
Chapter 9

Solutions to the Linear
Equations

9.1 Scalar Equations

Consider the scalar first order, linear, ordinary differential equation with
constant coefficients a and b:

ẋ = ax(t) + bu(t)

A LaPlace transformation of both sides of the equation yields

sx(s) − x(t0) = ax(s) + bu(s)

This is then solved for x(s), with t0 = 0:

x(s) = (s− a)−1x(0) + b(s− a)−1u(s)

The two parts on the right correspond to the initial condition response
and the forced response. If u(t) = 0, then we have the initial condition
response

x(s) =
1

s− a
x(0)
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The inverse transformation yields the initial condition response in the
time domain,

x(t) = eatx(0)

Clearly we require a ≤ 0 or the response will diverge. If x(0) = 0 then
we have the forced response

x(s) =
b

s− a
u(s)

The inverse transformation of the right hand side obviously depends upon
u(s). For instance, if u(t) is the unit step at t = 0 then u(s) = 1/s and

x(s) =
b

s(s− a)

x(t) =
b

a

(
eat − 1

)
The forced response is sometimes written as

x(s)

u(s)
=

b

s− a

The quantity on the right hand side is identified as the transfer function
of u(s) to x(s). One may also speak of 1/(s − a) as the transfer function
from x(0) to x(s).

9.2 Matrix Equations

Now we perform the analogous operations with our vectors and matrices.
For now we will drop the ∆’s in the equation, and just consider

ẋ = Ax +Bu

Recall that ẋ and x are n-dimensional vectors, u is an m-dimensional
vector, A is an n × n matrix, and B is an n × m matrix. We consider A
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and B to be constant matrices. The LaPlace transform of a vector is the
element-by-element transform of its components, so

sx(s) − x(0) = sIx(s) − x(0) = Ax(s) +Bu(s)

[sI − A]x(s) = x(0) +Bu(s)

x(s) = [sI − A]−1 x(0) + [sI − A]−1Bu(s) (9.1)

The time-domain response is just the element-by-element inverse LaPlace
transform of x(s), or x(t) = L−1x(s).

Now consider the state transition matrix [sI − A]−1. It may be repre-
sented as

[sI − A]−1 =
C(s)

d(s)

The n× n matrix C(s) is the adjoint of [sI − A], and each entry will be
a polynomial of order n− 1 or less. The polynomial d(s) is the determinant
of [sI − A] and is of order n. Thus each entry in [sI − A]−1 is a ratio of
polynomials in the complex variable s. A ratio of polynomials in which the
order of the numerator is less than or equal to the order of the denominator
is called proper, and if the numerator’s order is strictly less the ratio of
polynomials is called strictly proper. It is easy to show that each of the ratios
of polynomials in [sI − A]−1 is strictly proper (because each of the numerator
polynomials is the determinant of a matrix of order n − 1 with first-order
polynomials in s along its diagonal). Thus we may write

[sI − A]−1 =

{
cij(s)

d(s)

}
, i, j = 1 . . . n

The polynomial d(s) is referred to as the characteristic polynomial, and
d(s) = 0 is the characteristic equation of the system. The denominator
polynomial d(s) may be factored into a product of first order polynomials in
s of the form (s − λi) in which λi, i = 1 . . . n, are the roots of d(s) = 0, or
the eigenvalues of A.
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d(s) = (s− λ1)(s− λ2) · · · (s− λn)

If the eigenvalues are distinct then the ratio of polynomials may be further
expressed as a sum of ratios in which each denominator is one of the first order
factors of the denominator polynomial. That is, for an arbitrary numerator
polynomial n(s) of order less than n,

n(s)

d(s)
=

n(s)

(s− λ1)(s− λ2) · · · (s− λn)

=
n1

(s− λ1)
+

n2

(s− λ2)
+ · · · + nn

(s− λn)

This is the familiar partial-fraction expansion method of solving inverse
LaPlace transform problems. The inverse transform of such an expression is
the sum of terms involving exponentials nieλit, i = 1 . . . n:

L−1

{
n(s)

d(s)

}
= n1e

λ1t + n2e
λ2t + · · · + nne

λnt

This result applies to each entry of [sI − A]−1.

9.3 Initial Condition Response

9.3.1 Modal Analysis

System Modes

For the unforced, or initial-condition response (u(t) = u(s) = 0) we have

ẋ = Ax

x(s) = [sI − A]−1 x(0)

Since x(0) is just a vector of constants, each element of x(s) will be a
linear combination of terms like n(s)/d(s), e.g.,
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xi(s) =
vi,1

s− λ1

+
vi,2

s− λ2

+ · · · + vi,n
s− λn

Each element of xi(t) will therefore be a sum of terms like vi,je
λjt, or

xi(t) = vi,1e
λ1t + vi,2e

λ2t + · · · + vi,ne
λnt

The entire vector x(t) may be represented as

x(t) = v1e
λ1t + v2e

λ2t + · · · + vne
λnt (9.2)

Each of the components vie
λit is one of the modes of the system response.

In practice the eigenvalues will be a mixture of real and complex numbers.
The complex roots will occur in complex conjugate pairs (because A has real
components), say vie

λit+v∗
i e
λ∗i t (the asterisk denotes the complex conjugate).

The result is, of course, a real oscillatory response. In such cases the combined
pair vie

λit + v∗
i e
λ∗i t is considered a single mode. It is clearly necessary that

each of the eigenvalues have negative real parts for all of the modes, and
hence the system, to be stable.

Now evaluate ẋ − Ax = 0 using equation 9.2 for x,

ẋ = λ1v1e
λ1t + λ2v2e

λ2t + · · · + λnvne
λnt

Ax = Av1e
λ1t + Av2e

λ2t + · · · + Avne
λnt

Hence,

ẋ − Ax = (λ1v1 − Av1) e
λ1t + · · · + (λnvn − Avn) e

λnt = 0 (9.3)

Since eλit is never zero, equation 9.3 requires that each of the terms in
parentheses vanish independently, or

(λivi − Avi) = (λiIi − A)vi = 0, i = 1 . . . n

This means that the vectors vi are the eigenvectors of A, each associated
with an eigenvalue λi. Since the non-zero multiple (including multiplication
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by complex numbers) of an eigenvector is also an eigenvector, we may write
the initial condition response as

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · · + αne
λntvn (9.4)

In equation 9.4, for a given set of eigenvectors vi, the mulipliers αi are
chosen to satisfy the initial condition

x(0) = α1v1 + α2v2 + · · · + αnvn

If we denote each of the scalar terms qi(t) ≡ αie
λit, then

q̇i(t) = λiαie
λit = λiqi(t)

We then recognize αie
λit as the initial condition response of the differential

equation q̇i(t) = λiqi(t) with αi = qi(0), or qi(t) = qi(0)eλit. Now define the
vector q(t) ≡ {qi(t)}, i = 1 . . . n, and we may write the initial condition
response

x(t) = [v1v2 · · ·vn]q(t) ≡Mq(t) (9.5)

The Modal Matrix

Here we have defined the matrix M as consisting of columns which are the
eigenvectors of A. M is frequently called the modal matrix. Note that M is
in general not a direction cosine matrix, and M−1 	= MT . However, since we
have assumed distinct eigenvalues, the eigenvectors are linearly independent
and |M | 	= 0. Thus M−1 exists and q(t) = M−1x(t), so

q̇(t) = M−1ẋ(t) = M−1Ax(t)

= M−1AMM−1x(t) =
(
M−1AM

)
M−1x(t)

Define Λ ≡M−1AM , so that

q̇(t) = Λq(t) (9.6)
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Since q̇i(t) = λiqi(t), then

Λ =



λ1 0 · · · 0

0 λ2 · · · 0
...

... · · · ...

0 0 · · · λn


 = diag {λi}

The solution of q̇ = Λq(t) is therefore

q(t) =



eλ1t 0 · · · 0

0 eλ2t · · · 0
...

... · · · ...

0 0 · · · eλnt


q(0)

Define

eΛt ≡



eλ1t 0 · · · 0

0 eλ2t · · · 0
...

... · · · ...

0 0 · · · eλnt




Whence

q(t) = eΛtq(0) (9.7)

Thus, for a system with distinct eigenvalues, we may solve the initial
condition response of ẋ = Ax with given initial conditions x(0) as follows:

1. Determine the eigenvalues and eigenvectors of A.

2. For the given initial conditions x(0), determine q(0) = M−1x(0).

3. Write down the solution q(t) using equation 9.7.

4. Evaluate the solution x(t) = Mq(t).

In short, then,

x(t) = MeΛtM−1x(0) (9.8)
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Argand Diagrams

With equation 9.8 we may calculate the time-history of each of the states in
response to given initial conditions. Each real eigenvalue will contribute a
mode of the form αie

λitvi, where each αi is a constant (possibly zero) deter-
mined by the initial conditions and vi is a constant eigenvector associated
with λi. The time history of each state in the response of a given mode is
a constant component of the vector αivi multiplied by the exponential term
eλit. At any time, therefore, the magnitudes of the various states will be in
the same ratio (as given by vi) as at any other time.

That is, if the initial-condition response of the ith mode is x(t) = vie
λit,

then in terms of the individual states,




x1(t)

x2(t)
...

xn(t)




=




vi1

vi2
...

vin



eλit =




vi1e
λit

vi2e
λit

...

vine
λit




Then the ratio of the jth state to the kth at any time t is

xj(t)

xk(t)
=
vije

λit

vikeλit
=
vij
vik

Note that this does not mean that the ratio of two states is in general
constant, since more than one mode may be involved. For example, if the
two modes λ1 and λ2 are both excited, then x(t) = v1e

λ1t + v2e
λ2t, and

xj(t)

xk(t)
=
v1je

λ1t + v2je
λ2t

v1keλ1t + v2keλ2t
	= v1j + v2j

v1k + v2k

If complex roots occur then an oscillatory response will result. A complex
conjugate pair of roots, although representing two distinct eigenvalues, create
a single mode when the roots are combined to get a real response.

Say a complex eigenvalue λi occurs. Then, if the entries in the A matrix
are real, the conjugate eigenvalue λ∗i will also occur.

λi = σ + jω, λ∗i = σ − jω
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Moreover, if the eigenvector associated with λi is vi then the eigenvector
associated with λ∗i will be v∗

i . Any multiple αi of vi must be accompanied
by a multiple α∗

i of v∗
i . Considering just the single mode corresponding to λi

and λ∗i ,

x(t) = eσt
(
αie

jωtvi + α∗
i e

−jωtv∗
i

)
In general the multiplier αi and each of the elements of vi may be a

complex number. When multiplying complex numbers the polar form is
preferred,

a+ jb = Mejφ

M =
√
a2 + b2, φ = tan−1 b

a

Represent αi and the kth component of eigenvector vi in polar form as

αi = Mαe
jφα , vik = Mike

jφik

αivi = Mαe
jφα



Mi1e

jφi1

...

Mine
jφin




The contribution of the eigenvalue leads to

αie
jωtvi = Mα



Mi1e

j(ωt+φα+φi1)

...

Mine
j(ωt+φα+φin)




The conjugate part of the response is

α∗
i e

−jωtv∗
i = Mα



Mi1e

−j(ωt+φα+φi1)

...

Mine
−j(ωt+φα+φin)



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The total response for this mode may then be written as

x(t) = eσtMα



Mi1

(
ej(ωt+φα+φi1) + e−j(ωt+φα+φi1)

)
...

Min

(
ej(ωt+φα+φin) + e−j(ωt+φα+φin)

)



= 2eσtMα



Mi1 cos (ωt+ φα + φi1)

...

Min cos (ωt+ φα + φin)




Then the kth component of x(t), xk(t), is

xk(t) = 2eσtMαMik cos (ωt+ φα + φik)

The magnitude of eσt and Mα is the same for each state, as are the
angles ωt and φα. Thus the relative difference between the response of two
different states is contained in the magnitude Mik and the phase φk, which
are determined by the corresponding entries in the eigenvector. That is, if
all we care about is the relationship of one state to another during an initial
condition response of an oscillatory mode, all that information is contained
in the eigenvector.

An Argand diagram is the plot in the complex plane of complex entries
in an eigenvector for several different states. It is conventional to pick the
eigenvector associated with the eigenvalue with the positive imaginary part,
σ + jω. Figure 9.1 shows two such entries, corresponding to the two states
xk and xk+1.

In figure 9.1 the phase difference between the two states is the angle
between vk and vk+1. The relationship between the real magnitudes of the
two states is visualized as the projections of vk and vk+1 onto the real axis.

The evolution of time in the response of the states in an Argand dia-
gram may be visualized as a counter-clockwise rotation of the vectors about
the origin through an angle ωt. Note that the counterclockise rotation oc-
curs because we have picked the eigenvector corresponding to σ + jω. The
eigenvector corresponding to σ − jω would have to be viewed as a clockwise
rotation. Thus at some later time t, the situation would be as shown in figure
9.2.
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Figure 9.1: Argand Diagram

9.4 Mode Sensitivity and Approximations

9.4.1 Mode Sensitivity

In the long history of flight dynamics there have been ongoing efforts to re-
duce the larger problem to several of smaller order. The motivation for this
effort probably began with the difficulties of analyzing large systems using
only a slide rule, pencil, and paper. One major benefit to order reduction is
that the smaller problems may be analyzed literally (as opposed to numeri-
cally). In many cases this analysis will show that a particular response mode
is strongly dependent on a small subset of the parameters used to formulate
the equations of motion. These parameters in turn are determined by the
physical design of the aircraft. Thus, links between design choices and the
dynamic response of an airplane may be established, enabling designers to
more directly determine how well their aircraft will fly.

We have already seen some reductions in the order of the problem. Be-
ginning with twelve rigid body equations of motion, it was observed that
the geographical coordinates xE and yE, as well as the heading angle ψ, do
not affect the dynamic response of the aircraft, and these states were ig-
nored. The assumption of constant altitude was not so easily justifiable, but
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Figure 9.2: Response at time t

experience bears out the validity of neglecting that state. More subtly vari-
ous assumptions have been made that cause the linearized lateral-directional
and longitudinal equations to be uncoupled from each other. Thus, instead
of a twelfth-order system of equations, we have two separate fourth-order
systems.

For each fourth-order system of linear equations there will be four eigen-
values. We will soon show that the longitudinal eigenvalues typically consist
of two complex-conjugate pairs, and the lateral-directional equations consist
of one complex-conjugate pair and two real roots. Thus there are two longi-
tudinal modes and three lateral-directional modes. The next level of order
reduction seeks to find dynamic systems with the same number of states as
the order of the mode, i.e., one state for a real eigenvalue and two for an
oscillatory mode.

Eigenvector analysis.

One way to approach the order-reduction problem is to ask if there is a set
of initial conditions that will cause only one of the modes to appear in the
response. If there is, and if in this set of initial conditions some states are
“small”, then maybe they can be neglected without affecting the response.
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The answer to the question is fairly easy. Since the eigenvectors vi have
been assumed to be linearly independent, then if x(0) = αivi, some non-zero
multiple of vi, then all the other αj = 0, j = 1 . . . n, j 	= i. This can
also be shown using q(0) = αM−1x(0) = αM−1vi. Since M = [v1v2 · · ·vn],
and M−1M = I, M−1vi is just the ith column of the identity matrix. Then
q(t) = eΛtq(0) is

q(t) = eΛtq(0) =




eλ1t · · · 0 · · · 0
...

... · · · ...
...

0 · · · eλit · · · 0
...

... · · · ...
...

0 · · · · · · · · · eλnt







0
...

α
...

0




=




0
...

αeλit

...

0




From this we see that only the mode corresponding to eλit will be present
in the response, x(t) = αie

λitvi. That is, If the initial conditions of the states
are aligned with one of the eigenvectors, only the mode of the eigenvalue cor-
responding to that eigenvector will be present in the initial-condition response.
If the mode arises from complex roots, then we may take x(0) = αivi+α∗

iv
∗
i ,

which is a vector of real numbers.
Thus if certain of the entries in vi are “small” relative to all the others,

then the corresponding states are not influential in the initial conditions
that excite only the ith mode. In the extreme case, if an entry is zero then
the corresponding state will not respond at all in that mode. In cases of
complex conjugate pairs we use the analysis that led to the Argand diagram
to determine relative size.

The problem with applying this information is in determining what we
mean by a relatively “small” entry. If all the states have the same units this
makes some sense. In flight dynamics, however, the states are linear veloc-
ities, angular velocities, linear measurements, and angles. So, for example,
we would need to decide if a change in velocity of 20 ft/s is large or small
compared to a change in pitch rate of 0.2 rad/s.

Sensitivity analysis.

In this analysis the question of different units does not arise, since only one
state will be examined at a time. The question to be answered is whether
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a given mode is more sensitive to changes in some states than others. Put
another way, we seek to determine whether a change in the initial condition
of a single state will more strongly influence some modes than others. Thus,
if a change in the initial condition of a single state, while all others are
unchanged, causes one mode to respond more “energetically” than others,
then this state may be thought of as “dominant” in the response of the
mode. It is convenient to think of this sensitivity analysis as injecting energy
into the system through a single state, and looking to see how this energy is
then distributed to the various modes.

For our change in initial condition of the jth state we use the notation

∆xj(0) = {xi} , xi =

{
1, i = j

0, i 	= j
(9.9)

This notation means there is a “1” in the jth position, and zeros elsewhere.
From equation 9.5 we can easily determine the change ∆qj(0) in q(0),

∆qj(0) = M−1∆xj(0) (9.10)

The vector ∆qj(0) has components {∆qji}, i = 1 . . . n. The change in
the initial condition is seen in each mode according to

∆xj(0) = ∆qj1(0)v1 + ∆qj2(0)v2 + · · · + ∆qjn(0)vn (9.11)

Equation 9.11 has all the information we need for our sensitivity analysis.
The actual time-varying response is just like equation 9.11 except for the
time-varying parts,

∆xj(t) = ∆qj1(0)eλ1tv1 + ∆qj2(0)eλ2tv2 + · · · + ∆qjn(0)eλntvn

In equation 9.11 we examine the relative values of the jth component of
each of the vectors ∆qi(0)vi. For example, if we varied the initial condition
of the first state (j = 1), then we look at the first component of each vector
on the right-hand side to see how that change was distributed among the
various modes.
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The process of performing the sensitivity analysis is easier than it looks.
Note first in equation 9.9 that it would not have mattered whether we put
zeros in the non-jth positions, since in the end we just looked at the jth

component of the result. This means we can analyze all of the states simul-
taneously. Now note that equation 9.10 has the effect of assigning to ∆qj(0)
the jth column of the matrix M−1. In analyzing all the states simultaneously
we form the matrix M−1 and interpret its columns as the vectors ∆qj(0):

M−1 =
[
∆q1(0) ∆q2(0) · · · ∆qn(0)

]
(9.12)

This method of modal sensitivity analysis can be summarized as follows:

1. Calculate the eigenvalues and eigenvectors of the system, form the
modal matrix M , and calculate M−1.

2. Denote the rows ofM as r1, r2, . . . and the columns ofM−1 as c1, c2, . . .

M =



r1

r2
...

rn


 , M−1 =

[
c1 c2 · · · cn

]

Form diagonal matrices C1, C2, . . . with the entries from c1, c2, . . .
forming the diagonal.

ci =



c1i

c2i
...

cni


 , Ci ≡



c1i 0 0 · · · 0

0 c2i 0 · · · 0
...

0 0 0 · · · cni




Now evaluate the n× n sensitivity matrix S, defined as
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S =



r1C1

r2C2

...

rnCn


 (9.13)

3. Retain just the magnitudes of the entries in S (absolute values of real
numbers, magnitudes of complex numbers). Normalize each row by
summing the entries, then dividing each entry by that sum.

4. Each row of S corresponds to a state, and each column corresponds to
a mode. The modes are enumerated in the same order as the eigenval-
ues that determined the eigenvectors used to form M . Examine each
column of S to assess the relative magnitudes of the numbers in that
column. An entry of zero means the state in question does not respond
at all in the mode, and it may be ignored in analyzing that mode. At
the other extreme, if all the numbers in a column are the same, or
nearly so, no states can be ignored in the analysis that mode. Between
these extremes decisions must be made. Experience has shown that
states whose entry is no larger than 10% of the largest entry may be
safely ignored.

9.4.2 Approximations

Once a state has been declared ignorable, it and its effects may be removed
from the equations of motion to get the approximation. Mathematically we
assume that the ignorable variable becomes a constant. If the state xi is
ignorable, then we take ẋi = 0. Now, the variable itself still appears in the
remaining equations of motion, to be multiplied by the appropriate entries in
those equations. The only remaining question, then, is what constant value
should be assigned to the ignorable variable for use in the other equations.

There has long been a notion of “slow” and “fast” variables that is often
applied to this sort of analysis. The idea is that a slow ignorable variable does
not change as rapidly as the variables of interest, and its initial value should
be used as its constant value. Since we are dealing with perturbations in
the variable, that constant value is zero. On the other hand, fast ignorable
variables are thought of as having finished all their dynamics before the
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problem of interest has a chance to get started. In this case, the constant
value is the “steady-state” response of the ignorable variable.

The problem with slow and fast variables is that it is hard to find a
rigorous definition of what these adjectives mean, or a methodology to decide
whether a given variable is one or the other. Our approach will be to rank the
modes from fastest to slowest according to the associated eigenvalue’s real
part. The larger (in magnitude) negative the real part the more quickly eσt

tends to zero. For a given mode’s approximation, every state associated with
faster modes will be considered a fast variable, and every state associated
with slower modes will be a slow variable.

The method of constructing the approximation to a given mode therefore
is:

1. Perform a sensitivity analysis and find the ignorable states for the mode
in question.

2. For each ignorable state, decide if it is fast or slow according to the
mode in which the state is not ignorable.

3. If an ignorable state is slow, set it to zero in the approximating equa-
tions.

4. If an ignorable state is fast, determine its “steady-state” value in its
mode, and algebraically evaluate its contribution to the approximating
equations.

5. Remove the rows of the A and B matrices associated with the ignorable
variable.

6. Remove the columns of A associated with the ignorable variable.

7. The remaining non-trivial equations are the approximation to the mode
in question.

To illustrate this process, take a generic third-order system



ẋ1

ẋ2

ẋ3


 =



a11 a12 a13

a21 a22 a23

a31 a32 a33






x1

x2

x3






178 CHAPTER 9. SOLUTIONS TO THE LINEAR EQUATIONS

Assume that x1 is dominant in mode 1, x2 is dominant in mode 2, and
x3 is dominant in mode 3. Further assume that mode 1 is slowest and mode
3 is fastest. We are to approximate mode 2. Relative to mode 2, x3 is fast
and x1 is slow. First we set ẋ1 = ẋ3 = 0. x1 is slow so set x1 = 0. Next we
need to solve for x3ss . The equations at this point are




0

ẋ2

0


 =



a11 a12 a13

a21 a22 a23

a31 a32 a33







0

x2

x3ss




We evaluate x3ss in its mode by solving the third equation for x3ss as a
function of x2,

ẋ3 = 0 = a32x2 + a33x3ss ⇒ x3ss = −a32

a33

x2

The information is applied to the mode 2 equation to evaluate its approx-
imation:

ẋ2 = a22x2 + a23x3ss = a22x2 − a23
a32

a33

x2 =

(
a22 − a23

a32

a33

)
x2

The approximation to the second mode is therefore

ẋ2 =

(
a22a33 − a23a32

a33

)
x2

9.5 Forced Response

9.5.1 Transfer Functions

For the forced response we take x(0) = 0, and

x(s) = [sI − A]−1Bu(s)

Calculating the inverse transformation of the right-hand side obviously
depends on u(t) which determines u(s). At this point u(t) represents the
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time-history of the pilot’s control inputs, which assuredly are not easy to
place in analytical form. We therefore resort to considering simple analytical
forms of u(t): impulses, steps, ramps, and sinusoids.

The matrix [sI − A]−1B consists of ratios of polynomials, each with the
characteristic polynomial d(s) ≡ |sI − A| = d0 + d1s + · · · + dns

n as its
denominator. Each entry is a transfer function that relates the jth input to
the ith state. This matrix of transfer functions is often denoted as

[sI − A]−1B ≡ G(s) = {gij(s)}

x(s) = G(s)u(s) (9.14)

The relationship is xi(s) =
∑

j gij(s)uj(s). Each of the gij(s) may be
represented as

gij(s) =
nij(s)

d(s)

In terms of the factors of the numerator and denominator polynomials,

gij(s) =
nij(s)

d(s)
=
kij (s− z1) (s− z2) · · · (s− znz)

(s− p1) (s− p2) · · · (s− pn)

The numerator roots are called zeros ; nz is the number of zeros in a
particular transfer function, and is generally different for each of the gij(s).
The denominator roots are, of course, the same as the eigenvalues, but in the
analysis of transfer functions they are commonly called poles. If a pole and
a zero are identical they may be cancelled; in that case the remaining poles
are not the same as the eigenvalues.

For some given u(t) for which u(s) is known, the forced reponse may be
calculated from

x(t) = L−1 [G(s)u(s)] (9.15)



180 CHAPTER 9. SOLUTIONS TO THE LINEAR EQUATIONS

9.5.2 Steady-State Response

The steady-state reponse (if it exists) of a system to given control inputs
whose LaPlace transforms are known is given by the Final Value Theorem.
For a given xi(s), uj(s), and gij(s),

lim
t→∞

xi(t) = lim
s→0

[sxi(s)] = lim
s→0

[sgij(s)uj(s)]

Given the LaPlace transforms of each of the inputs, uj(s),

lim
t→∞

x(t) = lim
s→0

[sx(s)] = lim
s→0

[sG(s)u(s)]

9.6 Example: Longitudinal Dynamics

9.6.1 System Matrices

See Appendix C for data. At a particular flight condition the A-4 Skyhawk
has the following linearized, dimensional longitudinal system and control
matrices (the ∆’s have been dropped):

ẋLong = ALongxLong +BLonguLong

xTLong = {u, α, q, θ}
uTLong = {δT , δm}

ALong =



−1.52 × 10−2 −2.26 0 −32.2

−3.16 × 10−4 −0.877 0.998 0

1.08 × 10−4 −9.47 −1.46 0

0 0 1 0




BLong =




20.5 0

0 −1.66 × 10−4

0 −12.8

0 0



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9.6.2 State Transition Matrix and eigenvalues

Using Fedeeva’s algorithm (Appendix D) we calculate the state transition
matrix [sI − ALong]

−1, which results in

[sI − ALong]
−1 =

C(s)

d(s)
=

{cij(s)}
d(s)

, i = 1 . . . 4, j = 1 . . . 4

The terms cij(s) in the numerator are

c11(s) = s3 + 2.34s2 + 10.7s

c12(s) = −2.26s2 − 3.29s+ 305

c13(s) = −34.4s− 28.2

c14(s) = −32.2s2 − 75.2s− 345

c21(s) = −3.16 × 10−4s2 − 3.53 × 10−4s

c22(s) = s3 + 1.47s2 + 2.21 × 10−2s+ 3.48 × 10−3

c23(s) = 0.998s2 + 1.51 × 10−2s+ 1.02 × 10−2

c24(s) = 1.02 × 10−2s+ 1.14 × 10−2

c31(s) = 1.08 × 10−4s2 + 3.09 × 10=3s

c32(s) = −9.47s2 − 0.144s

c33(s) = s3 + 0.892s2 + 1.26 × 10−2s

c34(s) = −3.48 × 10−3s− 9.93 × 10−2

c41(s) = 1.08 × 10−4s+ 3.09 × 10−3

c42(s) = −9.47s− 0.144

c43(s) = s2 + 0.892s+ 1.26 × 10−2

c44(s) = s3 + 2.35s2 + 10.8s+ 0.162

The characteristic polynomial is

d(s) = s4 + 2.35s3 + 10.76s2 + 0.1652s+ 0.0993

In factored form,

d(s) = (s+ 1.17 − j3.06) (s+ 1.17 + j3.06)

(s+ 0.0067 − j0.096) (s+ 0.0067 + j0.096)
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Thus the eigenvalues of the system are

λ1,2 = −1.17 ± j3.06

λ3,4 = −0.0067 ± j0.096

The eigenvalues are in the form λ = σ ± jωd, in which σ is the damping
term and ωd is the damped frequency of the response. Both modes are stable
(negative damping terms), although the second mode has a real part very
near zero, indicating that it is only marginally stable. In standard second
order form the two modes are

d(s) =
(
s2 + 2.34s+ 10.7

) (
s2 + 0.0134s+ 0.00925

)
Each of the oscillatory modes may be compared with s2+2ζωns+ω

2
n, from

which we learn that the first mode has natural frequency ωn1,2 = 3.27rad/s
and damping ratio ζ1,2 = 0.357; and the second mode has ωn3,4 = 0.0962rad/s
and ζ3,4 = 0.0696. These results are qualitatively typical of “conventional”
aircraft: one mode is characterized by relatively large natural frequency and
damping, and the other by relatively small natural frequency and damping.
We may evaluate the time to half amplitude, period, and number of cycles
to half amplitude associated with each of the responses:

Metric λ1,2=λSP

(Short Period)
λ3,4=λPh

(Phugoid)

t1/2 = ln(1/2)
σ

0.592s 103s

T = 2π
ωd

2.05s 65.4s

N1/2 =
t1/2

T
0.289 1.57

Table 9.1: Longitudinal metrics.

The first mode, associated with λ1,2, is seen to have a relatively short
period. This gives rise to the unimaginative name for this mode: it is the
short period mode. The other mode has a much more imaginative name, the
phugoid mode. The origin of this name is historically reported as being due
to F.W. Lanchester in Aerodonetics (1908), who thought he had the root
of the Greek word “to fly” but erroneously picked the root of the word “to
flee”. Whatever its origins, the word phugoid is firmly esconced in the argot
of aeronautical engineers.
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9.6.3 Eigenvector Analysis

We now examine the eigenvectors of the longitudinal modes. Using software
such as MATLAB, the modal matrix M is determined to be

M =
[
v1 v2 v3 v4

]

v1 =




3.66 × 10−2 + j0.946

8.01 × 10−2 + j5.18 × 10−2

−0.182 + j0.231

8.56 × 10−2 + j2.68 × 10−2



, v2 = v∗

1

v3 =




4.90 × 10−2 − j0.999

−3.76 × 10−6 + j3.27 × 10−5

9.08 × 10−6 − j2.88 × 10−4

−2.99 × 10−3 + j1.14 × 10−4



, v4 = v∗

3

The first two columns of M (v1,2) correspond to the short period roots,
and the last two (v3,4) to the phugoid roots. In polar form, the short period
eigenvector is

v1 =




0.947� 87.8 deg

9.54 × 10−2 � 32.9 deg

0.294� 128.3 deg

8.97 × 10−2 � 17.4 deg




From the eigenvector the Argand diagram for the short period response
is drawn (figure 9.3), with dashed lines indicating the direction of states too
small to be represented.

The Argand diagram may be used to visualize the behavior the states
relative to one another. The pitch rate leads changes in angle-of-attack and
pitch attitude by about 90 deg, reaching its maximum and minimum values
about one-quarter cycle before the two angles. The undamped changes in
angle-of-attack and pitch attitude are nearly the same magnitude and very
close in phase. This means they will each reach their minimum and maximum
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Figure 9.3: Argand Diagram for the Short Period Mode

Figure 9.4: Undamped Time Histories, Alpha and Theta
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Figure 9.5: Damped Time Histories, Alpha and Theta

values at about the same time. The undamped time histories of α and θ show
this result (figure 9.4).

If we include damping, and let the constant multipliers be unity, we have
the results shown in figure 9.5.

The damped time histories show that this particular short period mode
dies out very quickly. The total response to arbitrary initial conditions will,
of course, be the sum of the short period and phugoid modes. The responses
associated with the phugoid, with its period of over a minute, will have barely
changed during the time it takes the short period to dampen, suggesting
that the short period may be viewed in isolation from the phugoid. On the
other hand, the short period influences will have long since vanished from
the phugoid response by the time large changes have taken place in that
mode: the short period will appear as a small wrinkle at the beginning of
the phugoid response.

From the Argand diagram one might be tempted to conclude that the
short period mode is characterized by large changes in velocity u and pitch
rate q. However, a 1ft/s change in speed is not very large when compared
to VRef = 446.6ft/s. Note that if u is scaled by the reference velocity

(effectively yielding V̂ ) quite a different picture results, in which the short
period occurs at almost constant speed, and is dominated by changes in α,
θ, and q. Also note that if we use V̂ and the nondimensional pitch rate,
q̂ = qc̄/2VRef (c̄ = 10.8ft) then the interpretation might be that the short
period is dominated by changes in α and θ. Analysis such as this often
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Figure 9.6: Argand Diagram for the Phugoid Mode

depends upon knowing the right answer before beginning, in which some
combination of scaling can be found to show it is right.

Now examining the phugoid response, the polar form of its eigenvector is

v3 =




1.0� − 87.2 deg

3.30 × 10−5 � 96.5 deg

2.88 × 10−4 � − 88.2 deg

3.00 × 10−3 � 177.8 deg




From this information the Argand diagram is drawn, as shown in figure
9.6.

The inference from the Argand diagram is that the phugoid mode is
dominated by large changes in velocity u. Even if u is scaled by VRef =
446.6ft/s it is still much larger than α and q, and only slightly smaller than
θ. It will turn out that this is largely true. Had we included altitude as a
fifth longitudinal state we would have found its component of the phugoid
eigenvector to be comparable to that of velocity and almost 180 deg out of
phase with it. The phugoid mode corresponds to cyclic tradeoffs in kinetic
energy (velocity) and potential energy (height), performed at nearly constant
angle-of-attack. A time history of changes in velocity, figure 9.7, shows part
of this relationship.
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Figure 9.7: Time History of u for the Phugoid

9.6.4 Longitudinal Mode Sensitivity and Approxima-
tions

Applying the steps described in section 9.4.1 yields the sensitivity matrix for
the longitudinal dynamics, shown in table 9.2.

Short Period Phugoid

u 0.0005 0.0005 0.4995 0.4995

α 0.4952 0.4952 0.0048 0.0048

q 0.4961 0.4961 0.0039 0.0039

θ 0.0004 0.0004 0.4996 0.4996

Table 9.2: Longitudinal mode senstivities.

The entries in table 9.2 are unambiguous. Each mode has two states that
dominate in that mode. We should be able to approximate the short period
using the states α and q, and approximate the phugoid mode using the states
u and θ.

The objective of this analysis is to formulate two second-order systems,
one for each mode, in terms of the stability and control parameters. Be-
fore doing that, however, we will apply the approximations to the numerical
results and see how well they do.
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Short Period

Numerical formulation. The short period is clearly a faster mode than
the phugoid, (real part of −1.17, compared to −0.067 for the phugoid). To
approximate the short period mode, we assume that u̇ = θ̇ = u = θ = 0. As
a result,

x̃SP ≡
{
α

q

}

ÃSP =

[
−0.877 0.998

−9.47 −1.46

]

Denoting the short period approximation eigenvalues by λ̃SP ,

λ̃SP = −1.17 ± j3.06

This result is identical to that from the full system, and is a very good
approximation indeed, at least for the current example.

Literal formulation. In terms of the parameters from which the example
was derived (neglecting Zẇ and Mẇ), we have

x̃SP ≡
{
α

q

}
(9.16a)

ÃSP =

[
Zw

m

Zq+mVRef

mVRef
MwVRef

Iyy

Mq

Iyy

]
(9.16b)

The eigenvalues of the short period approximation are found from

∣∣∣sI − ÃSP

∣∣∣ = s2 + c1s+ c0 = 0

where∣∣∣sI − ÃSP

∣∣∣ ∼= s2 −
(
IyyZw +mMq

mIyy

)
s+

ZwMq −Mw (Zq +mVRef )

mIyy
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Applying this assumption to our example yields

ÃSP =

[
−0.879 1.00

−9.77 −1.12

]

λ̃SP = −1.00 ± j3.12

This approximation still compares favorably to λSP = −1.17 ± j3.06,
especially in terms of natural frequency (3.28 vs. 3.27 rad/s) and somewhat
so with respect to damping ratio (0.307 vs. 0.357). Considering that Zẇ and
Mẇ are difficult to determine experimentally and thus subject to fairly large
uncertainty, the approximation is probably not bad.

Phugoid

Numerical formulation. Now considering the phugoid approximation,
we set α̇ = q̇ = 0. Because α and q are associated with a faster mode, we
treat them as fast variables. The procedure asks us to solve the α̇ and q̇ for
steady-state values to be used in the phugoid approximation. This yields

α̇ = 0 = −
(
3.16 × 10−4

)
u− 0.877αss + 0.998qss

q̇ = 0 =
(
1.08 × 10−4

)
u− 9.47αss − 1.46qss

Solving this system of equations for the steady-state values of α and q as
a function of u yields

αss = −
(
3.295 × 10−5

)
u, qss =

(
2.877 × 10−4

)
u

The resulting equations for u̇ and θ̇ become

u̇ = −
(
1.51 × 10−2

)
u− 2.26αss − 32.2θ = −

(
1.50 × 10−2

)
u− 32.2θ

θ̇ = qss =
(
2.877 × 10−4

)
u

The phugoid approximation is then
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x̃Ph =

{
u

θ

}

ÃPh =

[
−1.50 × 10−2 −32.2

2.877 × 10−4 0

]

The eigenvalues of this system are

λ̂Ph = −0.0075 ± j0.096

Compared with the actual eigenvalues, λPh = −0.0067 ± j0.096, this
approximation does well on the damped frequency, but overestimates the
damping term by almost 15%.

Literal formulation. In terms of the dimensional stability derivatives, we
have

α̇ = 0 =
Zu

mVRef
u+

Zw
m
αss +

(
Zq

mVRef
+ 1

)
qss

q̇ = 0 =
Mu

Iyy
u+

MwVRef
Iyy

αss +
Mq

Iyy
qss

The derivatives Zq and Mu are usually negligible, which results in

{
αss

qss

}
=

[
ZwVRef mVRef

MwVRef Mq

]−1 {
−Zuu

0

}

=

{
−Mq

MwVRef

}
Zuu

VRef (MqZw −mMwVRef )

The contribution of αss appears only in the equation for u̇, and is normally
quite small (see the numerical example above, in which the factor of u was
changed from −1.51 × 10−2 to −1.53 × 10−2). The qss term is, however,
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critical to the θ̇ equation; without it we have θ̇ = 0 and the system is not
oscillatory at all. We therefore ignore αss but retain qss, leaving:

u̇ =
Xu + Tu

m
u− gθ

θ̇ = qss =
MwZu

MqZw −mMwVRef
u

We have let Zẇ = 0 (since we have let α̇ = 0), γRef = εT = 0 (they are
usually quite small), leaving us with the phugoid approximation:

x̃Ph =

{
u

θ

}
(9.17a)

ÃPh =

[
Xu+Tu

m
−g

MwZu

MqZw−mMwVRef
0

]
(9.17b)

Further simplifications. In the phugoid approximation it is normally
taken that |mMwVRef | � |MqZw|, so that the system matrix becomes

ÃPh =

[
Xu+Tu

m
−g

−Zu

mVRef
0

]
(9.17c)

The derivatives Xu and Zu can be expressed in terms of the lift and drag
of the aircraft. Moreover, since the example aircraft is a jet, Tu = 0. Finally,
we focus on subsonic flight and therefore ignore Mach effects. The evaluation
of Xu proceeds as follows:

Xu =

(
q̄RefS

VRef

) (
2CW sin γRef − 2CTRef

cos εT −MRefCDM

)
= −2

(
q̄RefS

VRef

)
CTRef

= −2

(
q̄RefS

VRef

)
CDRef

= −2

(
DRef

VRef

)
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Similarly for Zu:

Zu =

(
q̄RefS

VRef

) (
−2CLRef

−MRefCLM

)
= −2

(
q̄RefS

VRef

)
CLRef

= −2

(
LRef
VRef

)

The phugoid system matrix is therefore approximated by

ÃPh =

[
−2

DRef

mVRef
−g

2
LRef

mV 2
Ref

0

]
(9.17d)

The characteristic polynomial of this system is

∣∣∣sI − ÃPh

∣∣∣ = s2 + 2
DRef

mVRef
s+ 2

gLRef
mV 2

Ref

In the last term replace g with mg/m, and note that LRef = W = mg,
so that

∣∣∣sI − ÃPh

∣∣∣ = s2 + 2
DRef

mVRef
s+ 2

L2
Ref

m2V 2
Ref

From this expression we see that the natural frequency of the phugoid
approximation is inversely proportional to the trimmed flight speed,

ω̃nPh
=

√
2
LRef
mVRef

(9.17e)

The damping ratio turns out to be inversely proportional to the famous
aircraft performance parameter, the ratio of lift to drag (L/D):

ζ̃Ph =
DRef√
2LRef

=
1√

2 (L/D)Ref
(9.17f)
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The phugoid is thus least well damped when the aircraft is most efficiently
operated, i.e., at (L/D)Max.

The phugoid approximation given by equation 9.17c can be derived by
treating the aircraft as a point-mass that possesses the lift and drag charac-
teristics of the aircraft. Then, by analyzing the kinetic and potential energy
of the system, equation 9.17c results. Note that the assumption that got us
to that equation could be reached by letting Mq = 0. When the aircraft is
treated as a point-mass, there are no pitch dynamics, so the two approaches
are equivalent.

9.6.5 Forced Response

We now turn to the forced response. The matrix of transfer functions is
easily evaluated from [sI − A]−1B ≡ G(s) = {gij(s)}.

G(s) =




(20.5s3 + 48.0s2 + 220s) (44.2s+ 363)

(−6.49 × 10−3s2 − 7.26 × 10−3s) (−12.8s2 − 0.194s− 0.131)

(2.22 × 10−3s2 + 0.0634s) (−12.8s3 − 11.5s2 − 0.162s)

(2.22 × 10−3s+ 0.0634) (−12.8s2 − 11.5s− 0.162)




(s+ 1.17 ± j3.06) (s+ 0.0067 ± j0.096)

This result is more useful with the numerator factored to show the zeros:

G(s) =




20.5s (s+ 1.17 ± j3.06) 44.2 (s+ 0.820)

−6.49 × 10−3s (s+ 1.12) −12.8 (s+ 0.0076 ± j0.101)

2.22 × 10−3s (s+ 28.6) −12.8s (s+ 0.877) (s+ 0.0143)

2.22 × 10−3 (s+ 28.6) −12.8 (s+ 0.877) (s+ 0.0143)




(s+ 1.17 ± j3.06) (s+ 0.0067 ± j0.096)

Two interesting results may be directly observed from the matrix of trans-
fer functions. First, with respect to the influence of the throttle on changes
in speed,

g11(s) =
u(s)

δT (s)
=

20.5s (s+ 1.17 ± j3.06)

(s+ 1.17 ± j3.06) (s+ 0.0067 ± j0.096)

=
20.5s

s+ 0.0067 ± j0.096
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The short period mode has been cancelled by an identically placed pair
of zeros in the numerator. This cancellation means that changes in throttle
setting will have no effect on the short period dynamics. The reason for
this is that we have modeled the thrust as acting straight along the aircraft
x-axis, hence it will create no pitching moment or off-axis forces.

The transfer function of the pitching moment controller (elevator) to
angle-of-attack has a similar result, but in this case it is the phugoid mode
that is (almost) canceled:

g22(s) =
α(s)

δm(s)
=

−12.8 (s+ 0.0076 ± j0.101)

(s+ 1.17 ± j3.06) (s+ 0.0067 ± j0.096)

≈ −12.8

s+ 1.17 ± j3.06

The matrix of transfer functions may be used to evaluate steady-state
longitudinal responses to control inputs. There are three considerations we
must observe:

1. The input and response must be “small”,

2. There must be no coupling of the response with lateral-directional
modes, and

3. The steady-state conditions must exist.

The first two requirements mean that we want to stay within the range
of validity of the assumptions made in linearizing the equations of motion.
Because the equations are linear, the magnitudes of inputs and responses may
be uniformly scaled, so if a test input results in large response, we simply
reduce inputs and responses by the same factor. The second consideration,
no coupling, will be satisfied for the longitudinal equations of motion in
straight, symmetric flight because we have assumed away any dependence on
lateral-directional variables: there is no mechanism to create sideslip, roll or
yaw rates, or bank angle changes. Finally, we will have to apply common
sense to determine whether the inputs result in true steady-state conditions.
For instance, if the analysis shows steady-state values of pitch rate and pitch
angle, we should dismiss the results since this is not possible. And of course,
we require that the system be stable, otherwise the steady-state solution will
not exist.
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Throttle Input

In response to a step throttle input of magnitude 0.1, the steady-state re-
sponses of the longitudinal states are

xLong (∞) = lim
s→0

(s)




20.5s (s+ 1.17 ± j3.06)

−6.49 × 10−3s (s+ 1.12)

2.22 × 10−3s (s+ 28.6)

2.22 × 10−3 (s+ 28.6)




s4 + 2.35s3 + 10.76s2 + 0.1652s+ 0.0993

(
0.1

s

)

xLong (∞) =




0

0

0

0.0638 rad




=




∆uSS

αSS

qSS

θSS




The steady-state values will be obtained only after the short-period and
phugoid modes have subsided.

This result may at first seem counter-intuitive. One might think that
increasing the throttle should make the aircraft go faster, but instead the
speed and angle-of-attack return to the trim value and the aircraft ends up
in a climb. Recall, however, the steady-state requirement M + MT = 0.
The functional dependency of the pitching moment coefficient (neglecting

altitude dependency) is Cm

(
M,α, ˆ̇α, q̂, δm

)
. In our example MT = 0. There

is no Mach dependency, no change in pitching moment control, and α̇ and

q are zero in steady, straight flight. Therefore if Cm

(
M,α, ˆ̇α, q̂, δm

)
= 0 in

the reference condition, and in the steady-state condition, the sole remaining
variable—α—must be unchanged. Moreover, from α̇ = 0 ⇒ ẇ = 0, every
term in the numerator of the ẇ equation is zero in the steady state except
Zu∆u, which must vanish as well:

Zu∆u = 0 ⇒ ∆u = 0
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Elevator Input

In response to a −1 deg step input in the elevator (TEU), the steady-state
responses of the longitudinal states are

xLong (∞) = lim
s→0

(s)




44.2 (s+ 0.820)

−12.8 (s+ 0.0076 ± j0.101)

−12.8s (s+ 0.877) (s+ 0.0143)

−12.8 (s+ 0.877) (s+ 0.0143)




s4 + 2.35s3 + 10.76s2 + 0.1652s+ 0.0993

(−0.01745

s

)

xLong (∞) =




∆uSS

αSS

qSS

θSS




=



−6.37 ft/s

0.0231 rad

0

0.0282 rad




The elevator input has resulted in the aircraft seeking a new trim airspeed
and angle-of-attack. The new value of αSS is relative to the stability-axis
value of zero. Since, in wings-level flight, we have γ = θ−α, we see that the
aircraft is also climbing at an angle of γSS = 0.292 deg.

9.7 Example: Lateral/Directional Dynamics

9.7.1 System Matrices

See Appendix C for data. At a particular flight condition the A-4 Skyhawk
has the following linearized, dimensional lateral/directional system and con-
trol matrices (the ∆s have been dropped):

ẋLD = ALDxLD +BLDuLD

xLD =



β

p

r

φ




uLD =

{
δ+

δn

}
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ALD =



−0.248 0 −1 0.072

−23.0 −1.68 0.808 0

13.5 −0.0356 −0.589 0

0 1 0 0




BLD =




0 0.0429

17.4 −21.9

4.26 0.884

0 0




9.7.2 State Transition Matrix and eigenvalues

Using Fedeeva’s algorithm (Appendix D) we calculate the state transition
matrix [sI − ALong]

−1, which results in

[sI − ALong]
−1 =

C(s)

d(s)
=

{cij(s)}
d(s)

, i = 1 . . . 4, j = 1 . . . 4

The terms cij(s) in the numerator are
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c11(s) = s3 + 2.27s2 + 1.02s

c12(s) = 0.108s+ 0.0425

c13(s) = −s2 − 1.68s+ 0.0582

c14(s) = 0.0720s2 + 0.164s+ 0.0735

c21(s) = −23.0s2 − 2.64s

c22(s) = s3 + 0.837s2 + 13.6s

c23(s) = 0.808s2 + 23.2s

c24(s) = −1.66s− 0.190

c31(s) = 13.5s2 + 23.5s

c32(s) = −0.0356s2 − 8.81 × 10−3s+ 0.972s

c33(s) = s3 + 1.93s2 + 0.417s+ 1.66

c34(s) = 0.972s+ 1.69

c41(s) = −23.0s− 2.64

c42(s) = s2 + 0.837s+ 13.6

c43(s) = 0.808s+ 23.2

c44(s) = s3 + 25.2s2 + 15.1s+ 23.8

The characteristic polynomial is

d(s) = s4 + 2.52s3 + 15.s2 + 25.s+ 0.190

= (s+ 0.340 ± j3.70) (s+ 1.83)
(
s+ 7.51 × 10−3

)
=

(
s2 + 0.679s+ 13.8

)
(s+ 1.83)

(
s+ 7.51 × 10−3

)
The eigenvalues of the system are

λ1,2 = −0.340 ± j3.70

λ3 = −1.83

λ4 = −7.51 × 10−3

The complex roots give rise to a stable oscillatory mode with ωn =
3.71 rad/s and ζ = 0.0914. The two real roots are both stable (damped
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exponentials), but λ4 is very small and nearly unstable. This distribution of
eigenvalues is fairly typical of “conventional” aircraft, and the fourth eigen-
value is sometimes slightly unstable. For reasons that will become more clear
following the modal analysis, the oscillatory mode is called the Dutch roll,
the real root greatest in magnitude is the Roll mode, and the last root is the
Spiral mode. The associated metrics are

Metric
λ1,2=λDR

(DutchRoll)
λ3=λR

(RollMode)
λ4=λS

(SpiralMode)

t1/2 = ln(1/2)
σ

2.04 s 0.379 s 92.3 s

T = 2π
ω

1.70 s — —

N1/2 =
t1/2

T
1.2 — —

Table 9.3: Lateral-directional metrics.

9.7.3 Eigenvector Analysis

The eigenvectors associated with these modes are as follows. With

M =
[
v1 v∗

1 v3 v4

]

v1 =



−0.0601 + j0.126

−0.495 − j0.651

0.450 + j0.245

−0.162 + j0.149




v3 =



−0.00480

−0.878

0.0269

0.479




v4 =




0.00305

−0.00749

0.0711

0.997




Only one Argand diagram is necessary. For the Dutch roll mode, we
have the relationships shown in figure 9.8. The Dutch roll mode appears
to have significant components of each of the four lateral-directional states,
suggesting (from this analysis) that there is no reasonable approximation.
From the Argand diagram we see relatively large roll and yaw rates that are
nearly 180 deg out of phase with each other. This means, roughly, that the
aircraft will be simultaneously rolling one way and yawing the other. Since
the bank angle is about 90 deg out of phase with both roll and yaw rates,
we surmise that, for example, as the wings pass through the level position
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Figure 9.8: Argand Diagram of the Dutch Roll

the aircraft will be rolling to the right while yawing to the left, both at near
maximum rates.

In figure 9.9, moving from bottom to top, the aircraft begins with its
wings level and a slight amount of positive sideslip. At this instant the yaw
rate is positive (nose right) and the roll rate is negative (left wing down).
One-quarter cycle later the bank angle has reached its maximum left wing
down position and sideslip is near its maximum negative value. Roll and yaw
rates are near or just past zero. Half-cycle into the time history the aircraft
is again wings-level, but now with some negative sideslip, negative yaw rate
(nose left) and positive roll rate (right wing down). The roll continues to the
right and the yaw to the left, until the three-quarters cycle position at the
top of the figure. Here the bank angle has reached its maximum right wing
down position and sideslip is near its maximum positive values. One-quarter
cycle later the aircraft is again in the position in the bottom figure, although
the amplitudes of all four states will have diminished due to damping. In ice-
skating a Dutch roll is executed by gliding with the feet parallel and pressing
alternately on the edges of each foot; the similarity of the skater’s motion to
that shown by the aircraft gives rise to the name of this mode.

Other useful information may be gleaned from the Dutch roll eigenvector.
As we shall later see, the ratio of peak roll angle to sideslip angle is of
importance in determining the flying qualities of an aircraft—loosely, how
easy and pleasant it is to fly. This ratio is determined from the magnitudes
of the φ and β components of the eigenvector, and for our example it is
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Figure 9.9: Dutch Roll (Bottom to Top) and Argand Diagram
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Figure 9.10: Path Traced by the Left Wing Tip

∣∣∣∣φβ
∣∣∣∣ =

0.220

0.140
= 1.57

Thus the magnitude of the roll angle is almost twice as great as that of
sideslip; in supersonic flight this relationship is often reversed, giving rise to
a “snaking” motion. Except in aircraft with highly swept wings it is fairly
easy for a pilot to observe the relationship between φ and β during the Dutch
roll. The change in heading angle ∆ψ is almost exactly the negative of the
sideslip angle β during the Dutch roll. As the aircraft rolls and yaws the left
wing tip will trace a path which, for this example, looks like figure 9.10.

9.7.4 Lateral-Directional Mode Sensitivity and Approx-
imations

Results of the mode sensitivity analysis for the lateral-directional modes are
shown in table 9.4. The results are unambiguous and show that β and r are
dominant in the Dutch roll mode, p in the roll mode, and φ in the spiral
mode. So far as the speed of the three modes, the roll mode is fastest with
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a real eigenvalue of −1.83 s−1, followed by the Dutch roll with a real part of
−0.34 s−1, followed by the real spiral root of −7.51 × 10−3 s−1.

Dutch roll Roll Spiral

β 0.4931 0.4931 0.0135 0.0003

p 0.0207 0.0207 0.9545 0.0041

r 0.4506 0.4506 0.0385 0.0604

φ 0.0147 0.0127 0.0522 0.9184

Table 9.4: Lateral-directional mode senstivities.

Roll Mode

Numerical formulation. The roll rate p is dominant in the roll mode.
The roll mode is almost purely motion about the body x-axis. The roll mode
is the fastest of the lateral-directional modes, so we let β̇ = ṙ = φ̇ = β = r =
φ = 0, leaving simply

ṗ = −1.68p

This simple first order system has eigenvalue λ̃R = −1.68, which compares
favorably with the actual eigenvalue, λR = −1.83.

Literal formulation. The roll mode approximation is simply

x̃R = {p} (9.18a)

ṗ =
Lp
Ixx

p (9.18b)

We may include the φ̇ equation, φ̇ = p, without changing the roll mode
eigenvalue.
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x̃R =

{
p

φ

}

ÃR =

[
Lp/Ixx 0

1 0

]

The approximation treats the aircraft as if it were constrained to motion
about the x-axis only, and the only moment that remains is due to the roll-
rate damping, Lp. Since only the roll of the aircraft is involved the mode is
naturally called the roll mode, or sometimes the roll-subsidence mode.

Dutch roll

Numerical formulation. The Dutch roll is dominated by the variables β
and r. It is slower than the roll mode but faster than the spiral mode. For
the slower mode we take φ̇ = φ = 0. The roll mode is faster so we take ṗ = 0
but treat p as pss. This leads to

ṗ = 0 = −23.0β − 1.68pss + 0.808r ⇒ pss = −13.69β + 0.4810r

Substituting this result into the equations for β̇ and ṙ effects only ṙ, since
β̇ does not depend on p:

ṙ = 13.5β − 0.0356pss − 0.590r = 14.0β − 0.607r

The Dutch roll approximation (for this example) then becomes

x̃DR =

{
β

r

}

ÃDR =

[
−0.248 −1

14.0 −0.607

]

λ̃DR = −0.428 ± j3.74
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Compared to the actual eigenvalues, λDR = −0.340± j3.70, this approx-

imation appears reasonable. The estimated damping ratio
(
ζ̃DR = 0.114

)
captures the poorly damped characteristics of the Dutch roll (ζDR = 0.0914).
The natural and damped frequencies of the estimate and actual Dutch roll
are very nearly the same.

Literal formulation. The literal expression is quite messy unless we ne-
glect Ixz. A survey of stability and control data for various aircraft suggests
Ixz is usually small, so we do assume Ixz = 0. The expression for pss becomes

pss = −Lv
Lp
v − Lr

Lp
r = −VRefLv

Lp
β − Lr

Lp
r

When this expression is substituted into the equations for β̇ and ṙ,

β̇ =

(
YvLp − YpLv

mLp

)
β +

(
YrLp − YpLr
mVRefLp

− 1

)
r

ṙ =

(
VRef (NvLp −NpLv)

IzzLp

)
β +

(
NrLp −NpLr

IzzLp

)
r

Most stability and control data take Yp = Yr = 0, so that

β̇ =

(
Yv
m

)
β − r

ṙ =

(
VRef (NvLp −NpLv)

IzzLp

)
β +

(
NrLp −NpLr

IzzLp

)
r

The Dutch roll approximation is then given by:

x̃DR =

{
β

r

}
(9.19a)

ÃDR =

[
Yv

m
−1

VRef (LpNv−LvNp)

IzzLp

LpNr−LrNp

IzzLp

]
(9.19b)
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In equation 9.19b, further simplification is possible by making assump-
tions about the relative magnitudes of the stability derivatives involved. For
the example aircraft being used, |LpNr| � |LrNp|, and |LpNv| � |LvNp|. A
suitable approximation for the Skyhawk’s Dutch roll mode at the given flight
condition is therefore

ÃDR =

[
Yv

m
−1

VRefNv

Izz

Nr

Izz

]

The eigenvalues of this approximation are λDR = −0.419 ± j3.67, not
much different from the previous approximation, λ̃DR = −0.428 ± j3.74.
Note that this approximation to the approximation is equivalent to taking
pss = 0. This ambiguous effect of the roll rate equation may be due to the
fact that the roll mode is only about five times faster than the Dutch roll.

Spiral Mode

Numerical formulation. The spiral mode eigenvector shows a dominance
in bank angle. Unlike the roll mode, however, there is no accompanying large
roll rate. When viewed in the context of the long time scale associated with
this mode, we may visualize the aircraft with some bank angle, slowly rolling
back towards the wings level position. If this eigenvalue had been positive
then the interpretation would have been of slowly increasing bank angle.

For the spiral mode approximation we let β̇ = ṗ = ṙ = 0. The steady-
state values of β, p, and and r are calculated from the roll and Dutch roll
modes,




0

0

0


 =



−0.248 0 −1 0.072

−23.0 −1.68 0.808 0

13.5 −0.0356 −0.590 0






βss

pss

rss

φ






−0.248 0 −1

−23.0 −1.68 0.808

13.5 −0.0356 −0.590






βss

pss

rss


 =



−0.072

0

0


φ
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The only one of the steady-state values needed is pss, which is determined
to be

pss = −0.0081φ

The spiral mode approximation then becomes

φ̇ = −0.0081φ

The eigenvalue associated with this equation is λ̃S = −0.0081, which is
close to the actual value λS = −0.00751.

Literal formulation. First solving for pss (with Ixz = 0),

pss =

∣∣∣∣∣
VRefLv

Ixx

Lr

Ixx
VRefNv

Izz

Nr

Izz

∣∣∣∣∣∣∣∣∣∣∣∣∣
Yv

m

Yp

mVRef

(
Yr

mVRef
− 1

)
VRefLv

Ixx

Lp

Ixx

Lr

Ixx
VRefNv

Izz

Np

Izz

Nr

Izz

∣∣∣∣∣∣∣∣

(
g
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Again taking Yp = Yr = 0,

pss =

−
∣∣∣∣∣
VRefLv

Ixx

Lr

Ixx
VRefNv

Izz

Nr

Izz

∣∣∣∣∣∣∣∣∣∣∣∣
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x̃S = {φ} (9.20a)

φ̇ =
g (LvNr − LrNv)

Yv

m
(LpNr − LrNp) − VRef (LvNp − LpNv)

φ (9.20b)
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Further simplifications. In equation 9.20b, further simplification may
be possible by making assumptions about the relative magnitudes of the
stability derivatives involved. For instance, for the example aircraft being
used, the denominator term VRef (LvNp − LpNv) is more than 16 times as
large as the other term, and |LpNv| � |LvNp|. A suitable approximation for
the Skyhawk’s spiral mode at the given flight condition is:

φ̇ =
g (LvNr − LrNv)

VRefLpNv

φ

When the terms in this approximation are calculated, the eigenvalue that
results is λ̃S = −0.00776, which is (coincidentally) closer to the actual value
λS = −0.00751 than the full approximation.

9.7.5 Forced Response

We now turn to the forced response. Evaluating the matrix of transfer func-
tions [sI − ALD]−1B ≡ G(s), we have

xLD =



β

p

r

φ




uLD =

{
δ+

δn

}

G(s) =




−4.26 (s+ 1.41) (s− 0.165) 0.0429 (s− 22.3) (s+ 3.76) (s+ 0.243)

17.4s (s+ 0.517 ± j4.36) −21.9 (s+ 0.425 ± j3.54)

4.26 (s+ 2.52) (s+ 0.368 ± j1.45) 0.884 (s− 1.89) (s+ 2.68 ± j2.17)

17.4 (s+ 0.517 ± j4.36) −21.9 (s+ 0.425 ± j3.54)




(s+ 0.340 ± j3.70) (s+ 1.83) (s+ 0.00751)

Note that there are no pole-zero cancellations (with the possible exception
of considering the free s in three of the numerators cancelling the spiral
mode). The interpretation of this is that, due to the great amount of cross-
coupling between the rolling and yawing moment controls, application of
either control will excite all three lateral-directional modes. Application of
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only the rolling moment control (in this case, aileron) will not generate pure
roll, but will also excite the other two modes (primarily the Dutch roll).
Pilots adapt to this phenomenon by learning to accompany aileron inputs
with simultaneous rudder inputs.

There is no point in investigating the steady-state response of the aircraft
to step inputs in rudder and in aileron. Any change in bank angle will incline
the lift vector away from the vertical and will cause immediate coupling with
the longitudinal modes. Application of rolling moment controller (aileron)
will certainly change the bank angle, and so will the yawing moment con-
troller (rudder) through first the change in sideslip, then through dihedral
effect. The significance of this may be observed by considering a step input
in aileron, which will among other consequences cause the aircraft to roll
continuously. During part of the roll the lift vector will be pointing down-
ward, causing the flight path to curve until the aircraft is accelerating in a
steep descent.
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