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A new correlated dynamic adaptive chemistry (CO-DAC) method is developed and integrated with the
hybrid multi-timescale (HMTS) method for computationally efficient modeling of ignition and unsteady
flame propagation of real jet fuel surrogate mixtures with a detailed and comprehensively reduced
kinetic mechanism. A concept of correlated dynamic adaptive chemistry (CO-DAC) method in both time
and space coordinates is proposed by using a few key phase parameters which govern the low, interme-
diate, and high temperature chemistry, respectively. Correlated reduced mechanisms in time and space
are generated dynamically on the fly from the detailed kinetic mechanism by specifying thresholds of
phase parameters of correlation and using the multi-generation path flux analysis (PFA) method. The
advantages of the CO-DAC methods are that it not only provides the flexibility and accuracy of kinetic
model and chemistry integration but also avoids redundant model reduction in time and space when
the chemistry is frequently correlated in phase space. To further increase the computational efficiency
in chemistry integration, the hybrid multi-timescale (HMTS) method is integrated with the CO-DAC
method to solve the stiff ordinary differential equations (ODEs) of the reduced chemistry generated on
the fly by CO-DAC. The present algorithm is compared and validated against the conventional VODE sol-
ver, DAC and HMTS/DAC methods for simulating ignition and unsteady flame propagation of real jet fuel
surrogate mixtures consisting of four component fuels, n-dodecane, iso-octane, n-propyl benzene, and
1,3,5-trimethyl benzene. The results show the present HMTS/CO-DAC algorithm is not only computation-
ally efficient but also robust and accurate. Moreover, it is shown that compared to the DAC and HMTS/
DAC methods, the computation time of model reduction in CO-DAC is almost negligible even for a large
kinetic mechanism involving hundreds of species. In addition, the results show that computation effi-
ciency of CO-DAC increases from homogeneous ignition to one-dimensional flame propagation for both
the first and second generation PFA reduction. Therefore, the present HMTS/CO-DAC method can enable
high-order model reduction and achieve higher computation efficiency for multi-dimensional numerical
modeling.

Published by Elsevier Inc. on behalf of The Combustion Institute.
1. Introduction

More than 60% of energy is lost either from the exhaust gas and
heat loss in the current gasoline engines. The concerns of energy
sustainability and global warming require drastic increase of
energy conversion efficiency and reduction of emissions of internal
combustion engines. Recently, tremendous efforts have been
devoted to develop more efficient and lower emission internal
combustion engines working at lower temperature combustion
and higher pressure. These advanced engines include the homoge-
neous charge compression ignition (HCCI), the partially premixed
compression ignition (PPCI), the reactivity controlled compression
ignition (RCCI) engines, and the next generation TAPS engine [1–3].
However, control of fuel injection time, ignition timing, and heat
release rates at different engine loads requires advanced under-
standing of turbulence-chemistry coupling, especially from low
temperature (700 K) to intermediate temperature range (1100 K).
Unfortunately, modeling of turbulence-chemistry interaction in
this temperature range of real transportation fuels need a large
kinetic mechanism including low temperature chemistry, which
involves hundreds of species and thousands of reactions. For
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example, a detailed n-heptane mechanism can have 1034 species
and 4236 reactions [4] and a recent semi-detailed kinetic model
for real jet fuel surrogate mixture has more than two thousand
species and eight thousand species [5].

However, the large number of species and the stiffness of the
combustion kinetics result in a great challenge in combustion
modeling [6]. Even with the availability of supercomputing capa-
bility at petascale and beyond, numerical simulations using such
large kinetic mechanisms remain to be difficult.

In last two decades, many kinetic model reduction methods
have been developed. These methods can be divided into six cate-
gories (to the knowledge of the authors): (1) Sensitivity and reac-
tion rate analysis (SA) methods [7–9] in which the important
reactions and species are identified by perturbing each reaction
rate and unimportant reactions and species are then removed to
generate skeletal mechanisms. This method is computationally
intensive when the number of reactions is large. (2) Timescale
based dimension reduction methods such as the quasi-steady-state
approximation (QSSA) method [10], the computational singular
perturbation (CSP) method [11], the simple CSP method [45], the
intrinsic low-dimensional manifold (ILDM) method [12], and the
multi-timescale (MTS)/hybrid multi-timescale (HMTS) method
[13]. These methods can remove the stiffness in the ordinary dif-
ferential equation system governing chemical reactions by using
either QSSA, timescale splitting, or low dimensional manifold.
However, the QSSA method often depends on human experience
and is not robust and valid for all temperature and pressure condi-
tions. Moreover, CSP and ILDM methods are computationally
expensive due to the Jacobin matrix decomposition. (3) Tabulation
methods including the in-situ adaptive tabulation (ISAT) method
[14] and the piecewise reusable implementation of solution map-
ping (PRISM) method [15]. In these methods the chemistry integra-
tion is tabulated by using multi-dimensional look-up tables
instead of solving the large stiff ODE system. Although this method
is very efficient for small reaction systems, for large kinetic models
on-the-fly construction of tables and high dimensional table look-
ing will significantly reduce the computation efficiency. (4) Reac-
tion flux based reduction methods such as the visualization
method developed by Bendsten et al. [16], the Direct Relation
Graph (DRG) method [17], the DRG with error propagation
(DRGEP) method [18], and the multi-generation path flux analysis
(PFA) method with and without error control [19,20]. In these
methods, species reductions are all based on the direct or multi-
generation reaction fluxes. Thus, these methods have the advan-
tage in generating reduced mechanisms on the fly. However, for
a large kinetic mechanism of real fuels, as shown in this paper
the computation time required for flux analysis can be a big chal-
lenge. (5) Cell clustering methods which include the dynamic
multi-zone (DMZ) method [21,22], the chemistry coordinate map-
ping (CCM) method [23,24], the cell agglomeration (CA) method
[25], and unsupervised high-dimensional clustering (UHDC)
method [26]. Recently, FLUENT [53] also combined cell agglomer-
ation method and DRG method to do the DRG reduction on top of
cell agglomeration. In these methods, instead of reducing the
chemical kinetics, the integration of chemistry is reduced by com-
putationally mapping the cells with similar conditions. However,
due to the nonlinear dependence of the intermediate species on
parametric space, especially at low temperature, the uncertainty
of backward cell mapping can be very large and sometimes is dif-
ficult to predict. (6) Adaptive chemistry (AC) methods developed
by Green et al. [27], Peter et al. [28], Najm et al. [29] and Banerjee
and Ierapetritou [30]. In these adaptive chemistry methods, the
reduced sub-mechanisms valid for different thermochemical con-
ditions that may be encountered in a reacting flow simulation
are pre-generated and stored in a library. During the calculation,
the algorithm will search for the library and select the appropriate
sub-mechanism based on the local conditions. A difficulty of these
AC methods is that it is hard to guarantee the sub-mechanisms
contained in the pre-generated library can cover all the possible
conditions in a complex reacting flow. Recently, to further increase
the efficiency of model reduction, algorithms using a few combina-
tions of the above methods to reduce chemical reactions on the fly
and obtain the dynamic adaptive chemistry (DAC) are developed
by Liang et al. [31,32], Lu et al. [33] and Gou et al. [34] with HMTS
and the ordinary differential equation solver VODE [35].

Unfortunately, when a kinetic mechanism is very large, the DRG
or PFA based DAC method becomes computationally expensive.
Moreover, due to the increase of computation time of DAC for a
large mechanism, the current DAC method makes it difficult to
implement a higher-order path flux based model reduction
method and may lead to larger reduced mechanisms for a given
accuracy threshold [20]. On the other hand, the VODE method,
which contains Jacobin matrix decomposition to solve the chemi-
cal reactions in the DAC methods, is also computationally expen-
sive. The computation time by the VODE method is proportional
to the cubic of number of species.

The goal of this paper is to develop and validate a correlated
dynamic adaptive chemistry (CO-DAC) method integrated with
the multi-timescale algorithm to take advantages of the similarity
of kinetic mechanisms in both time and space domains in a large
reaction system to dramatically increase the efficiency of model
reduction and to retain the high accuracy of chemistry integration.
At first, a concept of correlated kinetic mechanism is proposed by
using temperature, equivalence ratio, and a few key intermediate
species and radicals for both low and high temperature fuel oxida-
tion. A correlated model reduction in time and space coordinates is
conducted on the fly by using the multi-generation PFA method,
which enables both first and second order accuracy of species
fluxes. To further increase the computation efficiency, the
mechanism generated by CO-DAC is integrated by using the hybrid
multi-timescale (HMTS) method [13]. The present HMTS/CO-DAC
method is validated and compared to VODE, VODE/DAC, HMTS,
and HMTS/DAC methods in computations of ignition and unsteady
flame propagation of a real jet fuel surrogate mixture with a
comprehensively reduced large kinetic mechanism. Finally, the
computation accuracy and efficiency are examined and conclu-
sions are drawn.

2. Numerical methods

The motion and evolution of an unsteady, compressible, and
reactive flow with N species and I reactions is described by a partial
differential equation (PDE) system including mass, momentum and
energy conservations (neglect body forces):

q
DYn

Dt
¼ �r � qYnVnð Þ þxn; ðn ¼ 1; . . . ;NÞ ð1Þ

q
DU
Dt
¼ �r � r ð2Þ

qCp
DT
Dt
¼ DP

Dt
þr � krTð Þ � qrT �

XN

n¼1

Cp;nYnVn �
XN

n¼1

hnxn ð3Þ

where q is the density of the mixture; t is time; Yn, Vn and xn are
the mass fraction, diffusion velocity and reaction rate of the n-th
species, respectively; U is the flow velocity; r is the second order
stress tensor; Cp is the specific heat at constant pressure; T is the
temperature; P is the thermodynamic pressure; k is the thermal
conductivity; Cp,n and hn are the specific heat at constant pressure
and specific enthalpy of the n-th species.

By using the splitting fractional-step procedure [36], the PDE
system is decoupled to chemical reaction source terms which are
described by a first-order ordinary differential equation (ODE)



Fig. 1a. Schematic of time and space correlation. Black cells are time correlation
and red, blue and green cells are space correlation groups. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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system, and transport terms which include unsteady, convection
and diffusion terms and described by a second order PDE system
of an unreactive flow. In the first fractional step, only the ODE sys-
tem governing chemical reactions are integrated. The thermody-
namic state variables after solving chemical reaction terms are
used as the initial conditions in the second fractional step to solve
the transport terms.

The splitting method has been widely used in numerical simu-
lations in the combustion community [21–26] and the details of
the numerical errors of splitting method have been comprehen-
sively studied and discussed [54,55]. It has been mathematically
demonstrated that the splitting method works well when the time
step is much smaller than the timescale of diffusion. In our calcu-
lation, the time step is limited by the chemical time scale as well as
the restriction of the CFL number at the minimum grid size, so the
minimal time step is below 10�8 s. This time step is much smaller
than the diffusion timescale and the error caused by the splitting
scheme is negligible.

The ODE system in the first fractional step is:

dYn

dt
¼ xn

q
; ðn ¼ 1; . . . ;NÞ ð4Þ

dT
dt
¼ � 1

qCp

XN

n¼1

hnxn ð5Þ

Thus, the dimension of this ODE system is N + 1. The computation
time to integrate this ODE system is strongly dependent on the total
species number, N, and the methods to find the appropriate reduced
mechanisms computationally efficiently. The goal of the CO-DAC
method is to generate correlated reduced mechanisms on the fly
to decrease the number of species, i.e. the dimension of the ODE
system, and to increase the efficiency to generate the reduced
mechanism.

2.1. Correlated dynamic adaptive chemistry method

As stated above, the computation time to integrate the ODE sys-
tem depends on N. For different ODE solvers, if the total number of
computation steps is Nt and the total grid number is Ng, the time of
chemistry integration can be given as,

tint / NaNtNg ð6aÞ

where a is between 1 and 3. For a large reaction system, the number
of species, N, can be a very large numbers. Therefore, it is critical to
reduce the reaction system on the fly so that a smaller N can be gen-
erated at different time steps and grid points.

To generate a reduced kinetic mechanism on the fly, the reac-
tion flux analysis (e.g. DRG and PFA) based DAC methods [33,34]
are often used. In this method the total computation time to gen-
erate the DAC on the fly is proportional to

tDAC / Nm
d IdNtNg ; ð6bÞ

where m is between 1 and 2. Nd and Id are the total numbers of spe-
cies and reactions of the starting mechanism and normally Nd is
much greater than N. Therefore, for a large reaction system, it is
possible that the time of DAC can be much greater than that of
integration:

tDAC > tint; ð7Þ

especially when a high-order model reduction approach is
employed. In this case, the DAC method will be very computation-
ally inefficient to be used in numerical simulation.

It is well known that for a given fuel mixtures, the chemical
kinetics of each grid depends on temperature, pressure, and equiv-
alence ratio. In an unsteady, multi-dimensional reaction system,
the similar thermodynamics conditions may occur or repeat at dif-
ferent time and space coordinates frequently. If a computationally
efficient chemistry integrator (e.g. HMTS), in which a is close to
unity, is used, it is not necessary to generate a reduced mechanism
on the fly at every time step and every grid point. Instead, only a
few correlated reduced mechanisms are needed to be generated
at different thermodynamic conditions and these reduced mecha-
nisms can be reused if the local thermodynamic parameters are
correlated. As such, the total computation time required for CO-
DAC will be reduced to,

tCO-DAC / Nm
d IdðetNtÞðegNgÞ ð8Þ

where the et and eg are small numbers. If this can be done, from the
above equations Eqs. (6) and (8) the CO-DAC method will be more
efficient for multi-dimensional direct numerical simulations for a
large reaction system.

Therefore, the basic idea of the CO-DAC method is schematically
shown in Fig. 1a. The local reaction systems are represented by
using a set of phase parameters to define the correlations between
different local grids in time and space. The reduced mechanism is
firstly generated on the fly based on the local phase parameter on
one grid. Correlation thresholds for the local phase parameters are
defined to represent the similarity in chemistry. If the phase
parameters of the current computation grid are correlated to a dif-
ferent grid at the same computational time step (i.e. space correla-
tion) or to the same grid at the previous time-step (i.e. time
correlation) at which a reduced kinetic mechanism has been gen-
erated, then the same reduced mechanism will be reused for time
integration of the current grid. Otherwise, if neither time nor space
correlation is found, a new reduced mechanism will be generated
and the phase parameters and the associated active species will
be stored. If the above process repeats, less and less on the fly
model reduction is needed due to the increase of time and space
correlations. As a result, the validity of Eq. (8) will be realized.

The success of CO-DAC depends on the definition of the phase
parameters. In order to construct an appropriate phase space, we
need to understand which species are important and govern the
reaction processes in low, intermediate, and high temperature,
respectively. First, due to the Arrhenius law, temperature is always
a dominant factor in a chemical reaction system. Second, the radial
pool is strongly affected by the fuel and oxygen concentrations or
the equivalence ratio. Third, at the same temperature and
equivalence ratio, the concentrations of a few key intermediate
species and radicals govern the ignition transition from low tem-
perature to intermediate temperature, and from intermediate tem-
perature to high temperature. The typical reaction pathways of a
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conventional hydrocarbon fuel with low temperature chemistry
are shown in Fig. 1b. The reaction pathway clearly shows that
CH2O and HO2 are the key species dominate the low temperature
chemistry, and OH is an important radical in the entire tempera-
ture range. In fact, a recent study shows that the low temperature
ignition of various jet fuel surrogate mixture can be correlated to
OH and HO2 concentrations [47]. Therefore, we choose tempera-
ture and the mass fractions of fuel, OH, CH2O and HO2 as the key
phase parameters to construct the correlated reaction
mechanisms.

The correlated kinetic mechanisms in time and space can be
identified by using a set of user specified threshold values for the
phase parameters, e ¼ ðeT ; eFuel; eOH; eCH2O; eHO2 Þ

T . In the phase
parameters fall within the variation of the phase thresholds, the
local kinetic mechanism will be correlated and the same reduced
mechanism will be reused.

The time correlation will be examined and applied firstly: we
compare the local thermodynamic conditions between time step
n and time step n + 1 in each cells and define the variation between
two steps as,

D ¼ Tnþ1 � Tnj j
eT

;
ln YFuel;nþ1 � ln YFuel;n

�� ��
eFuel

;
ln YOH;nþ1 � ln YOH;n

�� ��
eOH

;

�

ln YCH2O;nþ1 � ln YCH2O;n

�� ��
eCH2O

;
ln YHO2 ;nþ1 � ln YHO2 ;n

�� ��
eHO2

�
ð9aÞ

If jDj jj1 < 1, the local chemistry is correlated and we can simply
pass the reduced mechanism at time step n to time step n + 1. For
the rest of cells, we introduce the space correlation. The total
number of correlated reaction groups in spatial coordinate,

M ¼ MT ;MFuel;MOH;MCH2O;MHO2

� �T , and the group index of the i-th

cell, mi ¼ mi
T ;m

i
Fuel;m

i
OH;m

i
CH2O;m

i
HO2

� �T
, can be obtained as,

MT ¼
Tmax � Tmin

eT
þ 1; Mj ¼

ln Ymax
j � ln Ymin

j

ej
þ 1 ð9bÞ

mi
T ¼

Ti � Tmin

eT
þ 1; mi

j ¼
ln Yi

j � ln Ymin
j

ej
þ 1 ð9cÞ

where j = Fuel, OH, CH2O and HO2, respectively.
The threshold values used in this paper are: 20 K for eT and 0.05

for ej. Based on the sensitivity tests, the most sensitive threshold
value is eT. When the threshold values located in the reasonable
range, i.e. eT < 50 and ej < 0.2, the change of computational accuracy
Fig. 1b. The typical reaction pathways of a conventional hydrocarbon fuel at
different temperature range [46].
is negligible. After the grid points are agglomerated to correlated
groups in the phase space, the multi-generation path flux analysis
(PFA) method [19] is applied to conduct the chemical reduction for
each group.

Comparing with the cell clustering methods [21–26], which
map the computation cells from physical domain into phase space
with a few thermodynamic variables, the differences and advanta-
ges of the proposed CO-DAC method are: (1) in the CO-DAC
method, we identify cells which have correlated similarity in
chemistry pathways in phase space to obtain reduced chemical
mechanisms instead of doing numerical extrapolation of the chem-
istry solution like that in the cell clustering method. The following
ODE integrations in CO-DAC method are conducted accurately at
each cells in physical space based on the local reduced mechanism.
The species number in the reduced mechanism is much larger than
the parameters in phase space and all the important reaction path-
ways related to the phase species are included and integrated by
HMTS method accurately. Therefore, the CO-DAC method avoids
the backward mapping errors in cell clustering methods and guar-
antees the conservation of mass and energy. (2) In the CO-DAC
method, the phase parameters (T, Fuel, CH2O, HO2 and OH) cover
the low temperature chemistry by the intermediate species and
radicals of CH2O, HO2 and OH. While in the cell clustering methods,
their phase parameters do not involve the key radicals and inter-
mediate species at low temperature region [23]. The cell clustering
method may work reasonably for high temperature flames of
simple fuels. However, it will become problematic when low
temperature chemistry is involved because the solution can be
non-monotonic and multi-valued, and thus cannot be simply
extrapolated linearly or nonlinearly. So the proposed CO-DAC
method can avoid the difficulty of nonlinear extrapolation by
directly solving the reduced chemistry using a faster HMTS solver.
Therefore, the results are accurate and the method is much more
comprehensive.

Comparing with the ISAT method [14], which does the storage
and retrieval during the calculation and gets the integration solu-
tions by looking up a table and conducting linear interpolation,
the CO-DAC method just simply passes the on the fly reduced
mechanism in phase space to the physical domain and the rest of
the ODE integrations are locally and independently conducted by
the HMTS method. Therefore, the advantages of the CO-DAC
method are: (1) more accurate and no CPU time required to create
the store, (2) no memory required for the store, (3) no interpolation
error in the retrieval mapping, and (4) no CPU time required
retrieving the mapping.

The differences between the cell agglomeration methods, the
ISAT method and the proposed CO-DAC method are summarized
as Fig. 1c. Moreover, the main purpose of the CO-DAC method is
Fig. 1c. Schematic of the differences between cell clustering method, ISAT method
and the proposed CO-DAC method.
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to provide an efficient, flexible, and robust way to do the chemical
reduction on the fly and to generate local reduced mechanisms. It
can be integrated with any fast ODE solvers such as HMTS method.

2.2. Multi-generation path flux analysis method

The multi-generation PFA method can identify important spe-
cies and reaction pathways based on multi-generation production
and consumption fluxes, and remove trivial species and reactions
below the flux threshold. For example, for species A, the overall
production and consumption fluxes, PA and CA can be expressed
as [19]:

PA ¼
X
i¼1;I

maxðmA;ixi;0Þ

CA ¼
X
i¼1;I

maxð�mA;ixi;0Þ
ð10aÞ

where mA,i is the stoichiometric coefficient of species A in the i-th
reaction, xi is the net reaction rate of reaction i. I is the total num-
ber of reactions. The first generation production and consumption
fluxes between species A and B, PAB, CAB, are:

PAB ¼
X
i¼1;I

maxðmA;ixid
i
B;0Þ

CAB ¼
X
i¼1;I

maxð�mA;ixid
i
B;0Þ

ð10bÞ

where di
B is unity if species B is involved in i-th reaction and 0

otherwise.
Then, we use the maximal production or consumption flux to

normalize PAB and CAB and obtain the first generation flux ratios
for production and consumption of species A via species B:

rpro�1st
AB ¼ PAB

maxðPA;CAÞ
;

rcon�1st
AB ¼ CAB

maxðPA;CAÞ

ð11aÞ

Similarly, the second generation flux ratios between A and B via
a intermediate species Mi are:

rpro�2nd
AB ¼

X
i¼1;I

PAMi

maxðPA;CAÞ
� PMiB

maxðPMi
; CMi
Þ

	 


rcon�2nd
AB ¼

X
i¼1;I

CAMi

maxðPA;CAÞ
� CMiB

maxðPMi
; CMi
Þ

	 
 ð11bÞ

The PFA calculation starts from a preselect list of important spe-
cies and flags all the species related to the preselect species. If the
summations of their flux ratios rpro�1st

AB , rcon�1st
AB , rpro�2nd

AB and rcon�2nd
AB

are greater than a user specified threshold value, er, they will be
add to the selected list. Then, the PFA program will start from
the selected list and do the subsequent iterations, until there is
no new species added into the selected list. Finally, the local
reduced mechanism can be constructed by the species contained
in the selected list. Unless specified, the threshold value er used
in this paper for PFA reduction is 0.005.

2.3. Hybrid multi-timescale method

The hybrid multi-timescale (HMTS) method is used to integrate
the ODE system based on the local reduced mechanisms from CO-
DAC method. In the conventional Euler method, ODE equations are
integrated explicitly by using a single time step smaller than the
minimum characteristic time of all species. However, the multi-
timescale nature of chemical reactions introduces a strong stiffness
to the ODE system. The computation efficiency of the conventional
Euler method is very low due to the strong constraint in time step.
In the HMTS method, unlike the conventional Euler method, the
species equations are integrated with their own characteristic
times. The timescale of n-th species, sn, is estimated as [13]:

sn ¼ �
@

@Yn

dYn

dt

� �	 
�1

¼ @Dn

@Yn

� ��1

ð12Þ

where Yn and Dn are the mass fraction and the destruction rate of n-
th species, respectively. In the HMTS calculation, all the species are
grouped into integration groups based on their own timescales. By
defining each neighboring group has a difference of timescale in
one-order, the group index of the n-th species, Gn can be obtained
as:

Gn ¼ log10
tbase

sn

� �� �
þ 1 ð13Þ

where tbase is the base time step in DNS calculations.
With the definitions of the timescale and group index, all the

groups are integrated separately based on their own timescale.
Moreover, if we are not interested in the detailed history of the fast
modes, we can apply implicit Euler method to further increase the
integration efficiency. This HMTS method has been demonstrated
to be more efficient than the VODE solver [13].

2.4. Kinetic model and fuel mixtures

The goal of this paper is to develop a CO-DAC method integrated
with HMTS to achieve improved computational efficiency and rig-
orous combustion modeling with large chemical kinetics. The Real
Fuel 2 mechanism developed at Princeton by Won et al. [5], which
is a kinetic model for a real jet fuel surrogate consisting of four
component fuels (40% n-dodecane, 30% iso-octane, 23% n-propyl
benzene, and 7% 1,3,5-trimethyl by mole fraction), is used to vali-
date the integrated HMTS/CO-DAC method. Both the detailed Real
Fuel 2 mechanism [5] (2051 species and 8428 reactions) and the
comprehensively reduced one (425 species and 2275 reactions)
are employed in the calculation to test the performance of
HMTS/CO-DAC method when the sizes of mechanisms are in differ-
ent orders of magnitudes. Numerical simulations of homogeneous
ignition and unsteady outwardly propagating spherical flames of
jet surrogate mixtures are carried out to demonstrate the accuracy
and robustness of the proposed algorithm.

The present CO-DAC method with the HMTS solver is imple-
mented into the adaptive simulation of unsteady reactive flow
(ASURF+) code [37,38,51] to simulate compressible, unsteady
reactive flow. ASURF+ is an updated version ASURF [37] with a
higher-order numerical scheme, and is fully compatible with
CHEMKIN [39] for transport and elementary reactions and con-
ducts multi-level local grid adaption to resolve the reaction zone
and flame front. In this the simulation of propagating flames, the
base grid size is chosen as 0.5 mm and maximal grid level is 5,
which results in the minimum grid size of 15 lm. Briefly, at first,
the CO-DAC method is used to generate correlated reduced kinetic
mechanisms on each computation grid. Secondly, the HMTS or
VODE solver is used to solve the stiff ODE system based on the local
reduced mechanism generated from the CO-DAC method. Finally,
the third-order weighted essentially non-oscillatory (WENO)
scheme [40–44] and the finite volume central difference methods
are applied to discretize and integrate the PDE system involving
convection and diffusion, respectively. The ASURF and ASURF+
code have been validated extensively in our previous studies and
in collaborations with other researchers [48–51].

3. Results and discussion

In order to validate the algorithm and test its performance, the
present HMTS/CO-DAC method will be compared to VODE, VODE/
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DAC, HMTS, and HMTS/DAC methods to examine the computation
accuracy and efficiency for both detailed and comprehensively
reduced mechanisms. The homogeneous ignition of Real Fuel 2 at
different initial temperatures is modeled by the HMTS and VODE
solvers with and without CO-DAC method. To further test the effect
of computation dimension on the algorithm efficiency, calculations
of an outwardly propagating premixed spherical flame of stoichi-
ometric Real Fuel 2/air mixture with and without CO-DAC are also
carried out to validate the CO-DAC method in an unsteady flame
propagation process.

Figure 2 shows the time histories of active species number as
well as the accumulated mechanism reduction time calculated by
both CO-DAC method and DAC method during an auto ignition
process of the stoichiometric Real Fuel 2/air mixture using the
comprehensively reduced mechanism. The initial pressure is
10 atm and temperature is 800 K. This figure clearly shows that
the number of active species varies significantly at different igni-
tion stages. Initially, only about half of the total species are
involved in the reactions. However, when the first stage ignition
occurs at 1 ms, the number of active species increases rapidly
due to the low temperature chemistry. After the second stage igni-
tion, the system approaches near equilibrium state and only a few
species is active. This result demonstrates clearly that a large num-
ber of species is required to capture the detailed reaction process of
low temperature ignition. Therefore, the comprehensively pre-
reduced kinetic mechanism is not efficient because it requires a
large set of species and reactions in order to guarantee the accu-
racy of the reduced mechanism at different conditions for different
fuel mixtures. Moreover, compared with DAC method, our CO-DAC
method is more than two-orders faster in terms of the on the fly
model reduction time. Due to the time correlation, our CO-DAC
method simply passes the reduced mechanisms to correlated fol-
lowing time-steps, while the DAC method needs to do mechanism
reduction at every time steps even when the chemical equilibrium
is achieved. Therefore, the CO-DAC method is much more efficient
than the DAC method without correlation, especially in the equilib-
rium or near equilibrium region. As such, a combination of CO-DAC
method with the comprehensively reduced mechanism is a com-
putationally efficient way for direct numerical simulations.

3.1. CO-DAC with the first generation PFA reduction

In this section, the CO-DAC method only includes the first gen-
eration PFA reduction, i.e. only the first generation flux shown in
Fig. 2. Comparison of number of active species and the accumulated on-the-fly
mechanism reduction time by using CO-DAC and DAC methods in a homogeneous
ignition process with a stoichiometric Real Fuel 2/air mixture at 10 atm. The solid
line is calculated by CO-DAC method and the dash line is calculated by DAC method.
Eq. (11a) was used in the model reduction. The comparison
between the first and second generation PFA reduction will be dis-
cussed later. Figure 3(a) and (b) shows the comparison of ignition
delay time of the jet fuel surrogate mixture at 10 atm and stoichi-
ometric condition as a function of initial temperature calculated by
using HMTS and VODE methods, respectively, with and without
DAC or CO-DAC for both reduced and detailed kinetic mechanisms.
It is seen that the CO-DAC method can predict the ignition time in
both low and high temperatures and for both reduced and detailed
mechanisms very well. The maximum discrepancy of the predicted
ignition delay time in all computation conditions between CO-DAC
and the VODE methods is 2%. The small discrepancy at both low
and high pressures compared with the large thresholds in phase
space for the determination of mechanism correlation suggests
that the proposed parametric space using OH, HO2, and CH2O as
the key intermediate species to distinguish low and high tempera-
ture kinetics is very effective.

Figure 4(a) and (b) shows the comparisons of time histories of
species mass fraction profiles of CH2O, HO2 and OH radicals calcu-
lated by different methods at pressure of 10 atm, stoichiometric
condition and initial temperature of 800 K, using reduced and
detailed Real Fuel 2 mechanisms, respectively. There is a horizontal
time shift of the profiles in the high temperature ignition region.
For the calculations using the reduced mechanism, the maximal
shift happened between HMTS and HMTS/CO-DAC methods and
the value of the maximal shift is 0.021 ms. Compare with the
Fig. 3. Comparison of ignition delay times predicted by HMTS and VODE solvers
with DAC and CO-DAC at 10 atm and stoichiometric condition. (a) Reduced Real
Fuel 2/air and (b) detailed Real Fuel 2/air.



Fig. 4. Species mass fraction profiles calculated by different methods at 10 atm,
stoichiometric condition and initiated at 800 K. (a) Reduced Real Fuel 2/air and (b)
detailed Real Fuel 2/air.

Fig. 5. Mass fraction profiles of O, H and H2O2 calculated by different methods at
10 atm, stoichiometric condition and initialed at 800 K. (a) Reduced Real Fuel 2/air
and (b) detailed Real Fuel 2/air.
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average ignition delay time of all these five methods, 3.17 ms, the
relative error in time is 0.67%. Similarly, the maximal shift of the
detailed mechanism is 0.032 ms and it also happened between
HMTS and HMTS/CO-DAC method. Considering the average igni-
tion delay time, 5.46 ms, the maximal relative error in time is
0.59%. Besides the time shift, other properties calculated by differ-
ent methods are identical. The excellent agreement for both stable
species and radicals demonstrates that the accuracy of CO-DAC
method is good enough to provide correlated reduced mechanism
in a large range of temperature. Also the agreement in the two-
stage ignition profile demonstrates the CO-DAC method has the
capability to capture low temperature chemistry accurately.

In order to further demonstrate the accuracy of the CO-DAC
method, the profiles of peroxides (C12H25O2) and H2O2 radicals at
10 atmosphere pressure, stoichiometric condition and initial tem-
perature of 800 K are plotted in Fig. 5(a) (reduced mechanism)
and Fig. 5(b) (detailed mechanism). They show that besides the
phase parameters CH2O, HO2 and OH, other radicals can also be
predicted accurately by the CO-DAC method. Therefore, the local
reduced mechanisms generated in the 5-dimensional phase space
(T, Fuel, CH2O, HO2 and OH) can capture the important reaction
pathways and predict the ignition properties accurately.

Figure 6 show the CPU time comparison for the homogeneous
ignition between the VODE and HMTS methods with and without
DAC or CO-DAC. Again (6a) is the result of the comprehensively
reduced mechanism for the real fuel surrogate mixture and (6b)
is the result of detailed mechanism. To demonstrate the increase
of computation efficiency compared to the VODE method, the
CPU time is normalized by that of VODE without DAC for different
initial temperatures at 10 atm and stoichiometric condition. It is
seen that the integration of DAC with the VODE can improve com-
putation efficiency by 40–90%. However, the DAC method is not
computationally efficient when it is integrated with HMTS. Figure
6 shows that DAC method even increases the computation time if
integrated with HMTS. The cause of the computation time increase
with DAC was discussed in Eqs. (6a), (6b) and (7). The reason is that
HMTS is much more computationally efficient than the VODE sol-
ver, so the computation time for DAC method to do chemical
reduction on-the-fly becomes comparable to or even longer than
the chemistry integration time by the HMTS, thus offsetting the
benefit of the generation of locally reduced kinetic mechanism.
Fig. 6 also demonstrate that by using the CO-DAC method in the
HMTS method, the PFA model reduction time is dramatically
reduced and the resulting HMTS/CO-DAC method can increase
computational efficiency by an additional factor of 2 in a broad
temperature range.

Since the parameters chosen for the determination of
mechanism correlation is a strong function of temperature, inter-
mediate species, and radical pool. Different from ignition, flames
have much different species distributions, radial pool, and reaction
pathways. To prove the applicability of the CO-DAC method in a
broad ignition and flame regimes, it needs to be tested in both
unsteady and steady flame propagation. The unsteady, outwardly



Fig. 6. CPU time comparison between HMTS and VODE solvers with and without
DAC or CO-DAC at 10 atm and stoichiometric condition. (a) Reduced Real Fuel 2/air
and (b) detailed Real Fuel 2/air.

Fig. 7. Flame trajectories of stoichiometric reduced Real Fuel 2/air mixture at 1 atm
and 400 K.

Fig. 8. Flame structure of stoichiometric reduced Real Fuel 2/air mixture at 1 atm
and 400 K.

1 For interpretation of color in Fig. 9, the reader is referred to the web version o
this article.
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propagating spherical flames serve for both validation purpose of
unsteady and quasi-steady flame structures and propagation
speed. Figure 7 shows the time-dependent outwardly propagating
spherical flame trajectories calculated by HMTS and VODE with
and without DAC or CO-DAC. Here, only the comprehensively
reduced kinetic mechanism of the real fuel surrogate mixture with
425 species is used. Stoichiometric fuel/air mixture at 1 atm and
400 K is considered. The mixture is ignited at the center by a hot
spot with uniform temperature of 1600 K in a spherical region of
2 mm in radius. Again, it is seen from Fig. 7 that the present CO-
DAC method shows excellent agreement compared with other
methods even when the transport terms are involved. The largest
relative error in flame trajectory is less than 2%, which is far below
the experimental accuracy of flame speed measurements [52].

Figure 8 shows the predicted flame structure of the spherical
flame. The distributions of temperature and selected species calcu-
lated by different methods are compared. It is seen that even for
the detailed structures of the flame, the CO-DAC method is still
accurate and robust for both unsteady and quasi-steady flame
propagation.

Figure 9 is the comparison of the CPU times of the premixed
spherical flame propagation calculated by HMTS and VODE with
and without DAC or CO-DAC. Only 1st generation PFA reduction is
involved to generate local reduced mechanisms. The black section
represents the CPU time used for transport properties, diffusion,
and convection. The summation of the red1 and blue sections is
the total computation time to solve the chemical reaction, including
the PFA reduction time (red) and chemistry integration (blue). This
figure clearly shows that compared to DAC method, the CO-DAC
method can dramatically decrease the on the fly model reduction
time and makes it almost negligible even for a large kinetic mecha-
nism involving several hundreds of species. It is interesting to note
that by using the CO-DAC method integrated with HMTS solver, the
integration of chemical reactions for a large mechanism is no longer
the most time consuming part in computation. Instead, the computa-
tion of the transport and convection is now the major cost of the com-
putation time. It should be noted that as discussed in Eq. (8), the CO-
DAC method will be more effective when multi-dimensional CFD
computation is implemented because the time required for CO-DAC
for the multi-dimensional CFD is similar to one-dimensional due to
the increase of mechanism similarity in multi-dimensional computa-
tion domain. This advantage may allow us to use higher-order model
reduction method such as the multi-generation PFA method [19]. As
such, the CO-DAC method coupled with HMTS solver can significantly
increase computational efficiency.
3.2. CO-DAC with the second generation PFA reduction

The above first generation PFA reduction results show that the
CPU time for PFA reduction in the CO-DAC method is negligible.
f



Fig. 9. CPU time comparison between HMTS and VODE method with and without
DAC or CO-DAC of the 1D flame propagation case with stoichiometric reduced Real
Fuel 2/air mixture at 1 atm and 400 K.
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So the CO-DAC method may have capability to enable higher-order
PFA model reduction. In this section, the second generation PFA
reduction is utilized and examined with CO-DAC method, i.e. the
second generation flux in Eq. (11b) is included. Compared with
the first generation reduction shown in Eq. (11b) which calculate
the path flux between species A and B directly, the second genera-
tion reduction needs to search all the species in the mechanism as
the intermediate species to get the path flux between A and B.
Therefore, the second generation reduction should be N times
slower than the first generation reduction, where N is the number
of species in a mechanism.

In order to test the performance of the CO-DAC method with the
second generation reduction, the same reduced Real Fuel 2 mech-
anism [5] with 425 species and 2275 reactions is applied in the
computation. The comparison between CO-DAC method with 1st
and 2nd generation reduction are conducted in both homogeneous
auto-ignition and unsteady flame propagation calculations.

The dash lines in Figs. 3(a) and 7 are the ignition delay time and
flame trajectory, respectively, calculated by CO-DAC method with
the 2nd generation PFA reduction. The difference between 1st
and 2nd generation reduction is too small to be noticed. The reason
for such a trivial discrepancy is that the threshold value which was
used for the PFA reduction is very small (0.005). With such a small
threshold value, both 1st and 2nd generation PFA reduction
methods are equally accurate.
Fig. 10. Comparison of ignition delay time and PFA reduction time between CO-
DAC method with 1st and 2nd generation PFA reduction for different threshold
values calculated at 10 atm, stoichiometric condition, and initiated at 800 K.
Figure 10 shows the ignition delay time as well as the PFA
reduction time as the function of threshold value calculated at
800 K, 10 atm and stoichiometric condition. Both ignition delay
time and PFA reduction time are plotted in logarithm coordinate.
It is seen that both the 1st and 2nd generation PFA reduction are
accurate when the threshold value is small. When the threshold
value increases, the ignition times of the PFA reduced mechanisms
deviate from the exact value, but the error of the 2nd generation
PFA reduction is always smaller than that of the 1st generation
PFA reduction. On the other hand, the computation time ratio of
the 2nd generation reduction to the 1st generation reduction only
slightly decreases with the increase of threshold value. The
increase of the computation time by the 2nd generation of PFA is
close to the number of species (425). This figure demonstrates that
the 2nd generation reduction is more accurate than the 1st gener-
ation reduction, especially when the threshold value is large. How-
ever, the 2nd generation PFA is N times slower than the 1st
generation PFA reduction, as mentioned earlier. Therefore, for a
large reaction system and low dimensional simulation, the 1st
generation PFA reduction with a small threshold value is more
computationally efficient.

Figure 11 is the computation time comparison between CO-DAC
method with 1st and 2nd generation PFA reduction in a spherical
flame propagation calculation initiated by a hot spot with uniform
temperature of 1600 K in a spherical region of 2 mm in radius. It is
seen that the HMTS times in two calculations are comparable due
to the similar active species. However, the PFA time of the 2nd
generation reduction is 462 times more than the 1st generation
reduction. Again this number is close to the number of species
(425) in the mechanism. This result further demonstrate that the
2nd generation reduction is N times slower than the 1st generation
reduction.

However, even if the 2nd generation PFA reduction is much
slower than the 1st generation one, it may be able to be utilized
in higher dimensional simulation by taking the advantage of the
space correlation. Table 1 shows the HMTS time and 2nd
generation PFA time as well as the ratio of PFA/HMTS of the 0D
auto-ignition and 1D spherical flame propagation calculations.
The ratio of PFA reduction time to HMTS time decreases by factor
of 4 when the calculation goes from 0D to 1D. The reason of the
decrease of the PFA/HMTS ratio in a higher dimensional calculation
is that in 0D calculation, only time correlation is effective, but in 1D
calculation, not only time correlation but also space correlation are
utilized to reduce the number of chemical reduction. In higher
dimensional calculations, the space correlation will be more effi-
Fig. 11. CPU time comparison between CO-DAC method with 1st and 2nd
generation PFA reduction in a spherical flame propagation calculation of stoichi-
ometric reduced Real Fuel 2/air mixture at 1 atm and 400 K.



Table 1
Computation time comparison of HMTS, 2nd generation PFA and PFA/HMTS between
0D and 1D calculation.

0D 1D

HMTS time 13.1 min 11.7 h
2nd generation PFA time 274.0 min 61.8 h
PFA/HMTS 20.9 5.3
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cient and the PFA/HMTS ratio will further decreases. Therefore, the
2nd generation has the capability to be applied in higher dimen-
sional simulation.

4. Conclusion

A correlated dynamic adaptive chemistry (CO-DAC) method
integrated with the HMTS solver is developed by using the similar-
ity of chemistry in phase space. The results show that the CO-DAC
method can significantly increase the computational efficiency
while keeping excellent accuracy. The simulations of homogeneous
ignition of Real Fuel 2/air mixtures with different initial tempera-
tures and equivalence ratios show that the chemical reduction
time in CO-DAC method is two-order faster than that in DAC
method. In addition, the results show that in a large reaction sys-
tem DAC will increase the computation time when coupled with
an efficient HMTS solver. However, the present HMTS/CO-DAC
method can improve the efficiency of the total chemical integra-
tion by a factor of 2. Moreover, the results of unsteady flame prop-
agation demonstrate that the computation efficiency of the CO-
DAC method is further increased for a higher dimensional compu-
tation problem. The actual computation time for the model reduc-
tion by CO-DAC becomes almost negligible. Moreover, the HMTS/
CO-DAC method is also more efficient and can accurately predict
the flame speeds, structure, and distributions of radicals in flames.
Furthermore, comparison between the 1st and the 2nd generation
PFA reduction shows the 2nd generation PFA has a better accuracy
but is much more computationally expensive than the 1st genera-
tion PFA. However, the increase of PFA reduction time compared to
the chemistry solver decreases rapidly from zero-dimension igni-
tion calculation to one-dimensional unsteady flame propagation
due to the space correlation. The promising results in the present
study indicate that with the proposed CO-DAC method, a large
kinetic mechanism can be efficiently handled in a multi-dimen-
sional numerical simulation and the remaining challenge is how
to accelerate calculations of transport terms. This will be addressed
in our future research.
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