Tuning electronic and magnetic properties of silicene with magnetic superhalogens†

Tianshan Zhao,a Shunhong Zhang,a Qian Wang,*ab Yoshiyuki Kawazoe,c and Puru Jena,b

Due to its compatibility with the well-developed Si-based semiconductor industry, silicene has attracted considerable attention. Using density functional theory we show for the first time that the recently synthesized superhalogen MnCl3 can be used to tune the electronic and magnetic properties of silicene, from semi-metallic to semiconducting with a wide range of band gaps, as well as from nonmagnetic to ferromagnetic (or antiferromagnetic) by changing the coverage of the superhalogen molecules. The electronic properties can be further modulated when a superhalogen and a halogen are used synergistically. The present study indicates that because of the large electron affinity and rich structural diversity superhalogen molecules have advantages over the conventional halogen atoms in modulating the material properties of silicene.

I. Introduction

In spite of the unique properties of graphene1 and considerable efforts in the past decade to functionalize it for tailored applications, its limitations have spurred much interest in the search of alternate two-dimensional (2D) materials beyond graphene. Among these is silicene, a 2D allotrope of silicon, which can be easily integrated into the currently well-developed Si-based semiconductor industry. Following the theoretical prediction of its possible existence,1–3 many experimental efforts have been devoted to the synthesis of silicene, and some significant progress has been reported.4–6 Silicene has a buckled honeycomb structure. Due to the strong spin orbit interaction, it has the potential to overcome limitations encountered in graphene, particularly, the weak spin orbit interaction. In addition, the quantum Hall effect and topological insulating states in silicene have been demonstrated.7,8 However, similar to graphene, pristine silicene is a gapless semiconductor9,10 and has a linear energy–momentum relationship in the vicinity of the Dirac point.2,5 Although the linear band dispersion gives rise to high carrier mobility, the absence of band gap hinders its practical application in building realistic nano-electronic devices. Inspired by extensive attempts to open the band gap in gapless graphene, similar strategies have been proposed to tailor the electronic structure of silicene, including introduction of local defect or Si adatoms,11 applying external electric fields,12,13 chemical functionalization like hydrogenation14–16 or halogenation,17 and doping foreign atoms such as alkali metal,18–20 or 3d transition metal atoms,20,21 or some other light atoms.22

In this work, we consider, for the first time, the use of magnetic superhalogen molecules instead of the conventional halogen atoms to modulate the electronic structure as well as the magnetism of silicene. Superhalogens belong to an important family of superatoms23 that possess electron affinity (EA) even larger than Cl, the element with the highest EA in the periodic table. Among all the studied superhalogens, MnCl3 belongs to a unique class of magnetic family which has been recently studied theoretically24,25 and synthesized experimentally.24 The high EA and intrinsic magnetism of MnCl3 make this superhalogen family particularly desirable for functionalizing materials. We choose MnCl3 as a representative of magnetic superhalogens to functionalize silicene. We address the following questions: what is the preferable adsorption site of MnCl3 on a silicene sheet? How do the geometry and electronic structure of silicene change with the coverage of MnCl3? Can silicene be rendered magnetic with appropriate choice of ligands?

II. Computational procedures

The atomic structure and electronic and magnetic properties are calculated using spin-polarized density-functional theory (DFT) and generalized gradient approximation (GGA) for exchange and correlation potential as implemented in the Vienna Ab initio Simulation Package (VASP).27 The projector-augmented wave (PAW) method and Perdew–Burke–Ernzerhof (PBE) exchange
correlation functional26 are used. For all structural relaxation the convergence criteria for total energy and Hellmann–Feynman force are set to 10^{-4} eV and 10^{-2} eV Å-1, respectively. The plane-wave cutoff energy is set to 450 eV. The $3s^33p^2$, $3d^44s^1$, and $3s^33p^5$ electron orbitals are treated as valence states for Si, Mn and Cl, respectively. A 3×3 supercell with a vacuum space of 15 Å between the silicene sheets in the direction perpendicular to the plane is used in order to avoid virtual interactions. The Brillouin zone is sampled using a $7 \times 7 \times 1$ k-point grid within the Monkhorst–Pack scheme.29 To study the thermodynamics of the adsorption of MnCl\textsubscript{3} onto silicene sheets, we calculate the adsorption energy E_a as

$$E_a = -(E_{\text{total}} - nE_{\text{MnCl}_3} - E_{\text{silicene}})$$

where E_{total}, E_{MnCl_3}, and E_{silicene} are the total energies of MnCl\textsubscript{3} adsorbed silicene, MnCl\textsubscript{3} molecule, and pristine silicene, respectively. n is the number of MnCl\textsubscript{3} molecules. The parameter Δ used to measure the average buckling of silicene sheets upon surface decoration is defined as

$$\Delta = 2(\text{sum of heights of top atoms} - \text{sum of heights of valley atoms})/\text{total number of atoms}.$$

III. Results and discussion

We begin with the total energy calculations of neutral MnCl\textsubscript{3} and pristine silicene to test our computational procedure. The lowest energy structure of neutral MnCl\textsubscript{3} is found to be the same as that identified earlier by comparing experiment and theoretical calculations.24 The ground state configuration of MnCl\textsubscript{3} has a planar geometry with C_{2v} symmetry with the Mn atom in the center and the three Cl atoms bonded to the Mn dissociatively. The calculated two different Mn–Cl bond lengths (2.14 Å and 2.16 Å, respectively), spin magnetic moment (4.0 μ_B) and EA (4.90 eV) of MnCl\textsubscript{3} are in good agreement with previous results.24 For pristine silicene, the calculated lattice parameter, average buckling and average Si–Si bond lengths are 3.89, 0.49 and 2.29 Å, respectively, which compare well with the corresponding values of 3.83, 0.44 and 2.25 Å obtained in a previous study.3

1. Modulation with MnCl\textsubscript{3} in low coverage

To determine the preferable adsorption site of MnCl\textsubscript{3} on silicene we considered six possible initial configurations in the 3×3 silicene supercell, as shown in Fig. 1. In configuration (a) MnCl\textsubscript{3} is introduced on the top site of a Si atom via formation of the Mn–Si bond. In configuration (b) MnCl\textsubscript{3} is placed on the hollow site of a hexagon where Cl bonds with Si. In configuration (c) the MnCl\textsubscript{3} plane is vertical to the silicene surface via the Cl–Si bonding where the Cl–Si bond is along the C_{2v} axis of MnCl\textsubscript{3}. Configuration (d) is similar to configuration (c) except that the Cl atom bonded to silicene is not on the C_{2v} axis. In configuration (e), MnCl\textsubscript{3} penetrates into the sheet where the Mn atom is at the center of the hexagon. Finally, in configuration (f), the C_{2v} axis of MnCl\textsubscript{3} is vertical to the silicene sheet with each of the two symmetrical Cl atoms bonded with a Si atom. Upon full geometry optimization, configurations (a), (b), and (f) converged to the same structure, as shown in Fig. 2(a), which is found to be the lowest energy configuration of the MnCl\textsubscript{3}-adsorbed silicene. Configurations (c) and (d) are higher in energy by 0.43 and 0.56 eV, respectively, than the lowest energy structure. In configuration (e) MnCl\textsubscript{3} dissociated resulting in a much higher energy structure (1.31 eV). In the lowest energy configuration, we label the two different sub-lattices of silicene as sublattice “A” and “B”, respectively, corresponding to the “top” and “valley” sites marked in previous work.20 The Mn atom becomes 4-fold coordinated and the planar structure of MnCl\textsubscript{3} is deformed due to the chemical bonding between Mn–Si and Cl–Si. The average buckling of the MnCl\textsubscript{3}-adsorbed silicene is 0.53 Å, which is slightly larger than 0.49 Å in pristine silicene. The average Si–Si bond length (2.33 Å) is also slightly longer than that of the pristine sheet (2.29 Å). The Si–Mn bond length is 2.67 Å. The average Cl–Si and Cl–Mn bond lengths are 2.23 and 2.20 Å, respectively. Our calculated adsorption energy of MnCl\textsubscript{3} on silicene is 1.34 eV, which is larger than that of Cl or Si to silicene (1.018 eV and 0.03 eV, respectively),11,30 but smaller than that of F to silicene (1.982 eV).30 The calculated results are listed in Table 1.

To study the effect of MnCl\textsubscript{3} adsorption on the electronic structure of silicene, we calculated the electronic band structure and the partial density of state (PDOS). The results are given in Fig. 3(a). The band structure shows that the spin up channel exhibits metallic behavior as two partially occupied bands cross the Fermi level in between the M and K points in the Brillouin zone, while the spin down channel exhibits semiconducting...
features with a direct band gap of 0.28 eV at the Γ point, suggesting that the MnCl$_3$-adsorbed silicene is half-metallic. From the PDOS we see that the electronic states near the Fermi level are mainly located in the spin up channel and contributed by the Si 3p and Mn 3d orbitals. The conduction bands in the spin up channel are dominated by the Mn 3d orbitals while the valence bands are mainly contributed by the Si 3p and Mn 3d orbitals. In contrast, in the spin down channel the valence bands are mainly contributed by the Si 3p and Mn 3d orbitals. The conduction bands in the spin down channel are dominated by the Si 3p orbitals while the valence bands are mainly contributed by the Mn 3d and Si 3p orbitals. Therefore, we conclude that the adsorption of MnCl$_3$ opens the band gap in the spin down channel while making the spin up channel metallic, thus transforming silicene from a gapless band gap in the spin down channel while making the spin up channel metallic.

Table 1: Comparison of Si–Si, Mn–Si, Cl–Si, and Mn–Cl bond lengths (in Å), the average buckling parameter Δ (in Å), adsorption energy E_a (in eV), band gap E_g (in eV), and magnetic moment M (in μ_B) for different coverages and configurations. S and D stand for a single and two MnCl$_3$ superhalogen molecules in the supercells. T represents one MnCl$_3$ molecule and one Cl atom in the supercell, the superscripts 1 and 2 stand for adsorption on the same side and on opposite sides, respectively.

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Si–Si</th>
<th>Mn–Si</th>
<th>Cl–Si</th>
<th>Mn–Cl</th>
<th>Δ</th>
<th>E_a</th>
<th>E_g</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>II</td>
<td>2.33</td>
<td>2.67</td>
<td>2.23</td>
<td>2.20</td>
<td>0.53</td>
<td>-1.34</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>III</td>
<td>2.31</td>
<td>2.62</td>
<td>2.25</td>
<td>2.20</td>
<td>0.53</td>
<td>-1.46</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>IV</td>
<td>2.29</td>
<td>2.60</td>
<td>2.26</td>
<td>2.20</td>
<td>0.50</td>
<td>-1.53</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>V</td>
<td>2.29</td>
<td>2.55</td>
<td>2.26</td>
<td>2.20</td>
<td>0.50</td>
<td>-1.61</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>VI</td>
<td>2.29</td>
<td>2.50</td>
<td>2.45</td>
<td>2.20</td>
<td>0.58</td>
<td>-2.83</td>
<td>0.28</td>
<td>8.00</td>
</tr>
<tr>
<td>VII</td>
<td>2.30</td>
<td>2.45</td>
<td>2.20</td>
<td>0.51</td>
<td>-3.92</td>
<td>0.63</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>VIII</td>
<td>2.29</td>
<td>2.63</td>
<td>2.23</td>
<td>2.21</td>
<td>0.53</td>
<td>-3.48</td>
<td>0.25</td>
<td>3.00</td>
</tr>
<tr>
<td>IX</td>
<td>2.29</td>
<td>2.63</td>
<td>2.23</td>
<td>2.16</td>
<td>0.52</td>
<td>-4.05</td>
<td>0.02</td>
<td>5.00</td>
</tr>
</tbody>
</table>

For the higher coverage case involving two MnCl$_3$ molecules we then considered the 3×3 silicene supercell. We first introduced two superhalogen molecules on the same side of silicene. Due to the C_{2v} symmetry of MnCl$_3$, different adsorption sites of the superhalogens and their different relative orientations result in different adsorption configurations. We, therefore, carried out extensive search for the lowest energy configuration of the two-MnCl$_3$-adsorbed silicene system with full geometry optimization. The initial adsorption configurations are provided in Fig. S2 (ESI†). We term this system 2MnCl$_3$-silicene-SS, where “SS” means the two superhalogens are adsorbed onto the Same Side of the silicene sheet. The lowest energy configuration is plotted in Fig. 5(a), where the average bond lengths of Mn–Si, Cl–Si, and Mn–Cl are 2.50, 2.45, and 2.20 Å, respectively. The average bond length of Si–Si remains unchanged. The average buckling and adsorption energy per superhalogen are calculated to be 0.58 Å and 1.42 eV, which are larger than those of the single MnCl$_3$-adsorbed case by 0.05 Å and 0.07 eV, respectively. This is due to the change in the electronic structure of the silicene substrate following the adsorption of the first MnCl$_3$ moiety, consequently resulting in a stronger binding for the second adsorbate.

The calculated electronic band structure is plotted in Fig. 3(b), which shows that the adsorption of two MnCl$_3$ superhalogens opens the band gap of silicene in both the spin up and spin down channels forming an indirect band gap semiconductor with a gap of 0.42 eV (the gap of the spin up channel is 0.44 eV, while that of the spin down channel is 0.72 eV). The PDOS shows that the electronic states in the valence bands near the Fermi level are mainly contributed by the Si 3p and Mn 3d orbitals with a small contribution from the Cl 3p orbitals. Si 3p orbitals shift down below the Fermi level as superhalogens draw electrons from silicene. In fact, charge analysis suggests that there are 0.61 electrons transferred from Si 3p$_e$ orbitals of the substrate to the Cl 3p$_e$ orbital of MnCl$_3$.

To study the magnetic coupling between the Mn atoms in MnCl$_3$ supported on silicene, we calculated the energy difference E_{ex} between the ferromagnetic (FM) and AFM coupling configurations, which is defined as $E_{ex} = E_{AFM} - E_{FM}$. The FM state is found to be 20 meV lower in energy than the AFM state. The total moment of the 2MnCl$_3$-silicene-SS configuration is 8 μ_B of which magnetic moments of 3.89 μ_B and 3.96 μ_B are carried by the two Mn atoms. The Cl atoms are polarized ferromagnetically to the Mn atoms with each Cl atom carrying a magnetic moment of about 0.06 μ_B. The Si atoms on the substrate are mainly antiferromagnetically polarized, as visualized in Fig. 5(b).

We then study the adsorption of two MnCl$_3$ moieties placed on opposite sides of silicene. There are also many possible...
Fig. 4 (a–c) Perspective view of the geometry of MnCl₃-adsorbed silicene in 4 × 4, 5 × 5, and 6 × 6 supercells. (d–f) The corresponding spin charge density isosurfaces with an isovalue of 0.01 e Å⁻³. Green and red isosurfaces represent the spin-up and spin-down charges, respectively.

Fig. 3 Spin-polarized band structure and PDOS of (a) MnCl₃-adsorbed silicene, (b) 2MnCl₃–silicene–SS, and (c) the 2MnCl₃–silicene–OS. The high symmetry K point paths are Γ(0, 0) → M(1/2, 0) → K(1/3, 1/3) → Γ(0, 0). The Fermi level is at 0.00 eV.
adsorption configurations. We have tried 13 different configurations to search for the lowest energy structure, as shown in Fig. S3 (ESI†). After full geometry optimization for each configuration, the lowest energy structure is found where the two superhalogens occupy the same hexagon of silicene with different orientations, as shown in Fig. 6(a). Accordingly, we term this system 2MnCl_3–silicene-SS, wherein "SS" means the two superhalogens adsorbed onto the Opposite Sides of silicene. The average bond lengths of Si–Si, Mn–Si, Cl–Si, and Mn–Cl are 2.31 Å, 2.45 Å, 2.31 Å, and 2.20 Å, respectively. The average buckling parameter, Δ, of the 2MnCl_3–silicene-OS system is 0.51 Å. The adsorption energy is calculated to be 3.92 eV, which is 1.09 eV larger than the configuration where the two MnCl_3 superhalogens are adsorbed onto the same side of silicene. These hybrid adsorption configurations are given in Fig. S4 (ESI†). The most preferable configuration, determined upon full geometry optimization of all the configurations, is given in Fig. 7(a). The average Si–Si, Mn–Si, Cl–Si, and Mn–Cl bond lengths are 2.29 Å, 2.63 Å, 2.23 Å, and 2.21 Å, respectively. The buckling parameter, Δ, is found to be 0.53 Å, indicating that the effect of adding a Cl atom to the system on its geometry is subtle. However, band structure and total energy calculations show that the electronic and magnetic properties are substantially affected by introducing a Cl atom into the system. The electronic band structure in Fig. 8(a) shows that the hybrid structure with a superhalogen and a halogen co-adsorbed onto silicene is an indirect band gap semiconductor with a gap of 0.25 eV. The band gap of the spin-up channel is 0.62 eV while that of the spin-down channel is 0.56 eV, indicating that the hybrid system changes into a semiconductor from a half-metal of the superhalogen-adsorbed silicene. In addition, co-adsorption of a halogen and a superhalogen makes the substrate antiferromagnetically polarized. The Mn atom carries a magnetic moment of 4.04 μ_B and its two neighboring Cl atoms bonded to the substrate in MnCl_3 are polarized antiferromagnetically, while the other neighboring Cl is coupled ferromagnetically to Mn, leading to a total moment of 3 μ_B per supercell. The magnetic moment on the isolated Cl atom is $-0.03 \mu_B$, which is also polarized anti-ferromagnetically. The isosurface of the spin density distribution is plotted in Fig. 7(b).

We then introduced a Cl atom on the opposite side of MnCl_3. We again generated ten nonequivalent configurations as shown in Fig. S5 (ESI†). The most preferable configuration is plotted in Fig. 7(b). The average Si–Si, Mn–Si, Cl–Si, and Mn–Cl bond lengths are calculated to be 2.29 Å, 2.63 Å, 2.23 Å, and 2.16 Å, respectively. The buckling parameter, Δ, is 0.53 Å,
showing once again that Cl does not have much influence on the geometry once silicene is decorated with the MnCl$_3$ superhalogen. Compared to the configuration where Cl is adsorbed onto the same side, this configuration is 0.57 eV lower in energy, suggesting that the halogen and superhalogen prefer to occupy opposite sides of silicene. Different from the configurations with both Cl and MnCl$_3$ on the same side, the Mn atom carries a magnetic moment of 4.39 μ_B and the three neighboring Cl atoms are polarized ferromagnetically. Some of the Si atoms in the substrate are also polarized ferromagnetically, as shown in Fig. 7(b$_2$), leading to a total magnetic moment of 5 μ_B per supercell. The calculated band structure indicates that this system has a narrow direct band gap of 0.02 eV, as shown in Fig. 8(b), although both the spin-up and spin-down channels have a band gap of 0.22 eV. This system can be viewed as a novel quasi-spin-gapless semiconductor9,10 in which the valence electrons in the spin up channel can be easily excited into the spin down channel.
IV. Summary

Halogens, including F, Cl, Br, I and At, exhibit high electron affinities, superior chemical reactivity and strong oxidizing properties. The extensive use of halogens for materials synthesis and modification led us to explore functionalization of materials using superhalogens, which display even larger electron affinity, richer structural diversity, as well as novel properties compared to halogens. In this study, for the first time, we have investigated functionalization of silicene using a magnetic superhalogen, namely, MnCl₃, which has been synthesized recently. From the results in Table 1 the following conclusions can be drawn: (1) MnCl₃ prefers to occupy the hollow site of silicene where the Mn atom and two Cl atoms are bonded with the substrate, resulting in a 4-coordinated configuration for Mn. (2) When two MnCl₃ molecules are introduced into silicene, they prefer to reside on opposite sides. Similar is the case when MnCl₃ and one Cl atom are co-adsorbed. (3) The electronic properties and band gap of silicene can be tuned by varying the concentration of MnCl₃ as well as by simultaneously functionalizing with MnCl₃ and Cl. For example, with a single MnCl₃ molecule, functionalized silicene can be tuned from a gapless semiconductor to a half-metal, with two MnCl₃ molecules to an indirect band gap semiconductor, and finally back to a quasi-spin-gapless semiconductor by introducing one MnCl₃ molecule and one Cl atom. The band gap changes over a wide range from 0.02 to 0.63 eV, depending on the concentration and the dopant. (4) Once the first MnCl₃ molecule is adsorbed, it changes the electronic structure of the substrate and results in a stronger binding of the second adsorbate. (5) Magnetism shows complicated behavior: in an isolated state MnCl₃ has a magnetic moment of 4 \(\mu_B \). When one MnCl₃ molecule is incorporated into a supercell, the total moment of the supercell remains 4 \(\mu_B \). This can be changed to 3 or 5 \(\mu_B \) if a Cl atom is introduced on the same side or on the opposite side of MnCl₃. When two MnCl₃ superhalogens are adsorbed onto the same side, the coupling between Mn atoms is FM, resulting in a total moment of 8 \(\mu_B \) per supercell. However, the coupling becomes AFM when the two superhalogens reside on opposite sides. The induced polarization of silicene also sensitively depends on the concentration and the identity of the adsorbates, providing additional freedom for tuning the structure and properties of silicene. We hope that our theoretical study can motivate experimentalists to use superhalogens to functionalize silicene.

Acknowledgements

This work was partially supported by grants from the National Natural Science Foundation of China (NSFC-11174014 and NSFC-21273012), the National Grand Fundamental Research 973 Program of China (Grant No. 2012CB921404), and the Doctoral Program of Higher Education of China (20130001110033). PJ acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award # DE-FG02-96ER45579. The authors thank the crew of the Center for Computational Materials Science, the Institute for Materials Research, Tohoku University (Japan) for their continuous support of the HITACHSR11000 supercomputing facility.

References