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Abstract Chemical reactions in high-temperature combustion are reversible and reac-
tion reversibility might have a great impact on fundamental combustion processes such
as ignition and flame propagation. In this study, ignition and propagation of spherical
flames with a reversible reaction are analyzed using the large-activation-energy asymp-
totic method. Analytical correlations are derived to describe the change of spherical
flame propagation speed and flame temperature with flame radius. The reversibility
parameter, fuel Lewis number, and ignition power are included in these correlations.
These correlations can predict different flame regimes and transitions among the igni-
tion kernel, flame ball, propagating spherical flame, and planar flame. Therefore, based
on these correlations spherical flame propagation and initiation are then investigated
with the emphasis on assessing the impact of reaction reversibility. It is found that
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similar to heat loss, reaction reversibility can greatly affect spherical flame propaga-
tion speed, Markstein length, flame ball radius, minimum ignition power, and critical
ignition radius. Moreover, it is demonstrated that the influence of reaction reversibility
depends on fuel Lewis number.

Keywords Ignition · Spherical flame propagation · Reversible reaction ·Markstein
length · Lewis number

1 Introduction

Ignition and flame propagation are two of the most fundamental combustion problems.
They are related to fire safety control and development of advance internal combustion
engines and thereby receive great attention in combustion community. Due to its simple
geometry, ignition and propagation of spherical flame have been extensively studied
via theoretical analysis [1–11], numerical simulation [12–15], and experiments [1,16–
18] (see also references in [19]).

In theoretical studies on spherical flame initiation and propagation (e.g. [1–11]),
one-step, irreversible reaction of the form F → P was employed. In such a one-step
model, fuel (denoted by F) is converted directly into products (denoted by P) and heat.
Consequently, the role of reaction reversibility as well as energetic active radicals is not
considered in these studies. In practical combustion of hydrocarbon fuels, reversible
elementary reactions related to fuel and intermediate species (radicals) always appear.
As such, it is expected that ignition and flame propagation are affected by reaction
reversibility and properties of radicals involved in chain branching reactions.

Recently, Zhang et al. [20,21] have analyzed the spherical flame initiation and
propagation considering the thermally sensitive intermediate kinetics, which includes
a chain-branching reaction and a recombination reaction [22]. It has been found that the
spherical flame propagation speed, Markstein length, and critical ignition conditions
are all affected by the transport and chemical properties of radicals involved in the chain
reactions [20,21]. This two-step chain-branching model was also used in previous
studies on propagation, extinction, and stability of premixed flames [23–30]. In these
studies [20–30] as well as previous studies considering one-step chemistry [1–11],
the irreversible reaction model was employed and thereby the influence of reaction
reversibility on ignition and propagation of spherical flame was not addressed.

As pointed out by Daou [31–33], the reaction reversibility is a fundamental realistic
aspect in combustion and it might have a great impact on fundamental combustion
phenomena. Daou analyzed the influence of reaction reversibility on premixed planar
flame [31], triple flame [32], and premixed counterflow flame [33] using a one-step
reversible reaction model. It was found that reaction reversibility can greatly affect
fundamental combustion properties such as flame propagation speed and quenching
limit. However, to the authors’ knowledge, the influence of reverse reaction on igni-
tion has not been investigated. In spark ignition process, the temperature inside the
ignition kernel after spark discharge is usually very high, indicating that there exists
pronounced reversibility of chemical reactions (global or elementary). Usually the
forward reaction, F → P, is exothermic; while the backward reaction, F ← P, is
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endothermic. With the increase of the reaction reversibility, the combustion intensity
and flame temperature both decrease [31–33]. As a result, it is expected that the critical
ignition conditions are strongly influenced by the reaction reversibility.

The objectives of this study are therefore to provide a theoretical description of
spherical flame initiation and propagation with a reversible reaction and to analytically
assess the influence of reaction reversibility. The emphasis is placed on examining how
the spherical flame propagation speed, Markstein length, and critical ignition condition
are affected by the reverse reaction. The rest of the paper is organized as follows. The
mathematical model and analytical solutions are presented the next section. In Sect. 3,
the effects of reaction reversibility on spherical flame propagation and ignition is
examined. Finally, the conclusions are summarized in Sect. 4.

2 Theoretical analysis

2.1 Mathematical model

We consider one-dimensional, adiabatic, premixed, spherical flame initiation and prop-
agation. In order to include reaction reversibility, a single reversible reaction in the
form of F⇔ P is considered. The mathematical model is similar to that in Ref. [10]
and thereby it is only briefly described below. The readers are referred to the Supple-
mentary Document in which details on governing equations and their reduction and
non-dimensionalization are provided.

The constant density and quasi-steady assumptions [6–9] are employed. In the
coordinate attached to the propagating flame front, the non-dimensional governing
equations for temperature, T , and mass fractions of fuel, YF , and product, YP , are

−U
dT
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= 1
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d

dξ

[
(ξ + R)2 dT

dξ

]
+ ω (1a)
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where ξ is the non-dimensional radial coordinate; R is the flame radius; LeF and
LeZ are the Lewis numbers of the fuel and radical, respectively; and U is the non-
dimensional flame propagation speed (normalized by the adiabatic planar flame speed
for the irreversible case).

The non-dimensional reaction rate in the above governing equations is

ω = Z2
ad

2LeF

{
YF exp

[
Zad(T − 1)

σ + (1− σ)T

]
− �YP exp

[
Zad [T (1− σ)+ σ −�]
(1− σ)[σ + (1− σ)T ]

]}

(2)
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in which Zad is the Zel’dovich number and σ is the temperature ratio between unburned
and burned gases. Both Zad and σ are defined under the irreversible condition. � and
� are respectively the ratios of the pre-exponential factors and activation energies of
the backward and forward reactions. For the irreversible condition, we have � = 0
(i.e. only the forward reaction happens). Similar to the work of Daou [31], the variable
� is the main parameter in this study and it is referred to as the reversibility parameter.
The difference in the activation energies of the backward and forward reactions is
equal to the enthalpy of the reaction in the case of an elementary reaction [31] and
thereby we have � ≈ [1+ (1− σ)2/Zad ].

In this study, the ignition power, Q, is provided as a heat flux at the center [7,10]
(the limitation on this assumption is discussed in Ref. [10]). The boundary conditions
are

ξ →−R : (ξ + R)2 dT

dξ
= −Q,

dYF

dξ
= 0

dYP

dξ
= 0 (3a)

ξ →∞ : T = 0, YF = 1, YP = 0 (3b)

The above model extends previous analytical description [7,10] of spherical flame
initiation and propagation beyond the common framework of a one-step irreversible
Arrhenius reaction. The previous analytical description [7,10] is the limiting case of
zero reversibility parameter (� = 0) in the present study.

2.2 Analytical solutions

The propagating spherical flame with a reversible reaction is analyzed using the
large-activation-energy asymptotic method [2,34]. The flame structure consists of
the upstream preheat zone (ξ > 0) and downstream equilibrium zone (−R ≤ ξ < 0),
which are connected by the thin reaction zone located around ξ = 0. At large activation
energy, the ratio between the thickness of the inner reaction zone and that of the outer
preheat zone is a small parameter, ε, which is the inverse of the Zel’dovich number
(i.e. ε = 1/Zad) [34]. Following the procedure for asymptotic analysis of planar and
spherical flames with a one-step irreversible reaction [34,35], the asymptotic solu-
tion is obtained in ascending powers of this small parameter and then asymptotically
matched. The details on asymptotic analysis are not repeated here and the readers are
referred to the Supplementary Document for the detailed derivation.

From asymptotic analysis, we obtain the following correlations which determine
the flame propagation speed, U , and flame temperature, Tb, as functions of flame
radius, R:

Tb R−2e−U R∫∞
R s−2e−Usds

− Q R−2e−U R = 1

LeF

(1− YF,b)e−U RLeF∫∞
R s−2e−U LeF sds

= 1

LeP

YP,be−U RLeP∫∞
R s−2e−U LeP sds

(4)
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(6)

By solving Eqs. (4–6) numerically, the change of flame kernel propagation speed
U with flame radius R at different ignition power Q, reversibility parameter �, and
fuel Lewis number LeF can be obtained and thereby the ignition and propagation of
spherical flames can be investigated.

In the limit of infinite flame radius (R→∞), Eqs. (4–6) respectively reduce to

Tb = 1− YF,b = YP,b (7)
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]

(8)
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(9)

which are the same as the results for adiabatic planar flame with a reversible reaction
derived by Daou [31]. In the limit of irreversible case (i.e. � = 0), Eqs. (4–6) reduce
to

Tb R−2e−U R∫∞
R s−2e−Usds

− Q R−2e−U R = 1

LeF

R−2e−U RLeF∫∞
R s−2e−U LeF sds

= [σ + (1− σ)Tb]2 exp

[
Zad

2

Tb − 1

σ + (1− σ)Tb

]

(10)

which are the same as the results for propagating spherical flame in [10,35]. Therefore,
the present analysis is consistent with previous studies on adiabatic planar [31] and
spherical flames [10,35].
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3 Results and discussion

3.1 Effects of reaction reversibility on flame speed and Markstein length

The stretch rate is inversely proportional to the flame radius for propagation spherical
flames. Therefore, the small spherical flame kernel generated by energy deposition is
highly stretched and its propagation speed depends strongly on the Markstein length
which characterizes the variation in flame speed due to stretching [34]. Consequently,
understanding the stretched flame propagation speed and Markstein length is helpful
for examining the critical ignition condition. Here we first consider the freely propa-
gating spherical flame without ignition energy deposition (i.e. Q = 0).

By solving Eqs. (4–6) numerically, we can obtain the change of flame propagation
speed U with flame radius R at different levels of reaction reversibility. Consequently,
the effects of reaction reversibility on unstretched/stretched flame speed and Markstein
length can be assessed. In this study we fix the Zel’dovich number and temperature
ratio (both are defined under the irreversible condition) to be Zad = 10 and σ = 0.15,
respectively. Moreover, unity product Lewis number is assumed (i.e. LeP = 1.0).

Figure 1 shows the normalized laminar flame speed and flame temperature of an adi-
abatic planar flame, which are similar to results reported by Daou [31]. As expected, the
laminar flame speed and flame temperature both decrease with the reaction reversibil-
ity. The flame speed is observed to decrease much faster than the flame temperature.
This is reasonable since the flame speed depends exponentially on flame tempera-
ture. Moreover, for unstretched planar flame, the flame temperature and laminar flame
speed is nearly independent on fuel Lewis number.

In Fig. 1 a very broad range of reversibility parameter, 10−3 ≤ � ≤ 102 is used.
In the following, some specific value of � is used for the reversible case. It is difficult
to model the practical chemistry by a simple reversible reaction of F⇔ Pwith some
specific value of reversibility parameter �. Here we determine the value of reversibility
parameter � based on the normalized adiabatic flame temperature shown in Fig. 1. For
stoichiometric CO/air initially at 298 K and 1 atm., the adiabatic flame temperature
for the irreversible case (2CO + O2 + 3.76N2 = 2CO2 + 3.76N2, assuming that
the products only consist of CO2 and N2) is 2,663 K and that for the reversible case
(assuming that the products consist of CO2, CO, O2, and N2) is 2,400 K. Therefore, the
normalized flame temperature for the reversible case is Tb = (2,400−298)/(2,663−
298) = 0.89. According to the results (Tb versus �) shown in Fig. 1, this corresponds
to � = 0.3. Similarly, for stoichiometric H2/air with 2H2 +O2 + 3.76N2 = 2H2O+
3.76N2, we have Tb = (2,430 − 298)/(2,519 − 298) = 0.96 and hence � = 0.1.
Therefore, we choose the value of � = 0.2 for the reversible case during the following
analysis. The value of � = 0.2 is somewhat arbitrarily chosen. Nevertheless, the same
conclusion can be drawn even when other values of � are used since the theory remains
valid for all values of �.

Figure 2 shows the results for propagating spherical flame at different fuel Lewis
numbers (LeF = 0.5, 1.0, and 2.0) and reaction reversibility (� = 0 and 0.2). In
Fig. 2, solutions on the horizontal axis with U = 0 denote flame balls, those close to
the right vertical axis with R = 1,000 denote nearly planar flames, and those between
them represent propagating spherical flames. For the irreversible case of � = 0, the
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Fig. 1 Change of laminar flame speed and flame temperature of an adiabatic planar flame with reversibility
parameter

results in Fig. 2 are the same as those for freely propagating spherical flame in [35].
The flame propagation speed and flame temperature are both greatly affected by the
fuel Lewis number due to the coupling between positive stretch rate and preferential
diffusion of fuel and heat [34]. When the reverse reaction is considered (i.e. � = 0.2),
Fig. 2 shows that both the stretched flame speed and flame temperature are reduced.
Therefore, similar to radiative heat loss, the endothermic reverse reaction, F ← P,
weakens the propagating spherical flame.

The change of the flame ball radius, RZ , and flame ball temperature, TZ , with
fuel Lewis number, LeF , are plotted in Fig. 3. The flame ball is purely controlled
by diffusion and reaction. It is well known that RZ increases with LeF while TZ

decreases with LeF (e.g. [4]). When there is reaction reversibility (� = 0.2), the
flame ball temperature is reduced and its size becomes larger. Since the flame ball
radius is the characteristic length scale that controls ignition for mixture with Lewis
number below some critical value [11], the minimum ignition energy is expected to
increase due to reaction reversibility. Moreover, Fig. 3 indicates that the influence of
reversibility parameter on flame ball becomes weaker at larger fuel Lewis numbers.
This is because the flame ball temperature quickly decreases with the fuel Lewis
number (TZ = 1/LeF for � = 0 [10]) and so does the reaction reversibility.

The spherical flame propagation is affected by the positive stretch rate of K =
2U/R. In Fig. 4 we plot the change of stretched flame speed with stretch rate. The
unstretched flame speed (U at K = 0) is shown to be independent of fuel Lewis
number for � = 0 while it decreases with LeF for � = 0.2. This is consistent with
results shown in Fig. 1. For LeF = 2.0, nonlinear change of U with K is observed
for � = 0.2 while nearly-linear behavior is shown for the irreversible case of � = 0.
Therefore, reaction reversibility promotes the nonlinear effects of stretch on spherical
flame propagation for large fuel Lewis number, which is an important issue in spherical
flame method measuring the laminar flame speed and Markstein length [36,37].
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(a)

(b)

Fig. 2 Change of (a) flame propagation speed and (b) flame temperature with flame radius at different fuel
Lewis numbers and reaction reversibility

For weakly stretched spherical flames, there is a linear relationship between the
stretched flame speed, U , and stretch rate, K

U = U 0 − L · K (11)

where U 0 is the flame speed at zero stretch rate and L is the Markstein length (which is
normalized by flame thickness). Therefore, the Markstein length is equal to the slope
of the U − K curve at K →0 in Fig. 4. Linear extrapolation is conducted to obtain the
Markstein length and the results are plotted in Fig. 5. Figure 5a shows the dependence
of Markstein length, L , on fuel Lewis number, LeF , at � = 0 and � = 0.2. Compared
to the irreversible case (� = 0), the positive Markstein length becomes larger while
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Fig. 3 Change of (a) flame ball radius and (b) flame ball temperature with fuel Lewis number

Fig. 4 Change of flame propagation speed with stretch rate at different fuel Lewis numbers and reaction
reversibility

the negative one becomes smaller for the reversible case of � = 0.2. Therefore, the
absolute value of Markstein length is enlarged by the reverse reaction, indicating that
the influence of external stretching becomes stronger when the reverse reaction is
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(a)

(b)

Fig. 5 Change of Markstein number with (a) fuel Lewis number and (b) reaction reversibility

considered. This is due to the facts that the endothermic reverse reaction makes the
flame weaker and weaker flame is more sensitive to stretch rate [34]. The influence
of reversible reaction is similar to that of radiative loss which also weakens the flame
and increases the absolute value of Markstein length [38].

Figure 5b further demonstrates that with the increase of reaction reversibility, the
absolute value of Markstein length increases and thereby the flame is more sensitive
to the stretch rate. Both Fig. 5a, b shows that the influence of reaction reversibility
on Markstein length is negligible for mixtures with Lewis number close to unity, and
that the Markstein length is greatly affected by reaction reversibility for mixtures with
Lewis number appreciably different from unity. Similar behavior was also observed
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Fig. 6 Change of flame propagation speed with flame radius at different ignition powers for LeF = 1.0
(solid lines, � = 0; dash-dotted lines, � = 0.2)

for the influence of radiative loss on Markstein length [38]. It is noted that though
the influence of reaction reversibility on stretched counterflow flame was examined in
[33], the dependence of Markstein length on reaction reversibility was not discussed
therein. Besides, an explicit expression was derived for Markstein length that depends
on heat loss intensity [38]. However, due to the strongly nonlinearity in Eqs. (4–6),
here we cannot obtain an expression for Markstein length as a function of reaction
reversibility in the limit of large flame radius. Nevertheless, Eqs. (4–6) can be readily
solved numerically so that the Markstein length can be obtained at any value of reaction
reversibility.

3.2 Effects of reaction reversibility on critical ignition condition

We now turn to the influence of reaction reversibility on spherical flame initiation. We
consider the case with ignition power deposition at the center (i.e. Q > 0) and study
the ignition kernel propagation with and without the reverse reaction.

The propagation speed of ignition kernel as a function of flame radius at different
ignition powers and reaction reversibility are shown in Figs. 6 and 7 for LeF = 1.0 and
LeF = 2.0, respectively. Figure 6 compares the results with and without the reversible
reaction (solid lines, � = 0; dash-dotted lines, � = 0.2). When there is no ignition
power deposition at the center (i.e. Q = 0), the results are the same as those in Fig. 2a
and the outwardly propagating spherical flame only exists when its radius is larger
than the flame ball radius (RZ = 1 for � = 0 and RZ = 1.47 for � = 0.2). When
a small external power is deposited at the center (lines 2 and 5 in Fig. 6), there exist
two branches of solutions: the original traveling flame branch on the right and a new
ignition kernel branch on the left. Consequently, there are two flame ball solutions
whose radii are denoted by R−Z and R+Z . The difference, R+Z − R−Z , decreases with the
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(a)

(b)

Fig. 7 Change of flame propagation speed with flame radius at different ignition powers for LeF = 2.0:
(a), � = 0; (b), � = 0.2

ignition power. When the external power is larger than the minimum ignition power,
the left ignition kernel branch merges with the right traveling flame branch and no
flame ball solution exists, indicating that successful ignition is achieved [4,11,16].
Therefore, the minimum ignition power, denoted by QC , is reached when R+Z = R−Z
which is called the critical ignition radius (denoted by RC ) [11]. For the irreversible
case of � = 0, we have QC = 0.062 and RC = 0.36. When the reverse reaction
is considered (� = 0.2), the critical ignition conditions become QC = 0.085 and
RC = 0.56. Therefore, the minimum ignition power and critical ignition radius are
both greatly increased by the reverse reaction.

Figure 7 shows the results for LeF = 2.0. For Q = 0, a C-shaped U–R branch is
observed (line 1 in Fig. 7). When the ignition power is introduced (lines 2 in Fig. 7),
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Fig. 8 Change of upper and lower critical flame radii and flame ball radii with ignition power for LeF = 2.0

an ignition-kernel branch appears on the left with a turning point corresponding to
the maximum possible flame radius. The radii at the left and right turning points are
respectively defined as the lower and upper critical flame radii, which are denoted
by R−C and R+C . Unlike the case of LeF = 1.0 for which critical ignition occurs
when R−Z = R+Z , the critical ignition condition for LeF = 2.0 is reached when
R−C = R+C . This is because the ignition process is greatly affected by the fuel Lewis
number (see more details in Ref. [11]). Comparison between Figs. 7a, b indicates that
reaction reversibility does not qualitatively affect the ignition process. Nevertheless,
the minimum ignition power and critical ignition radius are both enlarged by the reverse
reaction. This is further demonstrated in Fig. 8 which shows the change of lower and
upper critical flame radii as well as the flame ball radius with the ignition power. The
minimum ignition power is reached when R+C = R−C and is denoted by the dashed
line in Fig. 8. According to the values shown in Fig. 8, the minimum ignition power
and critical ignition radius are respectively increased by 20 and 48 % after changing
the reversibility parameter from � = 0 to � = 0.2. As mentioned before, the present
results on ignition reduce to those in previous studies [4,11,16] when the reversibility
parameter is zero (� = 0).

Figure 9a compares the critical ignition conditions for � = 0.2 with those for
� = 0 in a broad range of fuel Lewis number, 0.5 ≤ LeF ≤ 2.0. The minimum
ignition power is shown to be increased by 20–50 % and the critical ignition radius by
40–70 % after changing the reversibility parameter from � = 0 to � = 0.2. Moreover,
the normalized minimum ignition power and critical ignition radius are both shown
to decrease with fuel Lewis number. This is due to the facts that the temperature of
stretched spherical flame decreases with fuel Lewis number (see Fig. 2) and that the
reaction reversibility increases with temperature. This trend is opposite to that for
heat loss: when heat loss is considered, the normalized minimum ignition power and
critical ignition radius both increase with fuel Lewis number (see Fig. 11 in Ref. [10]).
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(a)

(b)

Fig. 9 Change of normalized minimum ignition power and critical ignition radius with (a) fuel Lewis
number and (b) reaction reversibility

Figure 9b shows the change of the normalized minimum ignition power and critical
ignition radius with the reaction reversibility for LeF = 1.0 and LeF = 2.0. It is
observed that both QC and RC increase monotonically with the reversibility parameter
� and that the influence of reaction reversibility for LeF = 1.0 is greater than that for
LeF = 2.0, which is consistent with results in Fig. 9a.

4 Conclusions

A theoretical model for spherical flame initiation and propagation with a single
reversible reaction is developed in this study. The present model extends previous stud-
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ies [7,10] on spherical flame initiation and propagation beyond the traditional frame-
work of one-step irreversible reaction. Large-activation-energy asymptotic analysis is
conducted and analytical correlations describing spherical flame initiation and propa-
gation are derived. Based on these correlations, the effects of reaction reversibility on
propagating spherical flame, flame ball, and critical ignition condition are assessed. It
is found that the spherical flame propagation speed is reduced while the absolute value
of Markstein length is enlarged by the reaction reversibility. Therefore, the influence
of external stretching on stretched flame speed becomes stronger when the reverse
reaction is considered and this is similar to the effects of heat loss. For the ignition
process, the reaction reversibility does not qualitatively affect the development of igni-
tion kernel. Nevertheless, the minimum ignition power and critical ignition radius are
both enlarged by the reverse reaction. Furthermore, unlike that of heat loss, the influ-
ence of reversibility parameter on minimum ignition power and critical ignition radius
is found to decrease with fuel Lewis number. This is because when the fuel Lewis
number increases, the flame temperature of positively stretched flame decreases and
so does the reaction reversibility.
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