
Combustion Theory and Modelling, 2013
Vol. 17, No. 4, 682–706, http://dx.doi.org/10.1080/13647830.2013.792393

Effects of heat conduction and radical quenching on premixed
stagnation flame stabilised by a wall

Huangwei Zhang1∗ and Zheng Chen

State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and
Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China

(Received 3 November 2012; revised 7 March 2013; final version received 18 March 2013)

The premixed stagnation flame stabilised by a wall is analysed theoretically considering
thermally sensitive intermediate kinetics. We consider the limit case of infinitely large
activation energy of the chain-branching reaction, in which the radical is produced
infinitely fast once the cross-over temperature is reached. Under the assumptions of
potential flow field and constant density, the correlation for flame position and stretch
rate of the premixed stagnation flame is derived. Based on this correlation, the effects
of heat conduction and radical quenching on the wall surface are examined. The wall
temperature is shown to have great impact on flame bifurcation and extinction, especially
when the flame is close to the wall. Different flame structures are observed for near-wall
normal flame, weak flame, and critically quenched flame. The fuel and radical Lewis
numbers are found to have opposite effects on the extinction stretch rate. Moreover,
it is also demonstrated that only when the flame is close to the wall does the radical
quenching strongly influence the flame bifurcation and extinction. The extinction stretch
rate is shown to decrease with the amount of radical quenching for different fuel and
radical Lewis numbers. Besides, the coupling between the wall heat conduction and
radical quenching is found to greatly influence the bifurcation and extinction of the
premixed stagnation flame.

Keywords: flame-wall interaction; premixed stagnation flame; extinction stretch rate;
heat conduction; radical quenching

1. Introduction

Flame-wall interaction is the phenomenon in which premixed flames and wall surfaces
affect each other through the coupling of chemistry, momentum, and energy [1]. It can be
commonly found in laboratory burners as well as industrial combustion systems such as gas
turbine combustors and furnaces. Recently, development of novel combustion technologies
such as meso- and micro-scale combustion devices, catalytic fuel synthesis, and low-
emission burners has stimulated the interests to understand the flame-wall interaction [2–4].
However, since different processes such as flame extinction, stabilisation, bifurcations, and
radical quenching are involved in the flame-wall interaction, the underlying mechanisms
for flame-wall interaction are still not well understood.

In the literature, there are many studies on the flame-wall interaction. The early effort
on this topic was motivated by understanding the quenching distance and therein exhaust
emissions in practical combustion devices such as engines and gas turbines [5–7]. Later,
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Westbrook et al. [8] numerically studied flame quenching near an inert wall with detailed
chemistry and found that the temperature dependence of chaining-branching and radical
recombination reactions was responsible for flame extinguishment near the wall. Using a
two-step chemistry model, Hocks et al. [9] theoretically examined the influence of chain-
branching and chain recombination reaction rates on the transient flame quenching near
a cold wall. Vlachos et al. [10] analysed the bifurcations of a homogeneous hydrogen
flame near an inert wall and identified the dominant species for ignition and extinction.
Egolfopoulos et al. [11] investigated the extinction and propagation of both single jet-wall
and opposed jet flames and discussed the relations between wall temperature and extinction
strain rate as well as laminar flame speed. Ju and Minaev [12] studied the effects of a hot
wall on the lean flammability limits and flame bifurcations. Nakamura et al. [13] found
that the wall temperature has a dominant influence on repetitive ignition and extinction
of premixed flames in a micro-flow reactor. Some studies on the wall heat flux when the
flame approaches a cold wall were reported [14–18]. These aforementioned investigators
discussed the behaviours of the premixed flame stabilised by a wall from different aspects.
However, the influence of wall temperature and Lewis numbers on the extinction and
bifurcations of a wall-stabilised premixed flame is still not clear.

The radical quenching near a wall has also been investigated in the literature.
Egolfopoulos et al. [11] studied the effect of H radical recombination at the wall on
the extinction stretch rate and found that this effect is important for high wall temperature.
Surface radical recombination reactions on the chemically reactive or catalytic wall were
considered for premixed hydrogen/air flames and the impact of wall quenching of radicals
on ignition, extinction and stabilisation of premixed flames was analysed [19–22]. The
concentration of OH radical in the chemical quenching of methane/air premixed flames in
a narrow channel with different wall materials was investigated experimentally and numer-
ically and the results showed that the different wall materials lead to the different extent of
radical quenching [23]. It is well known that radical quenching on a wall is a highly coupled
physical and chemical process and lots of factors such as radical transport ability and wall
materials are involved [2, 3]. The above investigations are limited to one specific fuel and
wall material and thereby it is still difficult to generalise the findings therein. In order to gain
a clear understanding of radical quenching, it is necessary to conduct theoretical analysis
on the influence of radical quenching on premixed flames close to a chemically reactive
wall surface.

The objective of this study is to theoretically investigate the effects of wall heat conduc-
tion and radical quenching on premixed stagnation flame stabilised by a wall. In the follow-
ing, the mathematical model and theoretical analysis are presented in Section 2 and Sec-
tion 3, respectively. In Section 4, the effects of wall heat conduction and radical quenching on
stretched premixed flames are discussed. Finally, the conclusions are presented in Section 5.

2. Mathematical model

The simplified Zel’dovich-Liñán model proposed by Dold and co-workers [24, 25] is em-
ployed in the present analysis. This model consists of a chain-branching reaction F + Z →
2Z and a recombination reaction Z + M → P + M, where F, Z, and P denote fuel, radical,
and product, respectively, and M represents any third body species. The chain-branching
reaction is assumed to have high activation energy but is thermally neutral, while the re-
combination reaction is assumed to be temperature insensitive but releases all the heat
[25]. This model was used in previous studies on the ignition, propagation, extinction, and
stability of premixed flames [24–35].
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Figure 1. The schematic diagram of premixed stagnation flame stabilised by a wall. (available in
colour online)

Figure 1 shows the schematic diagram of the premixed stagnation flame stabilised
by a wall, which is the fundamental flame configuration of flame-wall interaction and
hence is considered in this study. The fresh pre-mixture is perpendicularly impinged to
an impermeable head-on wall whose temperature is fixed to be some constant value. The
potential flow assumption is employed and the velocity in the axial direction (perpendicular
to the stagnation surface) is ũ = −k̃x̃, where k̃ is the strain rate (also referred to as stretch
rate). For the one-dimensional stagnation flame, the governing equations for the mass
fractions of fuel, ỸF , and radical, ỸZ , and temperature, T̃ , are

− ρ̃k̃x̃
dỸF

dx̃
= d

dx̃

(
ρ̃D̃F

dỸF

dx̃

)
− W̃F ω̃B (1a)

− ρ̃k̃x̃
dỸZ

dx̃
= d

dx̃

(
ρ̃D̃Z

dỸZ

dx̃

)
+ W̃Z (ω̃B − ω̃C) (1b)

− ρ̃C̃P k̃x̃
dT̃

dx̃
= d

dx̃

(
λ̃

dT̃

dx̃

)
+ Q̃ω̃C (1c)

The density ρ̃, specific heat capacity C̃P , fuel mass diffusivity D̃F , radical mass diffusivity
D̃Z , and thermal conductivity λ̃ are all assumed to be constant. The variable Q̃ denotes the
heat release of the recombination reaction. The reaction rates of the chain-branching and
recombination reactions take the following form [25, 35]

ω̃B = ρ̃ỸF

W̃F

ρ̃ỸZ

W̃Z

ÃBexp

(
− T̃B

T̃

)
, ω̃C = ρ̃ỸZ

W̃Z

ρ̃

W̃
ÃC (2a, b)

where W̃F and W̃Z are the molecular weights of fuel and radical, respectively, W̃ the
mean molecular weight, ÃB and ÃC the frequency factors of the chain-branching and
recombination reactions, respectively, and T̃B the activation temperature of the chain-
branching reaction.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
2:

31
 0

2 
N

ov
em

be
r 

20
13

 



Combustion Theory and Modelling 685

We introduce the following non-dimensional variables

x = x̃

x̃s

, T = T̃ − T̃0

T̃s

, YF = ỸF

ỸF0
, YZ = ỸZ

ỸZs

, k = t̃s k̃ (3)

along with the definitions

t̃s = x̃2
s ρ̃C̃P

λ̃
, x̃2

s = λ̃W̃

ρ̃2C̃P ÃC

, ỸZs = W̃ZỸF0

W̃F

,

Q = Q̃ỸF0

C̃P T̃sW̃F

, β = T̃B T̃s

(T̃0 + T̃s)2
, σ = T̃s

T̃0 + T̃s

(4)

where T̃0 and ỸF0 are the temperature and fuel mass fraction in the fresh mixture, respec-
tively. The Zel’dovich number, β, and the scaling temperature, T̃s , can be determined by the
requirement that the equality ω̃B = β2ω̃C holds at the temperature of T̃0 + T̃s [25].

Substituting Equations (3) and (4) into (1) yields the following non-dimensional
governing equations

− kx
dYF

dx
= 1

LeF

d2YF

dx2
− ω (5a)

− kx
dYZ

dx
= 1

LeZ

d2YZ

dx2
− YZ + ω (5b)

− kx
dT

dx
= d2T

dx2
+ QYZ (5c)

where LeF = λ/(ρCPDF) and LeZ = λ/(ρCPDZ) are the Lewis numbers of fuel F and radical
Z, respectively. The normalised reaction rate ω in Equations (5a) and (5b) is

ω = β2YF YZ exp

[
β

T − 1

1 + σ (T − 1)

]
(6)

The non-dimensional boundary conditions at the wall surface (x = 0) and upstream
fresh pre-mixture (x → + ∞) are

x = 0 : T = Tw,
dYF

dx
= 0,

dYZ

dx
= −rqYZ (7a)

x → ∞ : T = 0, YF = 1, YZ = 0 (7b)

with Tw being the normalised wall temperature. The radical quenching due to the non-inert
wall is mimicked by the radical sink on the wall in the third equality of Equation (7a), in
which rq is the wall’s radical quenching coefficient determined by the properties of the wall
surface and the mass diffusivity and reactivity of the radical [2–4]. The coefficient rq is
negative when the radical is quenched/destructed on the wall surface.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
2:

31
 0

2 
N

ov
em

be
r 

20
13

 



686 H. Zhang and Z. Chen

In the limit of large activation energy (β → + ∞), the thermally sensitive chain-
branching reaction is confined at an infinitesimally thin flame sheet which is located at x =
xf (i.e. xf is the distance between the flame sheet and wall surface as shown in Figure 1).
For more details concerning the assumption of large activation energy, one can refer to the
pioneering work by Liñán [36]. According to the asymptotic analysis conducted by Dold
and co-workers [24, 25, 35], the following conditions must hold across or at the flame front
(x = xf)

[YF ] = [YZ] = [T ] = T − 1 =
[
dT

dx

]
=

[
1

LeF

dYF

dx
+ 1

LeZ

dYZ

dx

]
= YF

dT

dx
= 0 (8)

where the square brackets denote the difference between the variables on the unburned and
burned sides, i.e. [f ] = f

(
x = x+

f

) − f
(
x = x−

f

)
. Under the assumption of large activation

energy, the dimensionless temperature at the flame front is Tf = 1, which is approximately
equal to the crossover temperature Tc in the leading-order analysis [35].

3. Theoretical analysis

The rate of the chain-branching reaction, ω, can be neglected in both the unburned
(xf ≤ x ≤ + ∞) and burned (0 ≤ x ≤ xf) zones when the chain-branching reaction zone is
infinitesimally thin in the limit of large activation energy. Consequently, with the boundary
conditions (7a, 7b) and jump conditions (8), Equations (5a)–(5c) with zero reaction rate
(ω = 0) can be solved analytically in the unburned and burned zones. The fuel mass fraction
in the burned zone is zero according to the fuel lean assumption and that in the unburned
zone is obtained by solving Equation (5b) together with the conditions in Equations (7b)
and (8), which gives

YF (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if 0 ≤ x ≤ xf

erf(
√

LeF k/2x) − erf(
√

LeF k/2xf )

1 − erf(
√

LeF k/2xf )
if xf ≤ x ≤ + ∞

(9)

where erf(τ ) = 2/
√

π ·
τ∫

0

e−ς2
dς is the error function.

The solution for the radical mass fraction YZ(x) is

YZ(x) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
YZf e

1
2 LeZk(x2

f −x2)

[
J−(1/k,

√
LeZk/2x)

φ− + J+(1/k,
√

LeZk/2x)

φ+

]
if 0 ≤ x ≤ xf

YZf e
1
2 LeZk(x2

f −x2) J−(1/k,
√

LeZk/2x)

J−(1/k,
√

LeZk/2xf )
if xf ≤ x ≤ + ∞

(10)
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Combustion Theory and Modelling 687

where

J±(a, b) =
∫ ∞

0
ςa exp(−ς2/4 ± bς )dς (11a)

φ± = J±(1/k,
√

LeZk/2xf ) − (ϑ±/ϑ∓)J∓(1/k,
√

LeZk/2xf ) (11b)

ϑ± = ±
√

LeZk/2 · J±(1 + 1/k, 0) + rq · J±(1/k, 0) (11c)

At the limit of rq → −∞, which corresponds to the complete radical destruction at the
wall (i.e. YZ = 0 at xf = 0), we have ϑ±/ϑ∓ → 1.0 and hence Equation (11b) is reduced to

φ± = J±(1/k,
√

LeZk/2xf ) − J∓(1/k,
√

LeZk/2xf ) (12)

Substituting Equation (12) into Equation (10) yields the following expression for the radical
mass fraction in the burned zone (0 ≤ x ≤ xf )

YZ(x) = YZf e
1
2 LeZk(x2

f −x2) J−(1k,
√

LeZk/2x) − J+(1/k,
√

LeZk/2x)

J−(1/k,
√

LeZk/2xf ) − J+(1/k,
√

LeZk/2xf )
(13)

which can also be solved using the equivalent boundary condition YZ = 0 at xf = 0.
In Equations (10) and (13), YZf is the radical mass fraction at the flame front, i.e. YZ(x =

xf) = YZf. According to the requirement of [LeF
−1dYF/dx + LeZ

−1dYZ/dx] = 0 at x = xf in
Equation (8), we have

YZf =
√

2LeZ/ke− 1
2 LeF kx2

f

LeF �(k, xf )
∫ ∞
xf

e− 1
2 LeF kτ 2

dτ
(14)

in which

�(k, xf ) =
[
−J−(1 + 1/k,

√
LeZk/2xf )

φ− + J+(1 + 1/k,
√

LeZk/2xf )

φ+

]

+ J−(1 + 1/k,
√

LeZk/2xf )

J−(1/k,
√

LeZk/2xf )
−

√
2LeZkxf

×
[
J−(1/k,

√
LeZk/2xf )

φ− + J+(1/k,
√

LeZk/2xf )

φ+

]
+

√
2LeZkxf

(15)

Using the condition of T(x = xf) = 1 in Equation (8) and the boundary conditions
in Equation (7), the analytical solution for the temperature distribution can be obtained
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688 H. Zhang and Z. Chen

as

T (x)

=

⎧⎪⎪⎨
⎪⎪⎩

∫ xf
x

e
− 1

2 ς2k
dς∫ xf

0 e
− 1

2 ς2k
dς

[
Tw − 1 + ∫ xf

0

∫ ∞
η

I (ς, η)dςdη
]

− ∫ xf

x

∫ ∞
η

I (ς, η)dςdη + 1 if 0 ≤ x ≤ xf

∫ ∞
x

e
− 1

2 ς2k
dς∫ ∞

xf
e
− 1

2 ς2k
dς

[
1 + ∫ ∞

xf

∫ ∞
η

I (ς, η)dςdη
]

− ∫ ∞
x

∫ ∞
η

I (ς, η)dςdη if xf ≤ x ≤ +∞

(16)

in which I (ς, η) = QYz(ς )e
1
2 k(ς2−η2).

Substituting the above temperature distribution into the requirement of heat flux con-
tinuity ([dT /dx] = 0 at x = xf in Equation (8)) yields the following algebraic relationship
between the stretch rate k and flame position xf

∫ xf

0
e− 1

2 ς2kdς

[
1 +

∫ ∞

xf

∫ ∞

η

I (ς, η)dςdη

]

=
∫ ∞

xf

e− 1
2 ς2kdς

[
Tw − 1 +

∫ xf

0

∫ ∞

η

I (ς, η)dςdη

]
(17)

which includes fuel and radical Lewis numbers (LeF and LeZ), heat release (Q),
wall temperature (Tw) and radical quenching coefficient (rq). By numerically solving
Equation (17), we can get the flame position (xf) at different values of stretch rate (k).
The effects of heat conduction to/from and radical quenching on the wall can be assessed
by changing the values of Tw and rq, respectively. Moreover, the effects of fuel Lewis
number (LeF) and radical Lewis number (LeZ) can also be examined.

For comparison, we also consider the premixed stagnation flame stabilised by an adia-
batic wall (i.e. dT /dx|x=0 = 0). Following the similar mathematical derivations, we obtain
the relationship describing the stretch rate k and flame position xf as

∫ ∞

xf

∫ η

0
I (ς, η)dςdη = 1 (18)

Equation (18) implicitly includes fuel and radical Lewis numbers (LeF and LeZ) and heat
release (Q). In this study, the effects of heat release are not considered and therefore the
non-dimensional heat release is fixed to be Q = 2.0, a value that corresponds to a typical
hydrocarbon mixture with initial temperature at 300∼500 K [25].

4. Results and discussion

4.1. Effects of wall temperature

With the help of Equation (17), the effects of wall temperature and hence wall heat con-
duction on the premixed stagnation flame stabilised by a chemically inert wall (i.e. without
radical quenching, rq = 0) are investigated in this subsection. For unit fuel and radical
Lewis number (LeF = LeZ = 1), the change of the flame position with the stretch rate at
different wall temperatures is plotted in Figure 2. It is seen when the wall temperature is
below the cross-over temperature (Tw<Tc = Tf = 1.0), there are dual solutions of flame
position xf for relatively small stretch rate k. The premixed stagnation flame approaches the
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5
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1: Tw=1.5
2: Tw=1.25
3: Tw=1.0
4: Tw=0.99
5: Tw=0.975
6: Tw=0.75

3
Adiabatic
wall

Figure 2. Flame position as a function of stretch rate at different wall temperatures.

wall as the stretch rate increases, and flame extinction occurs at the turning point beyond
which no stagnation flame can exist. The stretch rate at the turning point is referred to as
the extinction stretch rate and it is denoted by kext. It is noted that the effects of radiation
are not considered in the present study and the turning point corresponds to the so-called
stretch-induced extinction, which is also observed in counterflow, stagnation, and tubular
flames [37–40]. When Tw = Tc = 1, we have xf → 0 for k → 0.5, indicating that the
premixed stagnation flame can exist until it touches the wall surface. When the wall tem-
perature is above the cross-over temperature (Tw>Tc = 1.0), Figure 2 shows that the flame
front can consecutively approach the wall and no flame extinguishment can be observed.
This is because the radical can always be produced through the chain-branching reaction
when the local temperature is above the cross-over temperature. Therefore, as indicated by
Figure 2, the wall temperature has a pronounced effect on bifurcations and extinguishment
of the premixed stagnation flame. Moreover, as a comparison, the results obtained from
Equation (18) for the case of the adiabatic wall are also plotted in Figure 2 (dashed line).
The comparison indicates that extinction is prompted/inhibited when the wall temperature
is below/above the cross-over temperature.

Figure 3 shows the flame structures at different stretch rates for Tw = 1.25 and LeF =
LeZ = 1. At a low stretch rate of k = 0.1, the flame is far away from the wall (xf =
10.75). For this case, the maximum temperature is close to the normalised adiabatic flame
temperature, Tad ≈ 2.0 (in the present chemical model, Tad ≈ Q, which can be derived
from the one-dimensional adiabatic planar flame [25]) and heat is conducted toward the
wall since the burned gas temperature is higher than that of the wall. However, at a
relatively high stretch rate of k = 1.0, the flame is very close to the wall (xf = 0.54).
For this case, the maximum temperature in the burned gas region is lower than the wall
temperature and thereby the flame is supported by heat feeding from the hot wall. At a
high stretch rate, the flow residence time is short and the radical cannot be completely
consumed by the recombination reaction. Therefore, the radical is accumulated in the
burned zone as shown in Figure 3. Since the chemical enthalpy stored in the radical fails to
be converted into thermal energy, Figure 3 shows that the temperature of the burned gas for
the case of k = 1.0 is much lower than that for the case of k = 0.1. These observations are
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690 H. Zhang and Z. Chen

qualitatively consistent with those results of wall stabilised methane-air flames with detailed
mechanism [17].

To examine the effects of fuel Lewis number on flame-wall interaction, we plot the
results for LeF = 0.5 and LeF = 2.0 in Figures 4(a) and 4(b), respectively. The results for
the case of adiabatic wall (dashed lines) are also presented for comparison. The radical
Lewis number is still fixed to be unity (LeZ = 1.0). For LeF = 0.5, Figure 4(a) indicates that
the influence of the wall temperature Tw on the evolution of the xf-k curve is qualitatively
similar to that for unity fuel Lewis number shown in Figure 2. However, for LeF = 2.0, new
flame bifurcation appears when Tw is around unity, and the xf -k curve becomes Z-shaped
with two turning points (denoted by b and c). In Figure 4(b), points b and c divide the
solutions for Tw = 1.0 and 1.02 into three regimes: the upper normal flame branch (ab), the
middle unstable branch (bc), and the lower weak flame branch (cd). A similar phenomenon
was also observed by Ju and Minaev [12] and Nakamura et al. [17]. Along the normal
flame branch ab, the flame gradually approaches the wall as the stretch rate increases. At
point b, it jumps to the weak flame branch cd for the case of Tw = 1.02 in Figure 4(b). On
the cd branch, the flame is stabilised by heat conduction from the wall. However, for Tw =
1.0, the flame extinguishes at point b. For weak flames of Tw = 1.02 and 1.0, xf increases
with decreased k and jumps to the normal flame branch ab at turning point c. For Tw ≥
1.1, the premixed stagnation flame approaches the hot wall consecutively as the stretch rate
increases and no flame extinguish occurs. For the case of adiabatic wall (dashed lines),
the premixed flame bifurcates at the mere turning points and larger extinction stretch rates
are observed compared to flames stabilised by a wall with fixed temperature. Therefore,
according to results shown in Figures 2 and 4, the influence of wall temperature on the
premixed stagnation flame is also affected by the fuel Lewis number. In Figures 2 and
4, the radical Lewis number is fixed to be unity. The effects of radical Lewis number on
flame bifurcation and extinction are also studied (not shown in this paper). Unlike the fuel

x

T

Y F
,Y

Z

0 2 4 6 8 10 12 14 16 180

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

Tf = 1.0

(b)

Case k xf
1 1.0 0.54
2 0.1 10.75

T

YF

YZ

1
2

Figure 3. The temperature and fuel and radical mass fraction distributions for Tw = 1.25 and LeF =
LeZ = 1.
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Figure 4. Flame position as a function of stretch rate for (a) LeF = 0.5 and (b) LeF = 2.0. (available
in colour online)

Lewis number, the radical Lewis number only has a quantitative influence on the flame-wall
interaction and no qualitative change is observed.

In order to compare the weak and normal flames observed in Figure 4(b), their flame
structures are plotted in Figure 5. The wall temperature Tw is unity and the stretch rate k
is 0.11. It is seen that the temperature and radical mass fraction of the normal flame are
much higher than these of the weak flame. The peak temperature Tmax in the burned zone
of the weak flame is very close to the cross-over temperature Tc = 1, indicating that there is
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Figure 5. Flame structures for normal and weak flames with stretch rate k = 0.11 for LeF = 2 and
LeZ = 1. (available in colour online)

negligible heat release from the chemical reaction. These are qualitatively similar to the
comparison between the structures of normal and weak flames obtained from simulation
considering detailed chemistry [17]. Moreover, it is interesting to compare the weak flame
in Figure 5 with the normal flame very close to the wall shown as Case 1 in Figure 3.
It is observed that the weak flame has much lower radical concentration and a negligible
temperature increment in the post flame region. This can be justified by the fact that in the
present framework of chemical kinetics, both chain-branching and recombination reactions
proceed at a small rate in the weak flame regime. However, for the flame very close to the
wall (xf = 0.54) shown in Figure 3, the recombination reaction cannot consume the radical
due to the short flow residence time. Therefore, although both aforementioned flames are
very close to the wall, nevertheless, their structures and underlying chemistry response are
quite different.

Figure 6 demonstrates the effects of the fuel and radical Lewis numbers on the extinction
stretch for the cases of Tw = 0.7 (solid lines) and adiabatic wall (dashed lines). It is seen
that kext monotonically increases (decreases) with LeZ (LeF). This is due to the coupling
between the preferential thermal-mass diffusion and positive stretch rate. The fuel diffuses
into the reaction zone, and the positively stretched stagnation flame becomes weaker and
thereby is more easily extinguished when the fuel Lewis number becomes larger [37, 39,
41, 42]. Unlike the fuel, the radical diffuses out of the reaction zone. With the increase
of the radical Lewis number (i.e. decease of the radical diffusivity), less radical enthalpy
is diffused away from the reaction zone and hence the flame becomes stronger and more
difficult to extinguish. A similar observation was found in our studies on positively stretched
spherical flames [26–28]. Figure 6 also shows that the extinction stretch rate for the case
of the adiabatic wall is higher than these for Tw = 0.7. This can be justified by the fact
that the existence of the wall with Tw = 0.7 weakens the flame so that the flame cannot be
reactive in a relatively large stretch rate. Furthermore, Figure 6(b) indicates that the change
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Figure 6. Dependence of the extinction stretch rate on (a) LeZ and (b) LeF. The dashed lines are the
results from the premixed stagnation flame with the adiabatic wall, while the solid ones are from the
premixed stagnation flame with Tw = 0.7. (available in colour online)

of the extinction stretch rate with the fuel Lewis number is much larger for the case of the
adiabatic wall than that for Tw = 0.7. This observation explicitly indicates that the non-
adiabatic wall weakens the preferential diffusion effect which is expected to considerably
influence the stretched flame [41]. Therefore, the existence of the wall has a great influence
on the extinction stretch rate of premixed stagnation flames.
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Figure 7. Dependence of the extinction stretch rate on the wall temperature. (available in colour
online)

Figure 7 demonstrates the effects of wall temperature Tw on the extinction stretch rate
kext at different fuel and radical Lewis numbers. The extinction stretch rate kext is shown to
increase monotonically with the wall temperature Tw. As shown in Figures 2 and 4, when
the wall temperature is above the cross-over temperature, there is no flame extinguishment.
Consequently, the extinction stretch rate increases exponentially when the wall temperature
is close to unity. At LeF = 2.0 shown in Figure 7(b), the extinction stretch rate kext for
Tw = 1 is the stretch rate when the flame touches the wall and the extinction stretch rate
kext for Tw > 1 physically corresponds to the value at which the normal flame becomes a
weak flame (from the ab branch to cd branch in Figure 4(b)). Besides, for LeF = 2.0 the
minimum stretch rate below which the weak flame regime cannot exist is also plotted in
Figure 7(b) and corresponds to the point c in Figure 4(b). It can be found from Figure 7(b)
that the point c appears around Tw = 1, and increases with Tw. The turning points b and
c merge around Tw = 1.08. Nevertheless, no extinction stretch rate exists when the wall
temperature is above the cross-over temperature.

The above analysis shows that the wall temperature has great impact on flame bifur-
cations and extinction. To understand the heat transfer between the flame and wall, the
temperature distributions for flames close to (xf = 1.0) and far from (xf = 10.0) the wall are
presented in Figure 8. It is observed that the wall temperature has a pronounced effect on
the temperature in both burned and unburned regions for near-wall premixed flames (xf =
1.0). With the decrease of wall temperature, great change in the wall heat conduction (i.e.
the temperature gradient at xf = 0 in Figure 8) is observed. The gas is heated and cooled
by the wall for Tw > 1.25 and Tw ≤ 1.25, respectively. Furthermore, the magnitude of tem-
perature gradient at the flame sheet, xf = 1.0, becomes small with the decrease of the wall
temperature, indicating that the heat transfer at the flame front is also greatly influenced by
the wall temperature. When the flame front is far from the wall (xf = 10), the temperature
distribution around the flame front is not affected by the wall temperature. Therefore, the
effects of wall temperature and heat flux on the flame front are negligible when the flame
sheet is far away from the wall.
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Figure 8. Temperature distributions at different wall temperatures with unity Lewis numbers of fuel
and radical for (a) xf = 1.0 and (b) xf = 10.0. (available in colour online)

In order to further quantify the heat transfer at the wall (x = 0) and the flame front (x =
xf), the corresponding normalised heat fluxes, qw and qf, can be readily obtained based on
Equation (16)

qw = −dT

dx

∣∣∣∣
x=0

=
[
Tw − 1 −

∫ xf

0

∫ η

0
I (ς, η)dςdη

]/∫ xf

0
e− 1

2 ς2kdς (19a)
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Figure 9. Change of the heat fluxes at the wall and the flame front with the flame position at different
wall temperatures for (a) LeF = 1 and (b) LeF = 2. (available in colour online)

qf = −dT

dx

∣∣∣∣
x=xf

=
[
Tw − 1 +

∫ xf

0

∫ xf

η

I (ς, η)dςdη

]/∫ xf

0
e− 1

2 (ς2−x2
f )kdς (19b)

When qw > 0, the heat is fed to the gaseous mixture from the wall; while the heat is
conducted to the wall when qw < 0. qf is always positive due to the release of chemical
enthalpy near the flame front. It is noted that in the present investigation only the radical
loss on the wall (i.e. the third equality in Equation (7a)) is considered and it is energetically
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neutral. If the radical quenching reaction and hence its heat release are taken into account,
an additional correction term would appear in Equations (1c) and (5c) and hence (19a).
However, the heat release from the wall radical reaction may be small compared to that from
the reaction sheet when the flame is not very close to the wall and/or the wall temperature
is high. Thus it is expected to have a negligible influence on the wall heat flux shown
in Equation (19a). For those cases in which the distance between the flame and wall is
very small and/or the wall temperature is relatively high, the heat release from the wall
radical reaction may show some extent of influence, which may be discussed in a future
paper.

Based on Equation (19a), the non-dimensional heat flux at the wall (xf = 0), qw, is
plotted as a function of flame position xf at different wall temperatures in Figure 9 (solid
lines). The radical Lewis number is fixed to be unity and only the results of the stable flame
branches (e.g. branch ab in Figure 4(b)) are given in Figure 9. When LeF = 1 shown in
Figure 9(a), for Tw = 1.25 and Tw = 1.5, wall heat flux qw is first positive (i.e. the heat is
conducted away from the wall and thus the gas is heated by the wall) and then becomes
negative (i.e. the heat is conducted toward the wall and thus the gas is cooled by the wall)
with the increases of the separation distance between the flame and wall. This is due to
the change in the temperature distribution with the flame position, as shown in Figure 8.
Furthermore, Figure 9(a) shows that, when qw < 0, |qw| first increases and then approaches
zero as the flame position xf gradually increases. This is due to the fact that the wall heat
flux depends on the flame position as well as the maximum temperature (which increases
with the flame position). According to the results not shown in Figure 9(a), when xf is large
enough, the wall heat flux qw is close to zero, indicating that there is no thermal interaction
between flame and wall. When Tw ≤ 1, wall surfaces always cool the burned gas near the
wall (qw ≤ 0). The results for LeF = 2.0 shown in Figure 9(b) are similar to those for LeF =
1.0 in Figure 9(a). The primary difference is the discontinuity of qw due to the existence of
physically unstable solutions (i.e. bc branch in Figure 4(b)).

Based on Equation (19b), the heat flux at the flame front is also given in Figure 9
(dash-dotted lines) to demonstrate the influence of wall temperature on the heat transfer
at the flame front. For LeF = 1, Figure 9(a) shows that the heat flux at the flame front
qf monotonically increases with xf for Tw ≤ 1 while it decreases for Tw > 1. The former
behaviours again corroborate the flame quenching caused by the stretch Tw ≤ 1. Also, for
Tw > 1, qw and qf share the same large values, and this further confirms the conclusions
from Figure 2 that the flame always exists for Tw > 1. What is more, from Figure 9(a), it
can be found that when xf > 6, qf approaches a constant value 0.6, indicating that when the
flame stabilisation position is beyond 6, the wall temperature influence is negligible. For
LeF = 2.0, similar dependence of heat flux at normal flame fronts is observed in Figure 9(b).
However, the heat flux at weak flame fronts shows different behaviours with different Tw

in Figure 9(b): for Tw = 1, qf decreases and ultimately equals zero (extinction occurs)
with decreased flame position xf; for Tw = 1.25, as xf decreases, qf first decreases and
then increases to a large value. Therefore, although both cases mentioned above are weak
flames, the heat transfer at their flame fronts considerably differs due to influence of the
wall temperature. Here it should be emphasised that, based on the curves corresponding
to Tw = Tc = 1 in Figures 9(a) and 9(b), qf approaches zero when the flame is located at
xf = 0. This is due to the fact that the chain-branching reaction is assumed to be infinitely
fast once the local temperature reaches the cross-over temperature. In fact, if the finite rate
of the chain-branching reaction (i.e. the structure of the radical production zone) is taken
into consideration, the conclusion about qf when the flame is very close to the wall will be
corrected.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
2:

31
 0

2 
N

ov
em

be
r 

20
13

 



698 H. Zhang and Z. Chen

The wall heat flux as a function of the wall temperature is plotted in Figure 10 for
different stretch rates or Lewis numbers. It is seen that the wall heat flux qw increases
almost linearly with the wall temperature Tw. The same trend was also observed in previous
numerical [1, 14] and experimental [43] studies. Figure 10(a) shows that the stagnation
flame can always exist for different stretch rates when Tw > 1. However, for k = 0.5, 1 and
5, there is no flame when Tw < 1. Figure 10(a) also shows that at small stretch rates (k =
0.15 and 0.5), qw is always negative indicating that heat is conducted towards the wall from
the burned gas. At large stretch rates (k = 1 and 5), qw becomes positive and the extent to
which the wall heats the gas increases with increased stretch rate. Figure 10(b) indicates
that the wall heat flux increases/decreases with the fuel/radical Lewis number. This is due
to the fact that the positively stretched stagnation flame is affected in opposite manners
by the fuel and radical Lewis numbers as mentioned before. Moreover, Figure 10(b) shows
that the radical Lewis number has much weaker influence on the wall heat flux than the fuel
Lewis number. This is consistent with the conclusion that the positively stretched flame is
much more strongly affected by the fuel Lewis number than by the radical Lewis number
[26–28].

In a brief summary, the above results show even when there is no radical quenching on
the wall, the premixed stagnation flame is strongly affected by the wall temperature in terms
of flame bifurcations and extinction. The extinction stretch rate increases with fuel Lewis
number as well as the wall temperature and it decreases with the radical Lewis number.
Furthermore, the heat fluxes at the wall and flame front are found to be greatly affected by
the wall temperature when the separation distance between the wall and flame is small. The
wall heat flux is shown to change almost linearly with the wall temperature.

4.2. Effects of radical quenching on the wall

In this subsection the radical quenching on the wall surface is considered and the radi-
cal quenching coefficient rq is negative. Figure 11 shows the results at different radical
quenching coefficients. The wall temperature Tw is kept to be 1.0. In Figure 11(a) with
LeF = LeZ = 1, when there is no radical quenching on the wall (i.e. rq = 0), the flame posi-
tion xf decreases monotonically with the stretch rate k. However, when radical quenching on
the wall is considered (rq < 0), the xf -k curve becomes reverse C-shaped and flame extinc-
tion occurs at the turning point. At a large stretch rate and thereby small separation distance
between the flame and wall, the flame is extinguished by the radical quenching on the wall
surface. Figure 11(b) presents the results for LeF = 2 and LeZ = 1. As shown in Figure 4(b),
the xf -k curve for rq = 0 is Z-shaped with two turning points. Flame extinction occurs at
the right turning point b. At a small magnitude of the radical quenching coefficient (i.e.
rq = −0.5), the Z-shaped curve is shifted towards the left. With relatively strong radical
quenching on the wall surface (i.e. rq = -1.0, -5.0, and -10.0), the xf-k curve becomes
reverse C-shaped and the near-wall flame cannot appear due to the radical quenching. In
both Figures 11(a) and 11(b), the xf-k curves corresponding to the negative infinite value of
radical quenching coefficients (i.e. rq → −∞) are demonstrated. It can be seen that in this
limit case, these curves are reverse C-shaped and when |rq| > 5.0, the xf-k curves are very
close to those of the limit case. This means that when |rq| > 5.0, the radical destruction due
to the wall has a minor influence on the relation between the flame position and the stretch
rate.

Figure 12 shows the extinction stretch rates kext as a function of the radical quenching
coefficient rq. The solid curve corresponds to extinction at the turning point (point b in
Figure 11(b)). The open circle represents the critical state at which the turning point on
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Figure 10. The wall heat flux as a function of wall temperature for different (a) stretch rates and (b)
Lewis numbers. (available in colour online)

xf-k curve appears (see Figure 11(a)). The corresponding radical quenching coefficient at
this critical state is denoted as rq,c. For LeF = 0.5 and 1.0, the flame extinguishes at the
turning point with |rq| ≥ |rq,c| (see Figure 11). As expected, the extinction stretch rate kext is
shown to decrease with the magnitude of the radical quenching coefficient |rq|. It is noted
that for LeF = 2.0, the turning point always exists (see Figure 11(b)) in Figure 12(a). Also,
for LeF = 2.0 the minimum stretch rate for weak flame regime (i.e. point c in Figure 11(b))
is also shown in Figure 12(a) (i.e. the dash-dotted line 3c). As |rq| increases, this minimum
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Figure 11. Flame position as a function of flame stretch rate for different radical quenching coeffi-
cients with (a) LeF = 1 and (b) LeF = 2. (available in colour online)

stretch rate decreases and is always smaller than the extinction stretch rate corresponding to
point b. Furthermore, Figure 12 indicates that effects of radical quenching on the extinction
stretch rate are influenced by the Lewis numbers of fuel and radical.

To assess the wall temperature influence on radical quenching on the wall, flame position
as a function of flame stretch for Tw = 0.85 and 1.25 is plotted in Figure 13. For Tw = 0.85,
Figure 13(a) shows that the xf -k curve is reverse C-shaped. The extinction stretch rate at
the turning point slightly decreases as the magnitude of the radical quenching coefficient
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Figure 12. Extinction stretch rate as a function of the radical quenching coefficient with different
(a) fuel and (b) radical Lewis numbers. (available in colour online)

|rq| increases. The flame extinction occurs at xf = 2.5 and thereby the radical quenching on
the wall has weak influence on the extinction stretch rate. In Figure 13(b) with Tw = 1.25,
the effect of radical quenching on flame position becomes negligible when xf < 0.07 or xf

> 4.0. For small xf (i.e. xf < 0.07), radicals are easily transported to and quenched on the
wall surface. However, for Tw = 1.25 in Figure 13(b), the wall temperature is larger than
the flame front temperature. Accordingly, heat is always fed to the flame from the hot wall,
and this offsets the weakening effect caused by radical quenching on the wall. Thus the
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Figure 13. Flame position as a function of flame stretch rate for different radical quenching param-
eters with (a) Tw = 0.85 and (b) Tw = 1.25. (available in colour online)

combined effects discussed above lead to the fact that the radical quenching has no obvious
influence on the premixed flame on the wall with Tw = 1.25 as shown in Figure 13(b).
Similar to Figures 11(a) and 11(b), the flame position as a function of flame stretch for
rq → −∞ is shown in Figures 13(a) and 13(b). Obviously, when rq < 5.0, the xf-k curves
are very close to those for rq → −∞.
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Figure 14. Distributions of radical mass fractions for different radical quenching coefficients with
Lewis number LeF = LeZ = 1.0 and wall temperature Tw = 1.25. The flame positions are (a) xf = 5.0
and (b) xf = 0.04, respectively. (available in colour online)

Although the radical quenching has negligible influence on relatively large and small
flame positions shown in Figure 13(b), it does affect the radical mass fraction profile as
shown in Figure 14. When the flame is far away from the wall (xf = 5.0), it is observed that
the radical quenching coefficient rq has only marginal influence on radical mass fraction
YZ for 0 < x < 2.0 (see the inset of Figure 14(a)). For x > 2.0, the radical mass fractions
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show no distinctions with different radical quenching coefficients. Even for rq → −∞,
the radical mass fraction was not considerably influenced by the wall radical destruction.
When the flame is close to the wall, Figure 14(b) shows that the radical mass fraction profile
is greatly affected by the radical quenching. Specifically, as the magnitude of the radical
quenching coefficient |rq| increases, the radical mass fraction YZ considerably decreases.
When rq → −∞, the radical mass fraction at the wall is zero, indicating that the complete
radical depletion occurs in this limit situation. Furthermore, the radical mass fraction YZ

at the flame front is relatively low compared to those corresponding to the finite values of
radical quenching coefficients.

5. Conclusions

Flame-wall interaction is studied theoretically using the premixed stagnation flame sta-
bilised by a wall and the simplified Zel’dovich-Liñán model [24, 25] in which thermally
sensitive intermediate kinetics is considered. Asymptotic analysis is conducted within the
framework of large activation energy and potential flow, and the relationship between the
flame position and stretch rate is derived. Based on this relationship, the effects of wall heat
conduction and radical quenching on stretched premixed stagnation flame are examined.

The wall temperature strongly affects the bifurcation and extinction of the stretched
premixed flame near a wall. The extinction stretch rate increases with the radical Lewis
number as well as the wall temperature and decreases with the fuel Lewis number. When
the flame is close to the wall, the wall temperature greatly influences the temperature
distribution and the heat fluxes at the wall surface and flame front. The premixed flame is
quenched far from the wall by stretch rate when the wall temperature is below the cross-over
temperature, while it does not extinguish when the wall temperature is above the cross-over
temperature. The heat fluxes at the wall increases linearly with the wall temperature.

The radical quenching on the wall also has great influence on flame bifurcation and
extinction only when the flame is close to the wall. When the magnitude of the radical
quenching coefficient is smaller than a critical value, the premixed flame is quenched near
the wall surface. However, the flame extinguishes at the turning point when the magnitude
of the radical quenching coefficient is above some critical value. Furthermore, the coupling
between the wall heat conduction and radical quenching greatly influences the bifurcation
and extinction of the premixed stagnation flame near a wall. For wall temperature below the
cross-over temperature, the stable flame positions barely change as the radical quenching
coefficient varies. For wall temperature above the cross-over temperature, the stable flame is
affected within intermediate flame positions. The radical mass fraction profiles are greatly
influenced by radical quenching effects at the wall when the separation distance is small.
The limit case for negative infinite radical quenching coefficients is also considered for
comparison.

It is noted that the analysis is valid at the limit of infinitely large activation energy of
chain-branching reaction and therefore the analysis is not general. We do not consider the
finite-rate kinetics for the chain-branching reaction, for which other distinguished limits
might appear. Furthermore, other factors such as thermal expansion and boundary layer
are not taken into consideration in the present investigation. The thermal expansion may
also affect the premixed flame when it is close to the hot wall and explicitly change
the mass/heat transfer. Besides, when the gas impinges toward the wall, the boundary
layers for flow, temperature, and mass concentration may affect the premixed flame. These
simplifications can be overcome by simulations considering detailed chemistry, which will
be part of future work.
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