Why the Inertial Matrix Takes the Current Form?

Supplementary Materials

Xun Huang
2011-2016

Only for educational purpose

Angular Momentum of a Particle

$$
\begin{aligned}
d \mathbf{h} & =(\mathbf{r} \times d m \mathbf{v})=\left(\mathbf{r} \times \mathbf{v}_{m}\right) d m \\
& =\left(\mathbf{r} \times\left(\mathbf{v}_{o}+\mathbf{\omega} \times \mathbf{r}\right)\right) d m
\end{aligned}
$$

$$
\omega=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

- Cross Product

$$
\mathbf{r} \times \mathbf{v}=\left|\begin{array}{ccc}
i & j & k \\
x & y & z \\
v_{x} & v_{y} & v_{z}
\end{array}\right|=\left(y v_{z}-z v_{y}\right) i+\left(z v_{x}-x v_{z}\right) j+\left(x v_{y}-y v_{x}\right) k
$$

Cross-Product: Equivalent Matrix

$$
\begin{aligned}
\mathbf{r} \times \mathbf{v} & =\left[\left.\begin{array}{lll}
i & j & k \\
x & y & z \\
v_{x} & v_{y} & v_{z}
\end{array} \right\rvert\,=\left(y v_{z}-z v_{y}\right) i+\left(z v_{x}-x v_{z}\right) j+\left(x v_{y}-y v_{x}\right) k\right. \\
& =\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]=\left[\begin{array}{l}
\left(y v_{z}-z v_{y}\right) \\
\left(z v_{x}-x v_{z}\right) \\
\left(x v_{y}-y v_{x}\right)
\end{array}\right]=\tilde{\mathbf{r} v}
\end{aligned}
$$

- Cross-product-equivalent matrix

$$
\tilde{\mathbf{r}}=\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right]
$$

Angular Momentum of AC

$$
\begin{aligned}
\mathbf{h} & =\int_{\text {Booby }}\left(\mathbf{r} \times \mathbf{v}_{o}\right) d m+\int_{\text {Body }}(\mathbf{r} \times(\boldsymbol{\omega} \times \mathbf{r})) d m \\
& =0-\int_{\text {Boasy }}(\mathbf{r} \times(\mathbf{r} \times \boldsymbol{\omega})) d m=-\int_{\text {Booly }}(\mathbf{r} \times \mathbf{r}) d m \times \boldsymbol{\omega} \\
& \equiv-\int_{\text {Boay }}(\tilde{\mathbf{r}}) d m \omega
\end{aligned}
$$

Q: How to prove the highlighted derivations?

The Inertia Matrix

$$
\begin{aligned}
& \mathbf{h}=-\int_{\text {Body }} \tilde{\mathbf{r}} \tilde{\mathbf{r}} \boldsymbol{\omega} d m=-\int_{\text {Body }} \tilde{\mathbf{r}} \tilde{\mathbf{r}} d m \boldsymbol{\omega}=\boldsymbol{I} \boldsymbol{\omega} \quad \omega=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \\
& \boldsymbol{I}=-\int_{\text {Body }} \tilde{\mathbf{r}} \tilde{\mathbf{r}} d m=-\int_{\text {Body }}\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right] d m \\
&=\int_{\text {Body }}\left[\begin{array}{ccc}
\left(y^{2}+z^{2}\right) & -x y & -x z \\
-x y & \left(x^{2}+z^{2}\right) & -y z \\
-x z & -y z & \left(x^{2}+y^{2}\right)
\end{array}\right] d m
\end{aligned}
$$

- where
- Inertia matrix derives from equal effect of angular rate on all particles of the aircraft

Inertia matrix

$$
\boldsymbol{I}=\int_{\text {Body }}\left[\begin{array}{ccc}
\left(y^{2}+z^{2}\right) & -x y & -x z \\
-x y & \left(x^{2}+z^{2}\right) & -y z \\
-x z & -y z & \left(x^{2}+y^{2}\right)
\end{array}\right] d m=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x x} & I_{y y} & -I_{z z} \\
-I_{x z} & -I_{y z} & I_{z z}
\end{array}\right]
$$

