, we end this subsection with the definition of “asynchronous system.” In

a distributed system, it is hard to drive all agents to detect information and update
their way-points synchronously by a common global clock, and thus this paper will
mainly study the asynchronous case; that is, the detection and update times of each
agent are independent of those of others.

2.2. Interaction topology. The underlying interaction topology is mainly de-
termined by agents’ positions and sensing ranges. Because of the changing agent po-
sitions and headings, the irregularity of sensing ranges, and the existence of obstacles,
the unidirectional and time-varying interaction topology is a reasonable assumption.
A usual way to represent it is to use a time-dependent directed graph G(t) with ver-
tex set {v1, v2, . . . , vn} to model the interaction topology, where directed graph G is
defined as an abstract ordered pair, comprising a vertex set V(G) together with an
edge set E(G) ⊂ V(G) × V(G). Agent i is represented by vertex vi, and the index
set of its neighboring agents at time t is denoted by Ni(t), satisfying the property
that j ∈ Ni(t) ⇐⇒ (vj , vi) ∈ E(G(t)) ⇐⇒ agent j is located within the sensing range
of agent i. However, by definition, the interaction topology G(t) represents only the
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adjacent relation between agents, whereas it cannot indicate whether the neighbors’
relative position information is used in the computation of way-points and path plan-
ning. To reflect the relation determined by the information usage, we present the
following definition.

Definition 2.1 (interaction topology GA(t)). The vertices of interaction topol-
ogy GA(t) are v1, v2, . . . , vn, representing agent 1, 2, . . . , n, respectively. For any t ∈
[tik, t

i
k+1), (vj , vi) ∈ E(GA(t)) if and only if Ai

k includes the relative position informa-

tion about agent j, i.e., there exists τ ijk , τ ijk ≥ 0, such that xj(t
i
k − τ ijk )−xi(t

i
k) ∈ Ai

k.
It is further assumed that each vertex in GA(t) has no self-loop, namely, the edge such
as (vi, vi), i ∈ In. If (vj , vi) ∈ E(GA(t)), then agent j is called a neighbor of agent i.
The index set of the neighbors of agent i is denoted by NA

i (t).
We will see that the interaction topology GA(t) just reflects the effect of obtained

information on agents’ trajectories. For convenience, denote all elements in Ai
k by

xj(t
i
k − τ ijk )− xi(t

i
k), j ∈ NA

i (tik). Clearly, by assumption (A2),

0 ≤ τ ijk ≤ τd.

Furthermore, by its definition, if j ∈ NA
i (tik), then j ∈ Ni(t

i
k − τ ijk ) and thus

NA
i (tik) ⊂

⋃
j∈NA

i (tik)

Ni(t
i
k − τ ijk ).

2.3. Anticipated-way-point sets and allowable motion region. The pos-
sible way-point of agent i at update time tik+1 is chosen from the following anticipated-
way-point set

(2.1) Di
k =

{
xi(t

i
k) +

∑
j∈NA

i (tik)
ωj

(
xj(t

i
k − τ ijk )− xi(t

i
k)
)

∑
l∈NA

i (tik)∪{i} ωl
:

xj(t
i
k − τ ijk )− xi(t

i
k) ∈ Ai

k, j ∈ NA
i (tik),

0 < WL ≤ ωl ≤ WU for l ∈ NA
i (tik) ∪ {i}

}
,

where parameters ωl, l ∈ NA
i (tik) ∪ {i}, are called weighting factors [18] and their

lower bound WL and upper bound WU are constant real numbers. Mathematically,
the following is required:

(A3) For any i ∈ In and k ∈ N, xi(t
i
k+1) ∈ Di

k, where the position of xi(t
i
k+1)

represents the real way-point.
The property about Di

k is characterized by the following lemma.
Lemma 2.2. For any i ∈ In and any k ∈ N, Di

k is a convex compact set and it

is also a subset of the convex hull of set {xi(t
i
k), xj(t

i
k − τ ijk ), j ∈ NA

i (tik)}.
Proof. See the appendix for the proof.
Corollary 2.3. Let

D̃i
k =

{
xi(t

i
k) +

∑
j∈NA

i (tik)
ωj

(
xj(t

i
k − τ ijk )− xi(t

i
k)
)

∑
l∈NA

i (tik)∪{i} ωl
:

ωl equals WL or WU for l ∈ NA
i (tik) ∪ {i}

}
.

Then Di
k = co(D̃i

k), where co(·) denotes the convex hull of the considered set.
Proof. See the appendix for the proof.
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Fig. 2.1. Anticipated-way-point sets and allowable motion region.

After update time tik, agent i will move from its current position xi(t
i
k) toward its

next way-point x(tik+1), selected from Di
k. The allowable motion region is described

by the following assumption:
(A4) For t ∈ [tik, t

i
k+1]

xi(t) ∈ co(Di
k−1 ∪Di

k).

Figure 2.1 shows the anticipated-way-point sets and allowable motion region of agent
i when there exists only one neighbor at times tik−1 and tik.

As we will see, assumption (A4) can be relaxed further. For example, if it is
replaced by xi(t) ∈ co(Di

k−k0 ∪ Di
k+1−k0 ∪ · · · ∪ Di

k) for t ∈ [tik, t
i
k+1], where k0 is

a given positive integer, then the main result presented in the next section is still
obtainable by the similar proof given in section 4.

3. Convergence result. To present the main result, we need several notions in
graph theory. A path in directed graph G from vi1 to vik is a sequence vi1 , vi2 , . . . , vik
of finite vertices such that (vil , vil+1

) ∈ E(G) for l = 1, 2, . . . , k−1. Directed graph G is
said to have a spanning tree if there exists a vertex, called the root, such that it can be
connected to any other vertices through paths. If for any i, j, (vi, vj) ∈ E(G) implies
that (vj , vi) ∈ E(G), G is undirected. And in this case, G is called to be connected
if G has a spanning tree. The union of a group of directed graphs Gi, i ∈ I, with a
common vertex set V is also a directed graph with the vertex set V and with the edge
set given by

⋃
i∈I E(Gi), where I is the index set of the group.

With the above preparations, we present the following result.
Theorem 3.1 (convergence). Suppose that the system under study satisfies as-

sumptions (A1) through (A4). If there exists a constant positive real number T such
that for all time t0, the union of the interaction topology GA(t) across the time inter-
val [t0, t0 + T ] always has a spanning tree, then all agents will solve the rendezvous
problem asymptotically together, namely, there exists an x∗ ∈ R

N such that for any
i ∈ In, xi(t) converges to x∗ as time evolves.

In the above theorem, the solvability of the rendezvous problem is indeed the
asymptotical consensus of agents’ positions xi(t), i ∈ In. However, note that the
state trajectory of variables xi(t), i ∈ In, between each pair of consecutive update
times is hard to determine but is covered by the convex hull of associated anticipated-
way-point sets. Thus, it is more natural to describe the rendezvous problem with a set-
valued consensus problem. Specifically, we will investigate the evolution of anticipated-
way-point sets with respect to update times and show that there exists an x∗ ∈ R

N
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with the property that for any ε > 0, there exists k∗ ∈ N such that for any k ≥ k∗

and any i, we have Di
k ⊂ B(x∗, ε), where B(x∗, ε) denotes the set of points whose

distances to x∗ are strictly smaller than ε. Its proof is rather long and relies much on
the results from graph theory and nonnegative matrix theory. Therefore, the proof,
as an independent part, is presented in the next section.

Relaxable assumptions (A1) through (A4) only describe the restrictions on update
times, anticipated-way-point sets and allowable motion region. Thus, the studied sys-
tem is very general in its form and its instances include a large quantity of multiagent
systems with diverse agent dynamics, such as the examples given in the forthcoming
subsection. Moreover, the sufficient condition provided in Theorem 3.1 for the solv-
ability of the rendezvous problem is not more conservative than the previous results,
such as those provided in [2, 3, 17, 18, 19, 22, 23]. Note that the condition of “period-
ical union of the interaction graph” can be further relaxed in some special cases; see
the work of Moreau on the bidirectional interaction case [19]. In addition, the data
in Ai

k are the relative position vectors and independent of the coordinate system of
other agents. Thus if the global coordinate is replaced by the local one of each agent,
the main result is also establishable.

3.1. Examples in the one-dimensional case. This subsection gives several
examples in the one-dimensional case, namely, N = 1, to show applications of the
main result.

In the first example, the system is assumed to be a synchronous one, namely,
tik = tjk for all i, j, k, and the detection actions are assumed to coincide with update
actions. Then the evolution of agent i’s position with respect to update times can be
represented by the following discrete-time system:

(3.1) xi(k + 1) =
1∑

j∈NA
i (k)∪{i} Wij(k)

∑
j∈NA

i (k)∪{i}
Wij(k)(xj(k − τ ijk )),

where Wij , j ∈ NA
i (k)∪{i}, are weighting factors, parameter k in brackets represents

time tik, delay terms τ ijk are nonnegative integers, and τ iik = 0. System (3.1) was
studied in [28] and covers the simplified Vicsek model studied by Jadbabaie, Lin, and
Morse [17] and the extended Vicsek model studied by Ren and Beard [18] as its special
cases.

The second example assumes that no delayed information is used and all weighting
factors are all equal, namely, WL = WU . Thus anticipated-way-point set Di

k is a
singleton {xi(t

i
k+1)} and then the studied model becomes the asynchronous Vicsek

Model [22], described by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi(t
i
k+1) =

1

ni(tik) + 1

⎛
⎝ ∑

j∈NA
i (tik)∪{i}

xj(t
i
k)

⎞
⎠ ,

xi(t) = xi(t
i
k) + uk

i (t)(xi(t
i
k+1)− xi(t

i
k)), t ∈ [tik, t

i
k+1),

where ni(t
i
k), i ∈ In, denotes the number of elements contained in NA

i (tik) and uk
i (t) :

[tik, t
i
k+1] → [0, 1] is a monotonic and continuous function such that uk

i (t
i
k) = 0 and

uk
i (t

i
k+1) = 1.
The next example is the asynchronous system given in [23] and governed by

(3.2)

ẋi(t) =
1∑

j∈NA
i (tik)

αij(tik)

∑
j∈NA

i (tik)

αij(t
i
k)
(
xj(t

i
k−τ ijk )−xi(t)

)
, t ∈ [tik, t

i
k+1), i ∈ In.
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In [23], it was assumed that the update time sequences tik, k ∈ N, i ∈ In, satisfy

assumption (A1), delay terms τ ijk satisfy assumption (A2), and α̌ ≤ αij(t
i
k) ≤ α̂ for

some positive real numbers α̌ and α̂. Next, we show that there exist some positive
real numbers WL and WU such that assumptions (A3) and (A4) are also satisfied.

Solving (3.2) gives that (see equation (4) in [23])

(3.3) xi(t) = e−(t−tik)xi(t
i
k) + (1− e−(t−tik))

(∑
j∈NA

i (tik)
αij(t

i
k)xj(t

i
k − τ ijk )∑

j∈NA
i (tik)

αij(tik)

)
,

t ∈ [tik, t
i
k+1].

By assumption (A1), e−τmax ≤ e−(t−tik) ≤ e−τmin. Define βj , j ∈ In, by

βj =

{
(1 − et

i
k−tik+1)αij(t

i
k), j ∈ NA

i (tik),

et
i
k−tik+1

∑
l∈NA

i (tik)
αil(t

i
k), j = i.

Then

xi(t
i
k+1) = xi(t

i
k) +

∑
j∈NA

i (tik)
βj(xj(t

i
k − τ ijk )− xi(t

i
k))∑

l∈NA
i (ti

k
)∪{i} βl

and

min{(1− e−τmin)α̌, e−τmaxα̌} ≤ βj ≤ max{(1− e−τmax)α̂, (n− 1)e−τminα̂}, j ∈ In.
Denote WL = min{(1 − e−τmin)α̌, e−τmaxα̌} and WU = max{(1 − e−τmax)α̂, (n −
1)e−τminα̂}. Then system (3.2) satisfies assumption (A3). By the monotonic property

of function 1− e−(t−tik), assumption (A4) is automatically satisfied.
Counterexample without assumption (A1). As shown in the above discussion, Ex-

ample 1 given in [23] satisfies assumptions (A2) through (A4) other than assumption
(A1). The vibration phenomenon of agents’ states shows the necessity of the exis-
tence of upper bound τmax in assumption (A1). From a practical viewpoint, the lower
bound τmin is also necessary since any agent cannot move from one way-point to the
next infinitely rapidly due to the restriction of input saturation. In theory, if the
lower bound τmin does not exist, then the frequencies of agents’ update actions can
differ a lot from each other. To construct the counterexample, suppose that n = 3,
the system satisfies assumptions (A2) through (A4), no delayed information is used,
the interaction topology GA(t) is switching periodically, and the switching sequence
is given as

GA(t) =

⎧⎪⎪⎨
⎪⎪⎩
Ga, t ∈ [4k, 4k + 1),
Gb, t ∈ [4k + 1, 4k + 2),
Gc, t ∈ [4k + 2, 4k + 3),
Gd, t ∈ [4k + 3, 4(k + 1)),

k = 0, 1, 2, . . . ,

where

E(Ga) = {(v1, v2)},
E(Gb) = {(v1, v2), (v2, v1)},
E(Gc) = {(v3, v2)},
E(Gd) = {(v2, v3), (v3, v2)}.
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In addition, suppose that all agents detect and update their way-points synchronously
and on the time intervals [4k, 4k + 1), [4k + 1, 4k + 2), [4k + 2, 4k + 3), and [4k +
3, 4(k + 1)), update actions occur 2k, 1, 2k + 1, and 1 times, respectively, and that
at each update time of agent i, i = 1, 2, 3, Di

k is a singleton, obtained by averag-
ing the position variables of agent i together with its neighbors. Under the above
assumptions, the evolution of agents’ states with respect to update times can be
equivalently represented by the discrete-time system studied in section IV.C in [19].
Proposition 4 in that paper shows the states of agents with initial states x1(0) = 0
and x2(0) = x3(0) = 1 do not converge to a common value as time evolves.

3.2. Network connectivity maintenance. In many cases, the interaction
topology depends on the positions of all agents and thus the time-dependent con-
dition of “periodical union of the interaction graph” is difficult to test. A trade-off
approach is to add additional distributed control rules to maintain the network con-
nectivity and thus ensure the solvability of the rendezvous problem. Related issues
will be discussed in this subsection. To begin with, we first give one basic fact about
the motion area of all agents.

Lemma 3.2. For any i ∈ In and t ≥ 0, xi(t) ∈ co{xj(t
′) : −τd ≤ t′ ≤ 0, j ∈ In}.

Proof. The lemma is a direct consequence of Lemma 2.2 and assumptions (A1)
through (A4).

For convenience, denote

Rmax = sup{‖ξ − ζ‖2 : ξ, ζ ∈ co{xi(t) : −τd ≤ t ≤ 0, i ∈ In}}.
Assume that each agent can detect the relative positions of all the other agents,

located within the disk with radius R and with the agent as the center; in other words,
mathematically, the sensing range of agent i is described by {ξ ∈ R

N : ‖ξ−xi‖2 ≤ R}.
In this case, the interaction topology G(t) is undirected and (vi, vj) ∈ E(G(t)) if and
only if ‖xi(t)− xj(t)‖2 ≤ R.

First consider the one-dimensional case with n ≥ 2.
Let L = � τd

τmin
�+1, where � τd

τmin
� denotes the minimum integer not less than τd

τmin
,

and introduce two positive real numbers S and D such that R ≥ (L+ 2)S +D. The
meanings of these parameters are explained in the forthcoming lemma. Moreover, this
lemma also lists the principles of the selection of weighting factors and the selection
of way-points in realizing network connectivity maintenance.

Lemma 3.3. Assume assumptions (A1) through (A4) and the following:

(A5) WU

WL ≥ max{ (n−1)Rmax

S − (n− 1), (n−2)Rmax

D }.
(A6) Each agent chooses the nearest way-point from its anticipated-way-point

set at its update times, namely, for any i ∈ In and k ∈ N, |xi(t
i
k) −

xi(t
i
k+1)| = inf{|xi(t

i
k)− ξ| : ξ ∈ Di

k}.
(A7) For any i and k, agent i moves from its current way-point xi(t

i
k) to its next

way-point xi(t
i
k+1) monotonically; i.e., for t with tik ≤ t ≤ tik+1, each entry

of vector xi(t) is a (not necessarily strictly) monotonically increasing or
decreasing function.

Then we have the following facts:
(F1) For any i and k, |xi(t

i
k+1)− xi(t

i
k)| ≤ S.

(F2) For any j ∈ NA
i (tik), if |xj(t

i
k − τ ijk ) − xi(t

i
k)| ≥ D, then for tik ≤ t ≤ tik+1,

if xj(t
i
k − τ ijk ) < xi(t

i
k), then xi(t) ≤ xi(t

i
k), or otherwise xi(t

i
k) ≤ xi(t).

(F3) For any i, j, and k, if tik − τ ijk ≥ 0, then |xj(t
i
k − τ ijk )− xj(t

i
k)| ≤ LS.

Proof. See the appendix for the proof.
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Fig. 3.1. Revised sensing range in two-dimensional network connectivity-preserving control.
The area within the circle is the original sensing range of agent i and the shaded area is the shrunk
sensing range.

In Lemma 3.3, (F1) says that the maximum step length between any two con-
secutive way-points is S, and (F2) says that if j ∈ NA

i (tik) and the distance between

points xi(t
i
k) and xj(t

i
k − τ ijk ) is not less than D, then agent i keeps stationary or

moves toward point xj(t
i
k − τ ijk ) after time tik. Facts (F1) and(F2) play an important

role in preserving the network connectivity. In the proof of Theorem 3.4, we will see
that assumptions (A1) through (A4) and (A7) and facts (F1) and (F2) are also served
as a sufficient condition.

The following theorem states the network connectivity-preserving property under
the proposed protocols.

Theorem 3.4 (connectivity maintenance). Suppose that N = 1 and the stud-
ied system, with initial states xi(t) = xi(0), −τd ≤ t ≤ 0, i ∈ In, satisfies as-
sumptions (A1) through (A7), and suppose that for any t ≥ 0, the relative positions
of all neighboring agents, determined by interaction topology G(t), will be detected
and used in the computation of way-point sets; in other words, given any k ∈ N, if
(vi, vj) ∈ E(G(t)) for all 0 ≤ t ≤ tjk, then i ∈ NA

j (tjk). Then (vi, vj) ∈ E(G(0)) implies
that (vi, vj) ∈ E(G(t)) for all t ≥ 0.

Proof. See the appendix for the proof.
By the above theorem, to guarantee the solvability of the rendezvous problem,

we only need to ensure that the graph G(0) is connected. Next, we take the two-
dimensional example to show how to extend the above connectivity-preserving strat-
egy to the general case.

Assume that all agents share a global coordinate system (this assumption can be
relaxed and replaced by the assumption that the axes of each agent’s local coordinate
system are parallel to those of others’) and assume that each agent regulates its
position with respect to the x-axis and the y-axis, respectively. To ensure that all
agents can regulate their positions in each axis direction independently, we shrink
their sensing range artificially to the square with a side length of

√
2R, covered by

the original one; see Figure 3.1. Mathematically, the shrunk sensing range of agent i

is {ξ ∈ R
2 : ‖ξ − xi‖∞ ≤

√
2R
2 }.

With the above preparations, we get the following corollary.
Corollary 3.5. Suppose that N = 2 and employ the same distributed control

strategy as assumed in Theorem 3.4, with
√
2R
2 in the place of R, to each coordinate
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Fig. 3.2. Allowable motion region in two-dimensional synchronous network connectivity-
preserving control. The shaded area represents the allowable motion region.

direction of the studied system. If (vi, vj) ∈ E(G(0)), then (vi, vj) ∈ E(G(t)) for all
t ≥ 0, where G(t) is determined by the shrunk sensing ranges.

Proof. See the the appendix for the proof.
Remark. In the above example, we can add the “synchrony” requirement to

the control over each coordinate direction without losing the connectivity-preserving
property. Explicitly, each agent shares a common update time sequence in both x-axis
and y-axis directions. In this synchronous case, the allowable motion region at time tik
becomes a rectangle with xi(t

i
k) and xi(t

i
k+1) as the diagonal vertices; see Figure 3.2,

which shows the allowable motion region and possible planned path of agent i when
there exists only one neighbor at update time tik.

4. Technical proof. This section characterizes the set-valued consensus prop-
erty of anticipated-way-point set Di

k with respect to update times and proves the
correctness of Theorem 3.1. In the first subsection, we manage to represent the
studied nonlinear system by the equivalent dimension-augmented discrete-time sys-
tem (4.9). By the preliminary lemmas assembled in the second subsection and by
a dimension-reducing approach, the algebraic and graph properties of state matrix
Ξ(k) of discrete-time system (4.9) are investigated in the third subsection. Finally,
Theorem 3.1 is proved in the last subsection.

4.1. Equivalent representation. Collect all update times tik, k ∈ N, i ∈ In,
and relabel them by t0, t1, t2, . . . in increasing order such that tk < tk+1 for all k ∈ N.

Lemma 4.1. There exists a positive integer K such that for all k, tk+K − tk ≥
max{τmax, τd}.

Proof. Let τ = max{τmax, τd}. By assumption (A1), for any i ∈ In, agent
i updates its anticipated-way-point set at most � τ

τmin
� times on the time interval

(tk, tk + τ ]. Let K = n� τ
τmin

� and then tk+K ≥ tk + τ .

Note that for any i, the anticipated-way-point sets Di
k, k ∈ In, may not have

their definitions on some times in the time sequence t0, t1, t2, . . . . To determine the
effective anticipated-way-point set of each agent by the new labeled time sequence,
we introduce a delay operator δ : In × [0,∞) → N, defined by that for i ∈ In and
t ≥ 0, tiδ(i,t) ≤ t < tiδ(i,t)+1. For symbolic simplicity, in the rest of this section, denote

δ(i, tk) by δ(i, k). By its definition, for i ∈ In and k ∈ N, tiδ(i,k) ≤ tk < tiδ(i,k)+1.
Clearly, it may happen that δ(i, k) = δ(i, k + 1) except when tk+1 = tiδ(i,k+1). From

Lemma 4.1 and assumption (A1), it follows that

(4.1) tiδ(i,k) > tk−K , i ∈ In.
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For simplicity, let

Yi(k) =
{
xi(t

i
δ(i,k)), xj(t

i
δ(i,k) − τ ijδ(i,k)), j ∈ NA

i (tiδ(i,k))
}
, i ∈ In, k ∈ N.

Obviously, it is not a collection of all agents’ states at time tk and the number of
the elements in Yi(k) is not greater than n. Just like Ai

k, the members in Yi(k) are
distinguished by their symbolic expressions, but not by their numerical values. By
assumption (A3) and Lemma 2.2,

(4.2) xi(t
i
δ(i,k)+1) ∈ Di

δ(i,k) ⊂ co(Yi(k)).

Denote all elements in Yi(k) by yi1(k), y
i
2(k), . . . , y

i
n(k), allowing repetitions, in such

a way that

(4.3) yij(k) =

{
xj(t

i
δ(i,k) − τ ijδ(i,k)), j ∈ NA

i (tiδ(i,k)),

xi(t
i
δ(i,k)), otherwise,

and define vectors

yi(k) = [yi1(k)
T , yi2(k)

T , . . . , yin(k)
T ]T , i ∈ In,

and

y(k) = [y1(k)
T , y2(k)

T , . . . , yn(k)
T ]T .

It follows from (2.1) that for any ξ ∈ Di
δ(i,k), there exist positive real numbers

ω1, ω2, . . . , ωn such that

ξ =

∑n
j=1 ωjy

i
j(k)∑n

j=1 ωj

and

(4.4)

⎧⎪⎨
⎪⎩
WL ≤ ωj ≤ WU for j ∈ NA

i (tiδ(i,k)),

WL ≤ ∑
j 	∈NA

i (ti
δ(i,k)

) ωj ≤ WU ,

ωr = ωs for all r, s �∈ NA
i (tiδ(i,k)).

It can be easily proved that all possible coefficient vectors 1∑n
j=1 ωj

[ω1, ω2, . . . , ωn], sat-

isfying the property described by (4.4), constitute a compact set Wi
δ(i,k). Conversely,

for any ω ∈ Wi
δ(i,k), we have (ω ⊗ IN )yi(k) ∈ Di

δ(i,k), where ⊗ denotes the Kro-

necker product. Therefore, there exists a one-to-one correspondence between Di
δ(i,k)

and Yi(k) (or yi(k)) through set W i
δ(i,k). Because the number of all possible cases of

set NA
i (tiδ(i,k)) is finite, the number of all possible sets W i

δ(i,k), k ∈ N, is also finite.

Therefore W =
⋃n

i=1

⋃∞
k=0 W i

δ(i,k) is a compact set. To conclude, we have the next
lemma.

Lemma 4.2. W is a compact set and each entry of any member in W is larger

than 2μ, where μ = WL

2n2WU .
Now, we aim to give the evolution equation of variable y(k) with respect to

parameter k. Consider variable yi(k + 1), i ∈ In. The simplest case is that in which
δ(i, k + 1) = δ(i, k), and thus

(4.5) yi(k + 1) = yi(k).
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Fig. 4.1. The range estimation of event times when δ(i, k + 1) = δ(i, k) + 1.

Next, we study the case when δ(i, k + 1) = δ(i, k) + 1, which implies that tk+1 =
tiδ(i,k+1).

(1) For j �∈ NA
i (tiδ(i,k+1)), by (4.2),

yij(k + 1) = xi(t
i
δ(i,k+1)) ∈ Di

δ(i,k),

and thus there exists a row vector ωii(k) ∈ W such that

(4.6) yij(k + 1) = (ωii(k)⊗ IN )yi(k).

(2) If j ∈ NA
i (tiδ(i,k+1)), then yij(k + 1) = xj(t

i
δ(i,k+1) − τ ijδ(i,k+1)). Suppose

that k is sufficiently large, such as k > 3K − 1. By Lemma 4.1 and inequality
(4.1), tiδ(i,k+1) = tk+1 and tk−K < tiδ(i,k+1) − τ ijδ(i,k+1) ≤ tk+1; see Figure 4.1. Let

k − K ≤ k′ ≤ k such that tk−K ≤ tk′ < tk′+1 = tiδ(i,k+1) − τ ijδ(i,k+1). Then by

assumption (A4),

(4.7) yij(k + 1) ∈ co(Dj
δ(j,k′) ∪ Dj

δ(j,k′)−1).

Also by inequality (4.1), tjδ(j,k′) > tk′−K , which further implies that tjδ(j,k′)−1 >

tk′−2K . Let tk′′ = tjδ(j,k′)−1. Then the preceding inequality implies that k′′ > k′−2K.

Let m = 3K − 1. Then k −m ≤ k′′ < k′ ≤ k, and by (4.7),

yij(k + 1) ∈ co(Dj
δ(j,k′) ∪ Dj

δ(j,k′′)) ⊂ co(Yj(k
′) ∪ Yj(k

′′)).

Thus there exists vectors ωij1, ωij2 ∈ W and real number α ∈ [0, 1] such that

(4.8) yij(k + 1) = α(ωij1(k)⊗ IN )yj(k
′) + (1− α)(ωij2(k)⊗ IN )yj(k

′′).

Note that in the above equation, the selection of k′ and k′′ uniquely depends on
parameters i, j, k, and the selection of α depends on vectors ωij1(k) and ωij2(k).

Define state variable z(k) = [y(k)T , y(k− 1)T , . . . , y(k−m)T ]T and define matrix

Ξ(k) =

⎡
⎢⎢⎢⎢⎢⎣

A0(k) A1(k) · · · Am−1(k) Am(k)
Inn

Inn 0
. . .

0 Inn 0

⎤
⎥⎥⎥⎥⎥⎦ ,
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where k > m, Inn is the nn× nn identity matrix, Al(k) = [Al
ij(k)], l = 0, 1, 2, . . . ,m,

are n×n block matrices, and blocks Al
ij ∈ R

n×n are determined in the following way
that for any i ∈ In,

(1) If δ(i, k + 1) = δ(i, k), then A0
ii(k) = In, and matrices A0

ij(k), j ∈ In, j �= i,

and Al
ij(k), l = 1, 2, . . . ,m, j ∈ In, are all zero matrices;

(2) If δ(i, k + 1) = δ(i, k) + 1, then for j = 1, 2, . . . , n,
(2.1) If j �∈ NA

i (tiδ(i,k+1)), then the jth row of A0
ii(k) equals ωii(k), decided

by (4.6);

(2.2) If j ∈ NA
i (tiδ(i,k+1)), then the jth rows of Ak−k′

ij and Ak−k′′
ij equal αωij1

and (1− α)ωij2, respectively, where k′, k′′, ωij1(k), ωij2(k) are given by
(4.8);

(2.3) The jth rows of all other matrices in {Al
ir, l = 0, 1, . . . ,m, r ∈ In},

which are not defined in steps (2.1) and (2.2), equal zeros.
Clearly, Ξ(k) is a stochastic matrix, namely, Ξ(k) is a square matrix with the property
that all its row sums are 1.

Combining (4.5), (4.6), and (4.8), the evolution process of the anticipated-way-
point sets can be simply represented by the following discrete-time equation:

(4.9) z(k + 1) = (Ξ(k)⊗ IN )z(k), k > m.

The next lemma presents an equivalent statement of Theorem 3.1.
Lemma 4.3. Under the assumptions assumed by Theorem 3.1, the rendezvous

problem is solvable if and only if there exists a column vector x∗ ∈ R
N such that

(4.10) lim
k→∞

z(k) = 1⊗ x∗,

where 1 = [1, 1, . . . , 1]T with compatible dimension.
Proof. The necessity is a direct consequence of the definition of vector z(k) and we

only prove the sufficiency. Obviously, (4.10) implies that for any i, limk→∞ yi(k) =
1 ⊗ x∗, where 1 ∈ R

n. For any given ε > 0, by (4.2) there exists k∗ ∈ N such
that for any k ≥ k∗ and any i, Di

k ⊂ B(x∗, ε). Therefore, by assumption (A4),
limt→∞ xi(t) = x∗ for any i, namely, all agents will reach a common location x∗

asymptotically.
The assumption on the interaction topology assumed by Theorem 3.1 is restated

by Lemma 4.4.
Lemma 4.4 (cf. [23, Lemma 9]). The existence of T ≥ 0 such that for all t0 ≥

0, the union of graph GA(t) across the time interval [t0, t0 + T ] always contains a
spanning tree, is equivalent to the condition that there exists a positive integer KT

with the property that for any k the union of GA(t) on {tk, tk+1, . . . , tk+KT } contains
a spanning tree.

Proof. Necessity: Let KT = n� T
τmin

�. By the same arguments as in Lemma 4.1,

we get that tk+TK ≥ tk +T . Because GA(t) is constant on [tk, tk+1), k ∈ N, the union
of GA(t) on {tk, tk+1, . . . , tk+KT } contains a spanning tree.

Sufficiency: For any t0, there exists k such that tk ≤ t0 < tk+1. By assump-
tion (A1), tl+1 − tl ≤ τmax for any l ∈ N, which means that tk+1+KT ≤ tk + (KT +
1)τmax ≤ t0+(KT+1)τmax. Let T = (KT+1)τmax. Then {tk+1, tk+2, . . . , . . . , tk+1+KT }
⊂ [t0, t0 + T ] and thus the sufficient part holds.

To sum up, in this subsection, for any i ∈ In, we first found a nN vector yi(k),
which uniquely corresponds to anticipated-way-point set Di

δ(i,k), and then we trans-
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formed the set-valued consensus into its equivalent dimension-augmented discrete-
time consensus representation, described by (4.10). The special structures of state
matrix Ξ(k) will be further studied in subsection 4.3. Finally, in Lemma 4.4, we gave
the equivalent statement of Theorem 3.1.

4.2. Preliminary lemmas. This subsection lists some preliminary notions and
lemmas that are needed to show the convergence property of discrete-time system
(4.9). The matrix notions employed in this subsection have their independent mean-
ings and are not the ones defined elsewhere.

A weighted directed graph G(A) is a directed graph G plus a nonnegative weight
matrix A = [aij ] ∈ R

n×n such that (vi, vj) ∈ E(G) ⇐⇒ aji > 0. A stochastic matrix
A is called indecomposable and aperiodic (SIA) if there exists a column vector ν such

that limk→∞ Ak = 1νT . In what follows, let
∏k

i=1 Ai = AkAk−1 · · ·A1, denoting the
left product of matrices, and write A � B if A−B is nonnegative.

The following two lemmas give sufficient conditions ensuring that the product
of a set of SIA matrices converges and ensuring that a stochastic matrix is SIA,
respectively.

Lemma 4.5 (see [20, Lemma 5]). Let A be a compact set consisting of SIA ma-
trices with the same dimension and with the property that for any nonnegative integer
k and any A1, A2, . . . , Ak ∈ A (repetitions permitted),

∏k
i=1 Ai is SIA. Then given

any infinite sequence A1, A2, A3, . . . (repetitions permitted) of matrices in A, there

exists a column vector ν such that limk→∞
∏k

i=1 Ai = 1νT .
Lemma 4.6 (see [28, Lemma 1]). Let A be a stochastic matrix. If G(A) has a

spanning tree with the property that the root vertex of the spanning tree has a self-loop
in G(A), then A is SIA.

The following lemma is useful in building the connection between the interaction
topology GA(t) and the matrix Ξ(k) related to system (4.9).

Lemma 4.7 (see [23, Lemma 8]). Let A0, A1, . . . , Am be n× n nonnegative ma-
trices, let

D =

⎡
⎢⎢⎢⎣

A0 A1 · · · Am

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎦
(m+1)n×(m+1)n

,

let

M0 =

⎡
⎢⎢⎢⎢⎢⎣

In
In

In

0

. . .
0 In 0

⎤
⎥⎥⎥⎥⎥⎦
(m+1)n×(m+1)n

,

and let Mk = D + M0
k for any k ∈ {1, 2, . . . ,m}. Then if G(∑m

i=1 Ai) contains a
spanning tree, G(Mk) contains a spanning tree with the property that the root vertex
of the spanning tree has a self-loop in G(Mk). Furthermore, the two root vertices in
the associated two spanning trees have the same index label.
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4.3. Properties of matrix Ξ(k). Let M denote the matrix set, constituted
by all the possible matrices with the form

(4.11) B =

⎡
⎢⎢⎢⎢⎢⎣

B0 B1 · · · Bm−1 Bm

Inn
Inn 0

. . .
0 Inn 0

⎤
⎥⎥⎥⎥⎥⎦ ,

where Bk = [Bk
ij ], k = 0, 1, . . . ,m, are n × n block matrices and blocks Bk

ij ∈ R
n×n

satisfy the property that for any i ∈ In,
(1) If B0

ii is an identity matrix, then matrices B0
ij , j ∈ In, j �= i, and matrices

Bk
ij , j ∈ In, k = 1, 2, . . . ,m, are all zero matrices;

(2) Otherwise,
(2.1) The ith row of B0

ii belongs to compact set W and the ith rows of all
other matrices B0

ij , j ∈ In, j �= i, Bk
ij , j ∈ In, k = 1, 2, . . . ,m, are zeros;

(2.2) For j = 1, 2, . . . , n, j �= i, there exists ω ∈ W such that the jth row of B0
ii

equals ω or there exist 0 ≤ k1 < k2 ≤ m, ω1, ω2 ∈ W , and α ∈ [0, 1] such
that the jth rows of Bk1

ij and Bk2

ij equal αω1 and (1−α)ω2, respectively;
the jth rows of all other matrices are zeros.

For convenience, let π(B0, B1, . . . , Bm) denote matrix B with the form given by (4.11).
By the above definition, we have the next lemma.
Lemma 4.8. Matrix set M is a compact set and includes all possible matrices

Ξ(k), namely, Ξ(k) ∈ M for all k > m.
To characterize matrix set M further, introduce n matrices Ni ∈ R

n×n, i ∈ In,
which possess the property similar to identity matrix and are defined by that the ith
row of Ni are all 1 and all other rows are zeros. Then

(4.12) NiNj = Ni for all i, j ∈ In.

The properties of the members in M are summarized by the following lemma.
Lemma 4.9. For any B = π(B0, B1, . . . , Bm) ∈ M, we have the following:

(1) For any i, if B0
ii �= In, then B0

ii > 2μNi, where μ = WL

2n2WU is defined in
Lemma 4.2.

(2) For any i and j, i �= j, B0
ii > 2μNj or there exists l ∈ {0, 1, 2, . . . ,m} such

that Bl
ij ≥ μNj.

Let ε = max{K + m,KT + 1}, where K and KT are defined in Lemma 4.1 and
Lemma 4.4, respectively. Consider the product of a sequence of finite matrices π(Bk

0 , B
k
1 ,

. . . , Bk
m) ∈ M, k = 1, 2, . . . , ε (repetitions permitted). Denote matrices Bk

l , l =
0, 1, . . . ,m, k = 1, 2, . . . , ε, by n × n block matrices [Bkl

ij ], where blocks Bkl
ij ∈ R

n×n,

and denote matrix
∏ε

k=1 π(B
k
0 , B

k
1 , . . . , B

k
m) by (m + 1)n × (m + 1)n block matrix

D = [Dij ], where blocks Dij ∈ R
n×n. Then

(3) If for any i ∈ In, Bk0
ii , k = 1, 2, . . . , ε−m, are not all identity matrices, then

for any r, 1 ≤ r ≤ (m + 1)n, and s ∈ In, there exists l, 1 ≤ l ≤ (m + 1)n,
such that Drl ≥ μεNs.

Proof. The first two properties follow directly from the definition of matrix set
M and we prove only the last one.
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Denote the matrix
∏k

l=1 π(B
l
0, B

l
1, . . . , B

l
m) by (m+1)n× (m+1)n block matrix

Pk = [P k
ij ], where P k

ij ∈ R
n×n, and let Ndiag(Bk

0 ) represent the n× n diagonal block

matrix, defined by that for any i ∈ In, if Bk0
ii �= In, then the ith diagonal block equals

Ni; otherwise the ith diagonal block equals In. Then for any k,

π(Bk
0 , B

k
1 , . . . , B

k
n) ≥ μ

⎡
⎢⎢⎢⎣

Ndiag(Bk
0 )

Inn 0
. . .

0 Inn 0

⎤
⎥⎥⎥⎦ .

First consider the case with r ∈ In. Let k1, k2, . . . , kp be the index such that
Bki0

rr �= In, i = 1, 2, . . . , p, and let kp+1 = ε + 1. Clearly, k1 ≤ ε −m. Fix r, s, and
index i, i ≤ p. By statement (2), Bki0

rr > 2μNs or there exists l ∈ {0, 1, 2, . . . ,m} such
that Bkil

rs ≥ μNs. Since for any k, ki < k < ki+1, the rth diagonal block of Bk
0 is the

n× n identity matrix, we get that for any k, ki ≤ k < ki+1,

[P k
r1, P

k
r2, . . . , P

k
r,(m+1)n] ≥μki−1[Bki0

r1 , Bki0
r2 , . . . , Bki0

rn , Bki1
r1 , Bki1

r2 , . . . , Bki1
rn ,

. . . . . . . . . , Bkim
r1 , Bkim

r2 , . . . , Bkim
rn ]

×
ki−1∏
l=1

⎡
⎢⎢⎢⎣

Ndiag(Bl
0)

Inn 0
. . .0

Inn 0

⎤
⎥⎥⎥⎦ .

In the case that Bki0
rr > 2μNs, it can be obtained that P k

rr ≥ μkiNs. Consider the
other case, that is, there exists l ∈ {0, 1, 2, . . . ,m} such that Bkil

rs ≥ μNs. If l = 0,
then by the above inequality, P k

rs ≥ μkiNs. Otherwise, P k
(l−1)n+r,s ≥ μkiNs. Noticing

that μ < 1, we have the conclusion that for any r, s ∈ In and any k, ε −m ≤ k ≤ ε,
there exists l, 1 ≤ l ≤ (m+ 1)n, such that P k

rl ≥ μεNs.
Since the matrix in the lower-left corner of π(Bk

0 , B
k
1 , . . . , B

k
n) is an mnn×mnn

identity matrix, we can relax the assumption that r ∈ In and get statement (3).
To establish a connection between GA(tk+1) and Ξ(k), define a dimension-reducing

map from M to R
(m+1)n×(m+1)n. For each matrix B in M with the form given by

(4.11), its image under the map is denoted by B̂ and has the form that

B̂ =

⎡
⎢⎢⎢⎢⎢⎣

B̂0 B̂1 · · · B̂m−1 B̂m

In
In 0

. . .
0 In 0

⎤
⎥⎥⎥⎥⎥⎦ ,

where B̂k = [bkij ], k = 0, 1, . . . ,m, are n× n matrices defined by

bkij =

⎧⎨
⎩
1 if Bk

ij = In (which happens only when k = 0 and i = j)
or there exists some s ∈ In such that Bk

ij ≥ μNs,
0 otherwise.

It follows from Lemma 4.9(1) that B̂0 ≥ In. For simplicity, denote the matrix B̂,
given above, by π(B̂0, B̂1, . . . , B̂m).
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Adopt the same notation as in Lemma 4.9, denote the graphs G(∑ε
k=1

∑m
i=0 B̂

k
i ),

G(∏ε
k=1 π(B̂

k
0 , B̂

k
1 , . . . , B̂

k
m)), and G(∏ε

k=1 π(B
k
0 , B

k
1 , . . . , B

k
m)) by Gv, Gu and G∗

u, re-
spectively, and denote their vertex sets by {v1, v2, . . . , vn}, {u1, u2, . . . , u(m+1)n}, and{

u1
1, u

1
2, . . . , u

1
n;u

2
1, u

2
2, . . . , u

2
n; . . . . . . . . . ;u

(m+1)n
1 , u

(m+1)n
2 , . . . , u(m+1)n

n

}
,

respectively, where the vertices in the last set are in their natural index order as in the
definition of weighted directed graph, that is, if the product

∏ε
k=1 π(B

k
0 , B

k
1 , . . . , B

k
m)

is denoted by [aij ], then (ui
r, u

j
s) ∈ E(G∗

u) ⇐⇒ a(j−1)n+s,(i−1)n+r > 0.
The relationship among Gv, Gu, and G∗

u is characterized by the following lemma.
Lemma 4.10. If Gv has a spanning tree with root vertex vl, l ∈ In, then Gu

has a spanning tree with root vertex ul having a self-loop; if for any i ∈ In, Bk0
ii ,

k = 1, 2, . . . , ε−m, are not all identity matrices, then under the above assumption G∗
u

also has a spanning tree with root vertex ul
l having a self-loop.

Proof. Step 1. The first part follows from Lemma 4.7 by the same arguments as
in proving Lemma 11 in [23]. To make the paper self-contained, we give a sketch of
the proof. Let M0 be the same as in Lemma 4.7 and let

Dk =

⎡
⎢⎢⎢⎣

B̂k
0 B̂k

1 · · · B̂k
m

0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

⎤
⎥⎥⎥⎦ .

Then
ε∏

k=1

π(B̂k
0 , B̂

k
1 , . . . , B̂

k
m) ≥ 1

2ε

ε∏
k=1

(M0 +Dk)

≥ 1

2ε

[
M0

ε +

ε∑
k=1

M0
k−1DkM0

ε−k

]

≥ 1

2ε

[
M0

ε +

ε∑
k=1

DkM0
ε−k

]
.(4.13)

Let the first n rows ofDkM0
ε−k be [F k

0 , F
k
1 , . . . , F

k
m], where F k

i ∈ R
n×n, i = 0, 1, . . . ,m.

Then
∑m

i=0 F
k
i =

∑m
i=0 B̂

k
i and thus

∑ε
k=1

∑m
i=0 F

k
i =

∑ε
k=1

∑m
i=0 B̂

k
i . Because Gv

has a spanning tree with root vertex vl, by Lemma 4.7 and inequality (4.13) and
noticing that M0

ε = M0
m for ε ≥ m, we have that G(M0

ε +
∑ε

k=1 DkM0
ε−k) and

thus Gu have a spanning tree, where the associated root vertex of the spanning tree
is ul with a self-loop.

Step 2. Next, we investigate the properties of the edge set E(G∗
u).

Suppose that (uj , ui) ∈ E(Gu). Adopt the same notation as in proving Lemma 4.9.
By (4.12) and the definition of M, the product of finite nonzero matrices in {Bkp

rs :
r, s ∈ In, p = 0, 1, . . . ,m, k = 1, 2, . . . , ε} is also nonzero, which implies that P ε

ij �= 0.
Moreover, it also can be obtained that P ε

ij = In or there exists s ∈ In such that
P ε
ij ≥ μεNs. The two possible cases imply that, in G∗

u, there exist the edges (see
Figure 4.2): {

(uj
1, u

i
1), (u

j
2, u

i
2), . . . , (u

j
n, u

i
n)
} ⊂ E(G∗

u)

or {
(uj

1, u
i
s), (u

j
2, u

i
s), . . . , (u

j
n, u

i
s)
} ⊂ E(G∗

u).
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Case (a) Case (b)

Fig. 4.2. Two possible cases of the edges in G∗
u, implied by (uj , ui) ∈ E(Gu).

For any i ∈ {1, 2, . . . , (m + 1)n}, by the conclusion of the first step, there exists
a path vi1 = vl, vi2 , . . . , vip = vi, connecting ul to ui. Repeating the preceding
arguments yields that for any k ∈ {1, 2, . . . , p− 1},{

(uik
1 , u

ik+1

1 ), (uik
2 , u

ik+1

2 ), . . . , (uik
n , uik+1

n )
} ⊂ E(G∗

u),

or {
(uik

1 , uik+1
sk

), (uik
2 , uik+1

sk
), . . . , (uik

n , uik+1
sk

)
} ⊂ E(G∗

u) for some sk ∈ In.
The above discussion implies that there exists at least one path connecting ul

l to ui
r

for some r ∈ In. To summarize, we have the following result.
Claim. For any i ∈ {1, 2, . . . , (m+1)n}, there exists at least one path connecting

the vertex ul
l to some vertex in {ui

r : r ∈ In}.
Continue with the above deduction and let i be fixed. For any r ∈ In, by

Lemma 4.9, there exists s ∈ {1, 2, . . . , (m + 1)n} such that Di,s ≥ μεNr. Thus,
we have {

(us
1, u

i
r), (u

s
2, u

i
r), . . . , (u

s
n, u

i
r)
} ⊂ E(G∗

u).

By the above claim, there exists some path connecting the vertex ul
l to some vertex

in {us
r, r ∈ In}, and thus there exists at least one path connecting the vertex ul

l to ui
r.

By the arbitrariness of i and r, G∗
u has a spanning tree with root vertex ul

l. Moreover,
by Lemma 4.9(1), Dll ≥ μεNl, and thus ul

l has a self-loop.
Define set

Π =

{ ε∏
k=1

π(Bk
0 , B

k
1 , . . . , B

k
m) :

π(Bk
0 , B

k
1 , . . . , B

k
m) ∈ M,

G
(

ε∑
k=1

m∑
i=0

B̂k
i

)
has a spanning tree and

for any i ∈ In, Bk0
ii , k = 1, 2, . . . , ε−m,

are not all identity matrices

}
.
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Lemma 4.11.

(1) Matrix set Π is a compact set.
(2) Any matrix in Π is SIA, and furthermore, the product of any finite matrices

(repetitions permitted) in Π is SIA.
(3) The product of ε consecutive matrices Ξ(k), k > m, belongs to Π.
Proof. The compactness of Π follows from the definition of M and Lemma 4.2.

The proof is trivial and details are omitted.
By Lemma 4.10 and Lemma 4.6, any matrix in Π is SIA, and following the same

arguments as in proving Lemma 4.10, we can get that the product of any finite
matrices (repetitions permitted) in Π is SIA.

By the definitions of GA(t) and Ξ(k), for any k, E(GA(tk+1)) ⊂ E(G(∑m
i=0 Âi(k))),

and by Lemma 4.4, G(∑k+ε−1
j=k

∑m
i=0 Âi(j)) has a spanning tree. In addition, since

ε−m ≥ K, by Lemma 4.1 and the definition of Ξ(k), A0
ii(j), j = k, k+1, . . . , k+ ε−

m− 1, are not all identity matrices. Therefore, the last statement holds.

4.4. Proof of Theorem 3.1. Let πk =
∏m+(k+1)ε

i=m+kε+1 Ξ(i), k ∈ N. Then by

Lemma 4.5 and Lemma 4.11, there exists ν ∈ R
(m+1)nn such that limk→∞

∏k
i=0 πi =

1νT . For any k > m, there exists l ∈ N such that m + lε + 1 ≤ k ≤ m+ (l + 1)ε. If
l ≥ 1, then

k∏
i=m+1

Ξ(i)− 1νT =

(
k∏

i=m+lε+1

Ξ(i)

)(
l−1∏
i=0

πi − 1νT

)
,

which implies that

lim
k→∞

k∏
i=m+1

Ξ(i) = 1νT .

Therefore, Theorem 3.1 holds.
Remark. Following the same arguments as in the process of proving Theorem 3.1,

we can relax further the sufficient conditions stated in Theorem 3.1. One simple
extension is to ensure that for any time t, there exist t1, t2 > t such that t2 − t1 ≥
(2κκ+1)ετmax, and the union of the interaction topology GA(t) cross any time interval
[t0, t0 + T ] ⊂ [t1, t2] contains a spanning tree, where κ is the dimension of the matrix
Ξ(k) in (4.9) and ε is given in Lemma 4.9. To demonstrate this fact, the only thing
we should do is to generalize Lemma 4.5 accordingly; see [20] for its detailed proof.

Remark. If there exist measurement errors in the process of data detection, we
can show that if the measurement errors are bounded by emax, then there exists
Ke > 0 such that limt→∞ ‖xi(t) − xj(t)‖∞ ≤ Keemax for any i, j. The correctness
of this result relies on the consensus property of discrete-time system (4.9) and the
properties of scrambling matrices. A different but equivalent result in the context
of connectivity preservation is presented in another paper, and its proof is available
upon request.

5. Simulations. This section presents simulations to show the effectiveness of
the theoretical result.

In the first example, we set τmin = 1, τmax = 2, τd = 4, WL = 1, and WU = 2.
The graph consisting of all possible information channels is depicted in Figure 5.1.
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Fig. 5.1. The graph consisting of all possible information channels in the first simulation.
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Fig. 5.2. The evolution of way-points in the first simulation.
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Fig. 5.3. The trajectories of agents under the connectivity-preserving rules (A5)–(A7).

Assume that each agent detects the positions of its adjacent agents (determined by
the graph in Figure 5.1) at the times randomly distributed between its update times,
and assume that the information channels may fail to work and the maximum sum
of consecutive detection failures cannot exceed 4. Therefore, the interaction topology
GA(t) is time-varying and it satisfies the assumption of Theorem 3.1 with T = 5τmax.
Furthermore, assume that the detected data are randomly distributed in the region
determined by assumption (A4). Figure 5.2 shows the evolution of way-points of each
agent under assumptions (A1) through (A4).

To show the effectiveness of connectivity-preserving rules (A5) through (A7), we
consider the system of 11 agents with the initial states as illustrated in Figure 5.3.
In this example, we set τmin = 1, τmax = 2, R = 10 and choose WU = 315, WL = 1.
It is further assumed that detections occur between update times for each agent;
that is, τd = 2. Figure 5.3 gives the trajectories of agents under assumptions (A1)
through (A7) with L = 3, S = 1.6, and D = 2. As a comparison, Figure 5.4 gives the
trajectories of agents with randomly selected weighting factors.
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Fig. 5.4. The trajectories of agents with randomly selected weighting factors.

6. Conclusion. We have studied the asynchronous rendezvous problem of net-
works of multiple dynamic agents and presented a class of protocol-designing strate-
gies based on weak assumptions. The nonlinear rendezvous model was treated by an
equivalent set-valued consensus model, which was successfully converted into another
consensus model in the traditional sense. However, its state variables are with higher
dimension and the state matrices are also with some new special structures, which
were not considered previously. By employing the tools of graph theory and non-
negative matrix theory, we gave its convergence proof. As an example, distributed
network connectivity-preserving control was also discussed. Nevertheless, there still
exist some interesting but unsolved problems, such as whether the convergence condi-
tions can be further relaxed in the bidirectional interaction case and how to combine
obstacle-avoidance algorithm to realize connectivity-preserving control. These issues
are currently under investigation.

7. Appendix. Proof of Lemma 2.2. The compactness of Di
k follows from the

compactness of allowable parameter interval [WL,WU ] and the last conclusion follows
from (2.1). The remaining part of the proof will show the convex property of Di

k. For
simplicity, we omit the time parameters of state variables, which are self-evident from

the context.

Suppose that ξ = xi+

∑
j∈NA

i
(ti

k
)
αj

∑
l∈NA

i
(ti

k
)∪{i} αl

(xj − xi), ζ = xi+

∑
j∈NA

i
(ti

k
)
βj

∑
l∈NA

i
(ti

k
)∪{i} βl

(xj − xi)

∈ Di
k, where W

L ≤ αj , βj ≤ WU , j ∈ NA
i (tik)∪{i}. To prove Di

k is convex, it suffices
to prove that ς = aξ + (1 − a)ζ ∈ Di

k for any a ∈ [0, 1]. Expanding the preceding
expression of ς yields that

ς =xi +
a
∑

j∈NA
i (tik)

αj∑
l∈NA

i (tik)∪{i} αl
(xj − xi) +

(1− a)
∑

j∈NA
i (tik)

βj∑
l∈NA

i (tik)∪{i} βl
(xj − xi)

=xi +
∑

j∈NA
i (tik)

(
aαj∑

l∈NA
i (tik)∪{i} αl

+
(1− a)βj∑

l∈NA
i (tik)∪{i} βl

)
(xj − xi)

=xi +

∑
j∈NA

i (tik)
γj∑

l∈NA
i (ti

k
)∪{i} γl

(xj − xi) ,

where

(7.1) γj =
a
∑

l∈NA
i (tik)∪{i} βlαj + (1− a)

∑
l∈NA

i (tik)∪{i} αlβj

a
∑

l∈NA
i (tik)∪{i} βl + (1 − a)

∑
l∈NA

i (tik)∪{i} αl
, j ∈ NA

i (tik) ∪ {i}.

Clearly, γj ∈ [αi, βj ] ⊂ [WL,WU ] and thus the above equation implies that ς ∈
Di

k.
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Proof of Corollary 2.3. This corollary can be proved by a finite-step deduction.
We use a simple example to illustrate the deduction process. Suppose that agent j
is the only neighbor of agent i. Then for any ξ ∈ Di

k, there exist WL ≤ α, β ≤ WU

such that ξ = 1
α+β (αxi + βxj). For α, we can always find some a ∈ [0, 1] such that

α =
a(WL + β)WU + (1− a)(WU + β)WL

a(WL + β) + (1− a)(WU + β)
.

In addition,

β =
a(WL + β)β + (1− a)(WU + β)β

a(WL + β) + (1− a)(WU + β)
.

Recalling (7.1), we have

ξ = (1− a)
1

WL + β
(WLxi + βxj) + a

1

WU + β
(WUxi + βxj),

which implies that

ξ ∈ co

{
1

WL + β
(WLxi + βxj),

1

WU + β
(WUxi + βxj)

}
.

Again by the same arguments,

1

WL + β
(WLxi + βxj)

∈ co

{
1

WL +WL
(WLxi +WLxj),

1

WL +WU
(WLxi +WUxj)

}
;

1

WU + β
(WUxi + βxj)

∈ co

{
1

WU +WL
(WUxi +WLxj),

1

WU +WU
(WUxi +WUxj)

}
.

Clearly, the four vectors in the right two big brackets belong to co(D̃i
k) and thus

ξ ∈ co(D̃i
k). The general case can be proved similarly.

Proof of Lemma 3.3. Proof of (F1). By the definition of Di
k,

ξ = xi(t
i
k) +

∑
j∈NA

i (tik)
WL

(
xj(t

i
k − τ ijk )− xi(t

i
k)
)

|NA
i (tik)|WL +WU

∈ Di
k,

where |NA
i (tik)| denotes the number of elements in setNA

i (tik). So by assumption (A6),

|xi(t
i
k+1)− xi(t

i
k)| ≤ |xi(t

i
k)− ξ|

≤
∑

j∈NA
i (ti

k
) W

L|xj(t
i
k − τ ijk )− xi(t

i
k)|

|NA
i (tik)|WL +WU

≤ Rmax

1 + WU

(n−1)WL

≤ S (by (A5)).
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Proof of (F2). Without loss of generality, suppose that xj(t
i
k − τ ijk ) ≥ xi(t

i
k) +D.

To prove (F2), by assumptions (A6) and (A7), it suffices to prove that there exists
some ξ ∈ Di

k such that ξ ≥ xi(t
i
k). Choose

ξ = xi(t
i
k) +

∑
l∈NA

i (tik),l 	=j W
L
(
xl(t

i
k − τ ilk )− xi(t

i
k)
)
+WU (xj(t

i
k − τ ijk )− xi(t

i
k))

|NA
i (tik)|WL +WU

.

So ξ ∈ Di
k and by assumption (A5),

ξ − xi(t
i
k) ≥

−(|NA
i (tik)| − 1)WLRmax +WUD

|NA
i (tik)|WL +WU

≥ 0.

Proof of (F3). Fact (F3) is a consequence of assumptions (A1), (A2), and (A7)
and fact (F1).

Proof of Theorem 3.4. This theorem will be proved by contradiction.
(AE) Suppose that there exist time te > 0 (subscript “e” means “escape”) and

ε > 0 such that |xi(t)− xj(t)| ≤ R for all t ≤ te and |xi(t) − xj(t)| > R for
all te < t ≤ te + ε.

We will show that the above assumption leads to contradictions.
First, we recall the delay operator δ(·), defined in subsection 4.1. Without loss

of generality, assume that tjδ(j,te) ≤ tiδ(i,te) ≤ te and xi(te) < xj(te). (The other cases

can be proved similarly.) For simplicity, denote ki = δ(i, te) and kj = δ(j, te). By
fact (F1) and that R ≥ D + (L+ 2)S, assumption (AE) implies that

(7.2) xj(t
j
kj
) ≥ xi(t

i
ki
) + LS +D.

Case 1. tiki
= tjkj

≤ te.

By inequality (7.2) and fact (F3), |xi(t
i
ki
) − xj(t

i
ki

− τ ijki
)| ≥ D and thus by

fact (F2), xi(t) ≥ xi(t
i
ki
) for any t with tiki

≤ t ≤ tiki+1. Similarly, xj(t) ≤ xj(t
j
kj
) for

any t with tjkj
≤ t ≤ tjkj+1. Therefore, |xi(t)− xj(t)| ≤ |xi(t

i
ki
)− xj(t

j
kj
)| ≤ R for any

t with te < t ≤ min{tiki+1, t
j
kj+1}, which contradicts assumption (AE).

Case 2. tjkj
< tiki

≤ te.

Case 2.1. xj(t
j
kj+1) > xj(t

j
kj
), namely, agent j moves right after update time tjkj

.

By fact (F2), xj(t
j
kj
)− xi(t

j
kj

− τ jikj
) < D, and thus by fact (F3),

(7.3) xi(t
j
kj
) > xj(t

j
kj
)−D − LS.

Let k = δ(i, tjkj
). Then there exists k′ ≥ 1 such that tik ≤ tjkj

< tik+1 < · · · < tik+k′ =

tiki
. Then by fact (F1) and inequality (7.3),

(7.4) xi(t
i
k+1) > xj(t

j
kj
)−D − (L+ 1)S.

On the other hand, by fact (F3) and the assumption that agent j moves right after
time tjkj

,

(7.5) min{xj(t
i
k+1 − τ ijk+1), xj(t

i
k+2 − τ ijk+2), . . . , xj(t

i
k+k′ − τ ijk+k′ )} ≥ xj(t

j
kj
)− LS.

(1) If all xi(t
i
k+1), xi(t

i
k+2), . . . , xi(t

i
k+k′+1) are not less than xj(t

j
kj
)−D−(L+1)S,

then by fact (F1), |xi(t)− xj(t)| ≤ D + (L+ 2)S ≤ R for te < t ≤ min{tiki+1, t
j
kj+1},

which contradicts assumption (AE).
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(2) Otherwise, by inequality (7.4), there exists k′′, 1 < k′′ ≤ k′ + 1, such that

(7.6) xi(t
i
k+k′′ ) < xj(t

j
kj
)−D − (L+ 1)S

and

(7.7) xi(t
i
k+k′′−1) ≥ xj(t

j
kj
)−D − (L + 1)S.

And by fact (F1), it follows from the inequality (7.6) that

xi(t
i
k+k′′−1) < xj(t

j
kj
)−D − LS.

However, the above inequality and inequality (7.5) imply that

xj(t
i
k+k′′−1 − τ ijk+k′′−1)− xi(t

i
k+k′′−1) > D.

By fact (F2) and inequality (7.7),

xi(t
i
k+k′′ ) ≥ xi(t

i
k+k′′−1) ≥ xj(t

j
kj
)−D − (L+ 1)S,

which contradicts inequality (7.6).
Case 2.2. xj(t

j
kj+1) ≤ xj(t

j
kj
), namely, agent j keep stationary or moves left after

update time tjkj
.

By fact (F1) and the assumption that tiki
> tjkj

, |xj(t
j
kj
)− xj(t

i
ki
)| ≤ S and thus

by fact (F3),

(7.8) |xj(t
i
ki

− τ ijki
)− xj(t

j
kj
)| ≤ (L + 1)S.

(1) If xi(t
i
ki+1) < xi(t

i
ki
), then by fact (F2), xj(t

i
ki

− τ ijki
) < xi(t

i
ki
) + D. By

inequalities (7.8) and (7.2),

xj(t
j
kj
)− (LS +D) ≥ xi(t

i
ki
) > xj(t

j
kj
)− ((L + 1)S +D).

Therefore,

xj(t
j
kj
)− (LS +D) > xi(t

i
ki+1) > xj(t

j
kj
)− ((L+ 2)S +D),

which yields that for any t with tiki
≤ t ≤ tiki+1,

LS +D ≤ xj(t
j
kj
)− xi(t) < (L+ 2)S +D ≤ R.

So (vi, vj) ∈ G(t) when te < t ≤ min{tiki+1, t
j
kj+1}, which contradicts assump-

tion (AE).
(2) If xi(t

i
ki+1) ≥ xi(t

i
ki
), then by assumption (A7), for any t with te < t ≤

min{tiki+1, t
j
kj+1}, |xi(t) − xj(t)| ≤ |xi(te) − xj(te)| = R, contradicting assump-

tion (AE).
Proof of Corollary 3.5. The corollary can also be proved by contradiction. Suppose

that there exist time te > 0 and ε > 0 such that (vi, vj) ∈ G(t) for all t ≤ te and
(vi, vj) �∈ G(t) for all te < t ≤ te + ε. This assumption implies that there exist a

coordinate direction, for example, x-axis, and ε′ > 0 such that |x′
i(t)− x′

j(t)| ≤
√
2R
2

for any t ≤ te and |x′
i(t) − x′

j(t)| >
√
2R
2 for any te < t ≤ te + ε′, where x′

i and x′
j

represent the coordinates of agents i and j with respect to the x-axis.
Since the dynamics in the directions of the x-axis and y-axis are decoupled, with

the same arguments as in proving Theorem 3.4, the above assumption results in
contradictions, and thus the corollary holds.
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