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Abstract Asymptotic analysis is conducted for outwardly
propagating spherical flames with large activation energy.
The spherical flame structure consists of the preheat zone,
reaction zone, and equilibrium zone. Analytical solutions
are separately obtained in these three zones and then asymp-
totically matched. In the asymptotic analysis, we derive a
correlation describing the spherical flame temperature and
propagation speed changing with the flame radius. This cor-
relation is compared with previous results derived in the limit
of infinite value of activation energy. Based on this correla-
tion, the properties of spherical flame propagation are inves-
tigated and the effects of Lewis number on spherical flame
propagation speed and extinction stretch rate are assessed.
Moreover, the accuracy and performance of different mod-
els used in the spherical flame method are examined. It is
found that in order to get accurate laminar flame speed and
Markstein length, non-linear models should be used.

Keywords Propagating spherical flames · Asymptotic anal-
ysis · Lewis number · Stretch rate

1 Introduction

The outwardly propagating spherical flame method is cur-
rently most favorable for measuring the laminar flame speed
and Markstein length [1–10]. Recently, it has been found that
the laminar flame speed and Markstein length measured by
this method depend strongly on the theoretical models used
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in the data processing [11]. These theoretical models are de-
rived from spherical flame theory.

In the literature, outwardly propagating spherical flames
have been extensively studied theoretically [12]. However,
most of the theoretical studies were based on the assumption
of large flame radius [12]. In spherical flame experiments
measuring the laminar flame speed and Markstein length, the
flame front history with large flame radii can not be used in
the data processing due to the development of flame front
instability [13] and/or the pressure rise [14]. Therefore, the-
ory based on the assumption of large flame radius can not be
used to derive models for data processing in spherical flame
experiments [11, 12]. Only the recent work by He [15] and
Chen and Ju [16] spanned all the spherical flame sizes and
transitions between flames at small radii and large radii. Un-
fortunately, in these studies [15, 16] the propagating spher-
ical flame is analyzed in the limit of infinite value of acti-
vation energy, while the practical hydrocarbon/air flame has
finite value, large activation energy. As will be shown in this
study, the results in Refs. [15, 16] are quantitatively correct
when the Lewis number is close to unity and only qualita-
tively reasonable when the Lewis number is appreciably dif-
ferent from unity.

To the authors’ knowledge, in the literature there is no
detailed asymptotic analysis of propagating spherical flames
without assuming large flame radius. Therefore the objec-
tive of this study is to present asymptotic theory on propagat-
ing spherical flames, from which different theoretical models
will be derived for spherical flame experiments measuring
the laminar flame speed and Markstein length. In the fol-
lowing, the mathematical model and asymptotic analysis are
presented. Then, based on the asymptotic theory, the prop-
erties of spherical flame propagation are investigated and the
models for data processing in spherical flame experiments
are discussed. Finally, the conclusions are presented.

2 Mathematical model

One-dimensional, adiabatic, premixed, propagating spher-
ical flame is analyzed using the large activation energy
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asymptotic method [17–19]. The diffusive thermal model
neglecting thermal expansion (i.e. constant density) [15-20]
is employed here. By assuming constant thermal and trans-
port properties, the conservation equations for energy and
fuel mass fraction are

ρCp
∂T
∂t
=
λ

r2

∂

∂r

(
r2 ∂T
∂r

)
+ qω,

ρ
∂Y
∂t
=
ρD
r2

∂

∂r

(
r2 ∂Y
∂r

)
− ω,

(1)

where t, r, ρ, T and Y are time, radial coordinate, density,
temperature, and fuel mass fraction, respectively. Cp is the
specific heat capacity at constant pressure, λ is the thermal
conductivity, q is the chemical heat-release per unit mass of
fuel, and D is the mass diffusivity of fuel. Since the constant
density model neglects thermal expansion, there is no con-
vective flux in the governing equations. Moreover, the fuel
lean case is studied so that only the mass fraction of fuel is
considered [15–20]. The reaction rate for a one-step, irre-
versible, global reaction is

ω = ρAY exp(−Ea/R0T ), (2)

in which A is the pre-factor of the Arrhenius law, Ea is the
activation energy, and R0 is the universal gas constant.

To simplify the analysis, we study the propagating
spherical flame in the coordinate (τ, ξ) attached to the mov-
ing flame front r = R(t) [15, 16]. In the new coordinate
(τ = t, ξ = r − R(t)), the flame can be considered as in a
quasi-steady state (∂/∂τ = 0). This quasi-steady assumption
has been widely used in previous studies [15–17, 20–23] and
validated by transient numerical simulation [16]. As a result,
the governing equations are simplified to

− ρCpU
dT
dξ
=

λ

(ξ + R)2

d
dξ

[
(ξ + R)2 dT

dξ

]
+ qω, (3a)

− ρU dY
dξ
=

ρD
(ξ + R)2

d
dξ

[
(ξ + R)2 dY

dξ

]
− ω, (3b)

where U = d R(t)/ d t is the flame propagation speed.
The boundary conditions are

ξ = −R, dT/dξ = 0, dY/dξ = 0, (4a)

ξ → ∞, T = Tu, Y = Yu, (4b)

where Tu and Yu denote the temperature and fuel mass frac-
tion in the fresh mixture, respectively.

3 Asymptotic analysis

The flame structure is shown in Fig. 1. The upstream pre-
heat zone and downstream equilibrium zone are connected
by a thin reaction zone. The asymptotic analysis is based on

the concept of large activation energy [17–19]. For large ac-
tivation energy, the ratio between the thickness of the inner
reaction zone and that of the outer preheat/equilibrium zone
is a small parameter, ε, which for the time being is unspeci-
fied but will be systematically identified later as the inverse
of the Zel’dovich number [19]. The asymptotic solution will
therefore be sought in ascending powers of this small param-
eter. Following the procedure for the asymptotic analysis of
a planar flame [19], solutions will be separately obtained in
these three zones constituting the flame structure and then
asymptotically matched.

Fig. 1 The schematic flame structure

3.1 Upstream preheat zone (ξ > 0)

In the preheat zone, the reaction term can be neglected due to
the low temperature and high activation energy. By using the
boundary condition equation (4b), the asymptotic solutions
in this outer zone can be obtained as

T+(ξ) = Tu +C1

∫ ∞

R+ξ
s−2 e −Us/α d s

+ εC2

∫ ∞

R+ξ
s−2 e −Us/α d s + O(ε2), (5a)

Y+(ξ) = Yu +C3

∫ ∞

R+ξ
s−2 e −Us/D d s

+ εC4

∫ ∞

R+ξ
s−2 e −Us/D d s + O(ε2), (5b)

where Ci (i = 1, 2, 3, 4) are integration constants to be deter-
mined through matching with the inner solution in the reac-
tion zone and α = λ/(ρCp) is the thermal diffusivity.

3.2 Downstream equilibrium zone (−R ≤ ξ < 0)

Since the fuel is completely consumed in the reaction zone,
the reaction rate becomes zero in the downstream equilib-
rium. The solutions in the downstream equilibrium zone are

T−(ξ) = Tb, Y−(ξ) = 0, (6)

where Tb is the temperature of burned gas to be determined
later (see Eq. (14)).

3.3 Matching conditions

Due to the large activation energy, the inner reaction zone
is much thinner than the preheat zone and equilibrium zone.
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In order to adequately resolve the reaction zone, the spatial
coordinate is stretched by introducing coordinate transform:
X = ξ/ε [17, 19]. In the inner reaction zone, the asymptotic
solutions are assumed to be

Tin(X) = θ0 − εθ1(X) + O(ε2),

Yin(X) = ϕ0 + εϕ1(X) + O(ε2),
(7)

where θ0 and ϕ0 are the leading-order solutions, while θ1(X)
and ϕ1(X) are perturbation functions. The solutions in the
inner reaction zone will be solved in the next subsection. It
is noted that the boundary condition equation (4) can not be
used for solutions in the inner reaction zone. This is due to
the fact that, unlike the outer preheat and equilibrium zones,
the inner reaction zone is not in contact with either the up-
stream or the downstream boundaries. In order to determine
the solutions in the inner reaction zone, matching conditions
between the inner and outer solutions should be used.

The matching conditions for the inner and outer solu-
tions at the downstream boundary of the reaction zone (i.e.
X = ξ/ε→ −∞) are

lim
X→−∞

Tin(X) = lim
X→−∞

T−(X),

lim
X→−∞

Yin(X) = lim
X→−∞

Y−(X),

lim
X→−∞

dTin/dX = lim
X→−∞

dT−/dX,

lim
X→−∞

dYin/dX = lim
X→−∞

dY−/dX,

(8)

Substituting Eqs. (6) and (7) into Eq. (8) yields

θ0 − Tb = ϕ0 = 0, (9a)

θ1(−∞) = ϕ1(−∞) = 0, (9b)

dθ1(−∞)/dX = dϕ1(−∞)/dX = 0. (9c)

Similarly, using the matching conditions for the inner and
outer solutions at the upstream boundary of the reaction zone
(i.e. X = ξ/ε→ +∞), we have

C1 = (Tb − Tu)/
∫ ∞

R
s−2 e −Us/α d s, (10a)

C3 = −Yu/

∫ ∞

R
s−2 e −Us/D d s, (10b)

θ1(+∞)→ +∞, (10c)

ϕ1(+∞)→ +∞, (10d)

dθ1(+∞)
dX

=
(Tb − Tu)R−2 e −UR/α∫ ∞

R s−2 e −Us/α d s
, (10e)

dϕ1(+∞)
dX

=
YuR−2 e −UR/D∫ ∞

R s−2 e −Us/D d s
. (10f)

3.4 Inner reaction zone

The leading-order solutions, θ0 = Tb and ϕ0 = 0, are read-
ily obtained through matching (see Eq. (9a)). However, the
inner solutions, θ1(X) and ϕ1(X), are still unknown and they
will be solved in the following. Substituting Eq. (7) and the
coordinate transform X = ξ/ε into Eq. (3), we can show
that the convective term is one order smaller than the dif-
fusion term and thus can be neglected. Therefore, the inner
reaction zone is governed by the following reaction-diffusion
equations

λ
d2θ1

dX2 = εqω, (11a)

ρD
d2ϕ1

dX2 = εω, (11b)

in which the reaction term becomes

ω = ρAεϕ1 exp(−Ea/R0Tin). (12)

After eliminating the reaction term using Eq. (11) and using
the boundary conditions at X → −∞ in Eqs. (9b) and (9c),
we have

(λ/q)θ1 = ρDϕ1. (13)

Substituting Eqs. (10e) and (10f) into the derivative form of
Eq. (13) yields the following expression for the flame tem-
perature

Tb = Tu +
qYu

Cp

1
Le

e
UR
α (1−Le)

∫ ∞
R s−2 e −Us/α d s∫ ∞
R s−2 e −Us/D d s

, (14)

where Le = α/D is the Lewis number. It is seen that Tb is
equal to the adiabatic flame temperature of unstretched pla-
nar flame Tad = Tu +qYu/Cp when Le = α/D = 1. Substitut-
ing Eqs. (13) and (12) into Eq. (11a) and using the boundary
conditions at X → −∞ in Eqs. (9b) and (9c) and X → +∞ in
Eqs. (10c) and (10e), we have

R−2 e −UR/α∫ ∞
R s−2 e −Us/α d s

=

√
2

Z2

A
D

exp
(
− Ea

R0Tb

)
. (15)

Therefore, from the above asymptotic analysis, the flame
temperature, Tb, and flame propagation speed, U, can be de-
termined as functions of flame radius, R, by Eqs. (14) and
(15).

In the limit of zero flame propagation speed (U = 0),
Eqs. (14) and (15) are reduced to the results for the flame
temperature and radius of stationary flame ball [24, 25].
Therefore, the flame ball solution is a limiting case of the
present result. Moreover, in the limit of infinite flame ra-
dius (R → ∞), Eqs. (14) and (15) are reduced to solutions
for adiabatic planar flames. Therefore, the present theory is
valid for spherical flames with small and large radii.
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4 Results and discussions

By solving Eqs. (14) and (15) numerically, the relation be-
tween the flame propagation speed U and flame radius R can
be obtained and thus the properties of propagating spherical
flame can be investigated.

4.1 Asymptotic results in the non-dimensional form

To get general conclusions, the asymptotic results are
first transformed into non-dimensional form. By using
adiabatic planar flame speed S L = {2αLeZ−2

ad A · exp
[−Ea/(R0Tad)]}1/2 [18, 19] and the planar flame thickness
δ0f = α/S L as the characteristic speed and length scale, re-
spectively, the flame propagation speed, flame radius, and
flame temperature can be normalized as

U′ =
U
S L
, R′ =

R
δ0f
, T ′b =

Tb − Tu

Tad − Tu
. (16)

It is noted that the Zel’dovich number, Zad = Ea(Tad −
Tu)/(R0T 2

ad), is based on the adiabatic planar flame temper-
ature, Tad = Tu + qYu/Cp, which is different from Tb for
propagating spherical flames when Le , 1 (see Eq. (14)).

By substituting Eq. (16) into Eqs. (14) and (15), the fol-
lowing relationships for the non-dimensional flame tempera-
ture and flame propagation speed as functions of flame radius
can be obtained (after dropping the primes)

Tb
R−2 e −UR∫ ∞

R s−2 e −Us d s
=

1
Le

R−2 e −ULeR∫ ∞
R s−2 e −ULes d s

= [σ + (1 − σ)Tb]2 exp
[
Zad

2
Tb − 1

σ + (1 − σ)Tb

]
, (17)

where σ is the ratio between the temperature of the fresh
mixture and the adiabatic planar flame temperature. It is
noted that in the following the non-dimensional flame tem-
perature (Tb), flame propagation speed (U), and flame radius
(R) are presented without the primes.

4.2 Comparison with previous studies

In the recent studies of Refs. [15, 16], the propagating spher-
ical flame is analyzed in the limit of infinite value of activa-
tion energy, Ea → ∞, and the chemical reaction rate is as-
sumed to be a Delta function. The following relationships are
obtained for adiabatic propagating spherical flames [15, 16]

Tb
R−2 e −UR∫ ∞

R s−2 e −Us d s
=

1
Le

R−2 e −ULeR∫ ∞
R s−2 e −ULes d s

= exp
[
Zad

2
Tb − 1

σ + (1 − σ)Tb

]
. (18)

Comparison between Eqs. (17) and (18) shows that the
only difference is the factor before the exponential term. In

fact, in Refs. [15, 16], the Zel’dovich number should be de-
fined as Z = Ea(Tad − Tu)/(R0T 2

b ) which is not constant
since the flame temperature changes with flame radius for
Le , 1. Equation (18) holds only when the flame tempera-
ture is close to the adiabatic planar flame (i.e. Tb ≈ 1) so that
[σ + (1 − σ)Tb]2 ≈ 1.

Figure 2 shows the change of the non-dimensional flame
temperature and flame propagation speed with the flame ra-
dius at different Lewis numbers. The Zel’dovich number,
Zad = 10, and the thermal expansion ratio, σ = 0.15, are
fixed for all the theoretical results except those in Figs. 3 and
6. The present asymptotic results (Eq. (17)) are compared
with those in Refs. [15, 16] (Eq. (18)). For Le = 1, the non-
dimensional flame temperature is independent of the flame
radius (Tb ≡ 1.0 for Le = 1 according to Eq. (17)). There-
fore, the factor before the exponential term in Eq. (17) is
always equal to 1.0, which indicates that Eqs. (17) and (18)
give the same result. However, for non-unity Lewis num-
ber, the non-dimensional flame temperature is different from
unity at finite flame radius (Tb , 1.0). Therefore, as shown
in Fig. 2, the results predicted by Eq. (17) are different from
those by Eq. (18) when Le , 1. When the Lewis number is
close to unity (Le = 0.8 or 1.2) or the flame radius is large
enough (R > 100), the spherical flame temperature is close

Fig. 2 Change of the a flame temperature and b flame propaga-
tion speed with the flame radius. Solid lines: results predicted by
Eq. (17); dashed lines: results predicted by Eq. (18)
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Fig. 3 Effects of the Zel’dovich number on the prediction of the
a flame temperature and b flame propagation speed given by dif-
ferent formula. Solid lines: results predicted by Eq. (17); dashed
lines: results predicted by Eq. (18)

to the planar flame temperature (see Fig. 2a), which makes
the factor, [σ+ (1−σ)Tb]2, close to unity. As a result, Fig. 2
shows that the predication by Eq. (17) is close to that by
Eq. (18) when the Lewis number is close to 1.0 (Le = 0.8
or 1.2) or the flame radius is large (R > 100). However,
when the Lewis number is apparently different from unity
(Le = 0.5 or 2.0) and the flame radius is small (R < 100), the
results predicted by these two equations are quite different.

Equation (17) is obtained by the large activation energy
asymptotic method while Eq. (18) is derived using the delta
function model assuming infinite value of activation energy.
So it is supposed that the prediction by Eq. (17) should tend
to that by Eq. (18) with increasing Zel’dovich numbers. This
is demonstrated by Fig. 3 which presents results at different
Zel’dovich numbers (Zad = 10, 20, and 50). As expected,
Fig. 3 shows that the larger the Zel’dovich number (activa-
tion energy), the smaller the difference between the results
predicted by Eqs. (17) and (18).

For the combustion of most of the hydrocarbon fuels, the
Zel’dovich number is in the range of 5.0–15.0. Therefore,
the results obtained in the limit of infinite value of activa-
tion energy (the chemical reaction rate is assumed to be a

Delta function) in Refs. [15, 16], i.e. Eq. (18), are quantita-
tively correct only when the Lewis number is close to unity
and only qualitatively reasonable when the Lewis number is
appreciably different from unity. Consequently, the present
asymptotic results, Eq. (17), should be used, especially for
Lewis number apparently different from unity and for small
flame radius. In the following, all the results are obtained
from Eq. (17).

4.3 Properties of propagating spherical flames

The change of the flame propagation speed with the stretch
rate is shown in Fig. 4. For outwardly propagating spherical
flames, the non-dimensional stretch rate is defined as

K =
1
A

dA
dt
=

2
R

dR
dt
=

2U
R
, (19)

where A = 4πR2 is the non-dimensional surface area of the
spherical flame.

Fig. 4 Change of the flame propagation speed with the stretch rate

As shown in Fig. 4, the Lewis number strongly affects
the change of U with K. This is caused by the coupling be-
tween the positive stretch rate and preferential thermal-mass
diffusion [16, 19, 22]. The inset in Fig. 4 shows that at small
stretch rate, the flame propagation speed varies almost lin-
early with the stretch rate. The spherical flame method is
based on this linear behavior such that the unstretched lami-
nar flame speed and Markstein length can be obtained from
the linear extrapolation of U and K [2, 3, 5–9].

Figure 4 further shows that for each Lewis number, there
exists a maximum stretch rate (denoted by circle in the fig-
ure) beyond which no propagating spherical flame exists.
This maximum stretch rate is defined as the extinction stretch
rate, Kext. Spherical flame propagation occurs only when the
stretch rate is smaller than the extinction stretch rate. Sim-
ilar definition was also used by Bradley et al. [26] in their
study on the extinction stretch rate of premixed ethanol/air
flames. The change of the extinction stretch rate with the
Lewis number is shown in Fig. 5. It is seen that the extinction
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stretch rate decreases exponentially with the Lewis number.
This is due to the fact that the smaller the Lewis number, the
more strongly the spherical flame is enhanced by its positive
stretch rate [16, 19, 22] and hence the more difficult it is ex-
tinguished. Similar conclusion was drawn in the analysis of
premixed counterflow flames [27–29].

Fig. 5 The extinction stretch rate as a function of Lewis number

4.4 Different models for the spherical flame method

Recently, it has been found that the laminar flame speed
and Markstein length measured by the spherical flame
method [1–9] depend strongly on the theoretical models used
in the data processing [11]. In Ref. [11], one linear model
(LM, the stretched flame speed changes linearly with the
stretch rate) and two non-linear models (NM-I and NM-
II, the stretched flame speed changes non-linearly with the
stretch rate) were derived from the detailed model (DM)
given by Eq. (18). Similarly, the following LM, NM-I, and
NM-II can also be derived from the DM given by Eq. (17)

U = 1−2L0U/R, U = 1−2L0/R, ln (U) = −2L0/ (RU) ,
(20)

where the normalized Markstein length L0 (normalized by
the planar flame thickness, δ0f ) is given by

L0 =
1
Le
−

[
2(1 − σ) +

Zad

2

] ( 1
Le
− 1

)
. (21)

The form of these three models (LM, NM-I, and NM-II)
derived from Eq. (17) is the same as those from Eq. (18) in
Ref. [11]. However, according to Eq. (21), the normalized
Markstein length depends on not only Le and Zad, but also
σ. Figure 6 presents the change of the normalized Mark-
stein length with the Lewis number. As expected, the Mark-
stein length increases monotonically with the Lewis number.
Moreover, Fig. 6 shows that the influence of the temperature
ratio, σ, on the Markstein length is nearly negligible com-
pared to that of the Zel’dovich number, Zad.

Similar to our recent study [11], the accuracy of the
LM, NM-I, and NM-II given by Eq. (20) can be assessed
by comparison with DM given by Eq. (17). The results are
presented in Fig. 7. It is seen that the predictions by the LM,
NM-I, and NM-II converge to that by the DM when the non-
dimensional stretch rate is small enough (or the flame radius
is large enough). For Le = 1, the predictions by the LM,
NM-I, and NM-II are shown to be close to that by the DM in

Fig. 6 Change of the normalized Markstein length with the Lewis
number

Fig. 7 Flame propagation speed as a function of the stretch rate
predicted by different models
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the whole range of stretch rate considered, while for Le = 2.0
and 0.5, there is very large difference between the predictions
by the LM, NM-I, and NM-II and that by the DM, especially
at large stretch rate. This is because when the Lewis num-
ber is appreciably different from unity, the relative difference
between the stretched and unstretched flame speeds will be
greater than 20% (i.e. |U − 1| > 0.2) for large stretch rate,
as shown in Figs. 7a and 7c. As a result, the assumption of
|U − 1| = |ε| ≪ 1 used to derive the LM, NM-I, and NM-II
is not strictly satisfied [11]. Moreover, Fig. 7 shows that the
accuracy of NM-I and NM-II depends on the Lewis number:
NM I is closer to the DM than NM II for Le = 2.0, while
NM II is closer to the DM than NM I for Le = 0.5. The same
conclusion was drawn in Ref. [11] based on the results given
by Eq. (18) instead of Eq. (17).

In order to demonstrate the performance of these mod-
els in extracting the laminar flame speed and Markstein
length in the spherical flame method, the extracted and ex-
act unstretched flame speeds, U0, and Markstein lengths,
L, are compared in Fig. 8. The data utilized for extrac-
tion are exact results from the DM given by Eq. (17) at
R = 20, 25 . . . , 100. It is seen that the relative difference
between extracted and exact values for U0 is within 20%,
while that for L can be above 200%. Moreover, the per-
formance of the LM, NM-I, and NM-II is seen to strongly
depend on the Lewis number. For mixtures with Lewis num-
ber appreciably different from unity, both the laminar flame

Fig. 8 Exact and extracted a flame speeds and b Markstein lengths
from different models

speed and the Markstein length are over-predicted from ex-
tractions based on the LM. Therefore, in order to get accurate
laminar flame speed and Markstein length from the spheri-
cal flame method, non-linear models should be used. Figure
8 shows that NM I is the most accurate for mixtures with
large Lewis number (positive Markstein length) while NM-
II is the most accurate for mixtures with small Lewis number
(negative Markstein length). Again, the same conclusion was
drawn in Ref. [11] based on the results given by Eq. (18) in-
stead of Eq. (17). Therefore, the conclusion on the different
models made in Ref. [11] (based on Eq. (18) obtained in the
limit of infinite value of activation energy in Refs. [15, 16])
is correct.

5 Conclusions

We conduct asymptotic analysis on outwardly propagating
spherical flames with large activation energy. Correlations
describing the spherical flame temperature and propagation
speed are derived as functions of the flame radius. These
correlations are compared with previous results derived in
the limit of infinite value of activation energy. It is shown
that the results obtained in the limit of infinite value of ac-
tivation energy are only qualitatively reasonable when the
Lewis number is appreciably different from unity. Based on
the correlation derived in this study, the properties of spheri-
cal flame propagation are investigated. The extinction stretch
rate is found to decrease exponentially with the Lewis num-
ber. Moreover, the accuracy and performance of three dif-
ferent models, LM, NM-I, and NM-II, used in the spherical
flame method are examined. It is found that in order to get
accurate laminar flame speed and Markstein length from the
spherical flame method, non-linear models should be used.
The same conclusion was drawn in Ref. [11] based on re-
sults obtained in the limit of infinite value of activation en-
ergy, and thus the conclusion on the different models made
in Ref. [11] is proven correct.
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