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Autonomous Ring Formation
for a Planar Constellation

of Satellites

uniform intersatellite spacing. The method has analogies with emer-
gent behavior seen in recent studies of nonlinear systems. That is, a
set of simple rules is used to generate complex, emergent behavior
that is not designed into the system. For this problem analogies may
be drawn with the formation of crystal lattices through the mini-
mization of free energy in the system. The satellite ring formation
problem is seen to be somewhat similar.

System Dynamics
The dynamics of a system of N satellites will be considered in

orbit around a point mass Earth, Fig. 1. The dynamics of the system
may then be represented by a system of 2N equations of motion, viz.,

riOi+2fi6i =aei

(1)

where ari and a0i are radial and transverse low-thrust control ac-
celerations assumed to be available from onboard thrusters. It is
clear that in the open-loop case this system of equations possesses
a particular desired solution (r*, 0*) given by

(2)

where r is the operational radius of the ring, x is tne vertex half-
angle of the N polygon defined by the ring, and a) is the Keplerian
angular velocity at the operational radius. This solution represents
the nominal ring with perfect intersatellite spacing.

To investigate ring formation and stationkeeping the 2N equations
of motion will be linearized relative to the nominal ring. This may
be achieved by defining new variables,

= 0. - cot
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Introduction

MULTIPLE-SATELLITE rings have been considered recently
for a variety of mission applications. These applications cen-

ter on global point-to-point communications, such as Teledesic and
Iridium.1 The formation and stationkeeping of such large constella-
tions pose new and interesting problems in orbital dynamics.

To ensure global coverage, the intersatellite spacing must be main-
tained. Small altitude errors will, if uncorrected, result in phasing
drifts and clustering of the satellites. There is a requirement, there-
fore, to ensure that uniform intersatellite spacing is maintained. To
control the dynamics of each satellite individually from a ground
station would be both complex and expensive. Therefore, an au-
tonomous system is preferable, resulting in lower operational costs
and greater operational flexibility.

Such autonomous stationkeeping has been developed for single
satellite platforms.2 However, with multiple satellite rings the sys-
tem to be controlled must be considered as the entire, collective
ensemble of satellites. As such, the orbit control problem is signifi-
cantly more complex as a large number of individual satellites must
be controlled simultaneously.

In this Note a novel, autonomous ring formation and station-
keeping method is considered. Using simple analytic commands,
a "loose" ring of satellites can be formed into a perfect ring with

(3)
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where the subscript is now understood to run from 1 to N. The
linearized system of equations may now be written in the new vari-
ables as

(4)
+ 2ft)// =

In linearizing it has been assumed that ///r <£C 1 and that </>/ <£ 1
but not that $ itself is small. This set of linear equations may now
be used to generate the controls required for ring formation.

Equator

Fig. 1 Schematic geometry of an W-satellite ring.
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Ring Formation
To achieve emergent formation of the ring, Lyapunov's theorem

will be used along with a scalar artificial potential function. The
potential function method has been developed for other spacecraft
control applications.3'4 To form the ring each satellite will experi-
ence a repulsive acceleration in the azimuthal direction due to the
other N — I satellites in the ring. Then over several orbital periods,
uniform intersatellite spacing will emerge. To generate these accel-
erations the ith satellite will observe the other N — 1 satellites as
regions of high artificial potential.

It is clear that the required potential must be periodic so that

= 0,1 ,2 , . . . , integer (5)

In principle, a Fourier series may be used to generate suitable peri-
odic functions. However, for ease of illustration the following func-
tion will be used:

(6)

This function generates singular points of unbound potential when
the zth satellite occupies the same azimuthal location as any of
the other N — 1 satellites. The potential falls rapidly away from
these locations, yielding a repulsive intersatellite acceleration. The
potential of the entire system is then given by

(7)

The equilibrium configuration of the system will then be achieved
when total potential of the system is minimized, viz.,

dV
= 0, (8)

This is analogous to minimum energy configurations for crystal
lattices.5 For a periodic system it is clear that a minimum energy
configuration is possible when

(9)

This configuration corresponds to the desired uniform intersatellite
spacing.

The potential will now be augmented with kinetic terms to ensure
that each satellite remains in its azimuthal slot once the ring has been
formed. To this end, the total potential will now be written as

(10)

(11)

(12)

The time rate of change of this function is then given by
N NdV

i = 1

where

V J = X f

This expression may be simplified by using the following identity,
valid for antisymmetric functions,

N N

(13)

Therefore, the time rate of change of the potential of the system
may be written as

dV— (14)

For the minimum energy configuration to be formed it is necessary
that the time rate of change of the potential of the system is negative
definite. This is clearly analogous to cooling a crystal system for
lattice formation.

Substituting for the radial and transverse accelerations from
Eqs. (4), one can show that the following controls render the rate of
change of the system potential negative definite,

an = -Kuif - 2a)r<j>i - 3o>2//

f + 2rX/ sec2(0/7
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Fig. 2 Evolution of the mean intersatellite spacing during ring formation [KU = K,^ = 10~3, A, = 10~n (i = 1 , . . . , N)].
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where the constants K and X are chosen to generate the desired
transient response. Using these controls the rate of change of the
potential of the system is given by

(16)

which is clearly negative definite as required.

Implementation
The method will now be implemented in a simple numerical ex-

ample. A single ring of 10 satellites will be considered at an op-
erating altitude of 400 km. The nominal spacing for the satellites
will then be 36 deg. Each satellite will be perturbed by a random
amount, up to 10 km in the azimuthal direction. It will be assumed
for ease of illustration that there are no radial positioning errors in
the system. Such errors can be easily accommodated through minor
modifications to the method.

The controls defined by Eqs. (15) generate small accelerations
in the radial and transverse directions that generate an azimuthal
drift in each of the 10 satellites. As each satellite moves, its motion
perturbs the other nine satellites, leading to a complex nonlinear
interaction. However, due to the damping terms in the controls, the
potential is monotonically decreasing through these interactions. It
should be noted that the potential function of any single satellite is
not guaranteed to decrease. Only the total potential of the system
will monotonically decrease. Therefore, the partitioning of potential
between satellites will vary owing to the nonlinear intersatellite
interactions.

The mean intersatellite spacing is defined by the following
function:

1
(17)

It can be seen from Fig. 2 that a mean spacing of 36 deg is indeed
achieved through the use of these controls. This corresponds to the
"minimum energy" configuration of the system. This configuration
is then stable against perturbations to the ring. For example, if one
satellite in the ring were to fail, the ring would then autonomously
reform to generate uniform spacing with the remaining N — I satel-
lites and hence uniform coverage. Similarly, if an on-orbit spare
within the ring is activated to replace a failed satellite, the ring will
again autonomously reform. Such an autonomous capability may
greatly reduce ground segment work loads.

Conclusions
A method has been investigated that allows the autonomous for-

mation of a ring of satellites. The method uses information on the
intersatellite spacing to generate low-thrust radial and transverse
control accelerations. Using the concept of potential functions, the
uniform ring is seen as a minimum energy configuration of the sys-
tem. The control accelerations ensure that the potential function of
the entire system monotonically decreases so that this minimum en-
ergy configuration is achieved from any initial configuration. It is
believed that such autonomous methods may provide significant op-
erational advantages for future multisatellite rings for global point-
to-point communications.
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I. Introduction

T HE mission ROSETTA is planned to send a spacecraft to a
comet, to rendezvous and explore its features and to land on

the surface and take samples. This Note refers to a problem encoun-
tered in a previous study1'2 of computing a complicated sequence of
maneuvers to fly over five candidate landing sites while subject to
several constraints. Despite the fact that it is initially acceptable to
employ classical orbital mechanics approximating the gravitational
field as spherical, the dimensionality of the problem and the numer-
ous constraints frustrated an efficient computer algorithm to handle
five sites. The use of a genetic algorithm appears, however, to pro-
vide a very satisfactory solution.

II. Close Observation of a Comet
A. Specification of the Required Strategy and Constraints

A strategy of maneuvers is required to pass over up to five candi-
date landing sites at an altitude of 5 km and accomplish the sequence
within 20 days subsequent to the following constraints: 1) commu-
nication to Earth must not be interrupted by an occultation, 2) or-
bits should be such that impact does not occur if a maneuver fails,
3) the normal to an orbit plane must not be too close to the direction
from spacecraft to Earth in order to preserve a Doppler radiometric
ground-based measurement, 4) the landing zones must be illumi-
nated at flyover, and 5) viewing should occur from within 30 deg of
the surface normal.

B. Orbital Mechanics
The motion of the comet nucleus is to be regarded as spinning

and nutating, although in this Note only spin has been assumed.
The extension of the computer program to include nutation would
be only a minor modification, viz., preintegration and storage of the
Euler equations of rotational motion for a rigid body. As in the earlier
study, an irregularly shaped nucleus has been approximated as an
ellipsoid, but this could be generalized by means of a representation
in terms of a series of spherical harmonics.

As a result of the rotation of the comet nucleus, the specification of
a given flyover time over an identified site implies a position vector
in nonrotating (ecliptic) axes. Thus, if five flyover times are specified
for a given sequence of sites, the trajectory around the comet must
pass through five known points. This condition can be satisfied by
five maneuvers, and the restriction has been accepted (not necessary)
that there is one maneuver in each interval before a flyover time.
It follows that for each flyover only the following parameters are
necessary: 1) site to be visited and hence a position vector in rotating
body axes of the comet nucleus, 2) time of maneuver preceding a
given flyover, 3) time of flyover, and 4) orbit integer (+1 or —1) to
indicate whether an orbit connects two position vectors by traversing
over the subtended angle or 360 deg less than angle.

Further explanation is, however, necessary with respect to the cal-
culation of the orbits passing through the flyover points and starting
from given initial conditions. Apart from the use of several standard
formulas of conic orbits, a special treatment is needed of Lambert's
theorem (Ref. 3, Sec. 7.4), which states that if an orbital transfer oc-
curs from position vector r{ to r2, then the time of transfer t depends
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