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Abstract Laminar flame speed is one of the most impor-

tant intrinsic properties of a combustible mixture. Due to

its importance, different methods have been developed to

measure the laminar flame speed. This paper reviews the

constant-volume propagating spherical flame method for

laminar flame speed measurement. This method can be

used to measure laminar flame speed at high pressures and

temperatures which are close to engine-relevant conditions.

First, the propagating spherical flame method is introduced

and the constant-volume method (CVM) and constant-

pressure method (CPM) are compared. Then, main groups

using the constant-volume propagating spherical flame

method are introduced and large discrepancies in laminar

flame speeds measured by different groups for the same

mixture are identified. The sources of discrepancies in

laminar flame speed measured by CVM are discussed and

special attention is devoted to the error encountered in data

processing. Different correlations among burned mass

fraction, pressure, temperature and flame speed, which are

used by different researchers to obtain laminar flame speed,

are summarized. The performance of these correlations are

examined, based on which recommendations are given.

Finally, recommendations for future studies on the con-

stant-volume propagating spherical flame method for

laminar flame speed measurement are presented.

Keywords Laminar flame speed � Propagating
spherical flame � Constant-volume method � Burned
mass fraction � Methane/air

1 Introduction

Laminar flame speed, Su
0, is an important intrinsic property

of a combustible mixture. It is defined as the speed at which

an adiabatic, unstretched, premixed planar flame propagates

relative to the unburned mixture [1]. Laminar flame speed

contains the physicochemical information about the mix-

ture’s diffusivity, reactivity, and exothermicity. It affects or

even determines the burning rate of fuel/air mixtures in

practical combustion systems [2]. Besides, many premixed

flame phenomena, such as extinction, flash back, and blow

off can be characterized by Su
0 as a reference parameter [3].

In fundamental combustion research, Su
0 is an important

target for the validation of chemical mechanisms and for

development of surrogate fuel models (e.g., [4–6]). Accu-

rate flame speeds measured at high pressures and temper-

atures are very useful for developing/validating kinetic

mechanisms of fuels. Furthermore, Su
0 is popularly used as a

scaling parameter for turbulent flame speed; and it is used in

certain turbulent premixed combustion modelling [7].

Due to the importance of Su
0, great attention has been paid

to its accurate measurement. As reviewed in Refs. [1, 8, 9],

several experimental approaches have been developed to

measure Su
0 using different flame configurations, including

Bunsen flame [10], counter flow or stagnation flame

[11–14], burner stabilized flat flame [15, 16], and outwardly

propagating spherical flames [2, 8, 10, 17–32].

The Bunsen flame method was introduced by Bunsen

[33]. This method was very common in the first century of
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its introduction due to its simplicity andwell defined structure.

However, in recent years, it has been realized that Bunsen

flame is affected by different factors such as flame instability,

stretch, curvature and heat loss [34, 35]. Counter flowflame or

stagnation flame was introduced in Ref. [36] and then it was

used to measure Su
0 [12]. The advantage of this method is that

the influence of stretch on flame speed can be quantified and

extracted by using the procedure proposed by Wu and Law

[12]. However, it is difficult to use this method at pressures

above 5 atm (1 atm = 1.013 9 105 Pa) [9]. The burner-sta-

bilized flat flame method was first proposed by Botha and

Spalding [37]. Later deGoey et al. [38] proposed the so-called

heat flux method to measure Su
0 from burner-stabilized flat

flame. It has the advantages in circumventing the heat loss

issue in burner stabilized flat flame. The drawbacks of heat

fluxmethod are the uncertainty of themethod due to radiation,

boundary condition effect at the burner surface, catalytic

effect of the metal surface, flame instability and flow distur-

bance from the burner holes [9, 39]. It is alsodifficult to use the

heat flux method at high pressures.

According to above discussion, it is difficult to use

Bunsen flame, stagnation flame, and burner-stabilized flat

flame to measure Su
0 at high pressures. Currently, the

propagating spherical flame method, which will be intro-

duced in the next section, is the only method which can

measure Su
0 at high pressure close to that in internal com-

bustion engines and gas turbines (20–50 atm) [40].

Several excellent review papers [1, 8, 9] have been

published on laminar flame speed measurement. However,

unlike other methods, the constant-volume propagating

spherical flame method has received little attention. As

shall be discussed in the next section, the constant-volume

propagating spherical flame method is the only available

method to measure Su
0 at simultaneously high temperatures

and high pressures close to engine-relevant conditions.

Therefore, this review is focused on the constant-volume

propagating spherical flame method. It is noted that a

thorough review for this method was given by Rallis and

Garforth [8]. However, for the constant-volume propagat-

ing spherical flame method, there are several correlations

in Refs. [29, 41–49] which can be used to obtain Su
0 during

data processing. It is still not clear which correlation is the

most accurate and reliable in terms of Su
0 determination.

The present paper is a contribution to examine and review

the performance of these correlations and to clarify the

strength and weakness of different correlations.

2 The propagating spherical flame method for Su
0

measurement

Using propagating spherical flame method to measure Su
0

goes back to 1920s when the soap bubble method was first

introduced by Stevens [50]. In this method, a spherical flame

propagates outwardly after central spark ignition in quies-

cent homogeneous combustible mixture [8, 10]. As shown in

Fig. 1, the flame front history or pressure history is recorded,

based on which Su
0 can be determined. At the early stage of

flame propagation, the flame curvature/stretch effects are

considerable; and the pressure rise is negligible. Later the

pressure rise rate increases greatly and the curvature/stretch

effects become negligible [51]. Depending on the chamber

design as well as the pressure rise, there are two different

methods for Su
0 measurement by using propagating spherical

flames: one is the constant-pressure method (CPM) and the

other one is the constant-volume method (CVM). Figure 1

schematically describes and compares these two methods.

As indicated by the dashed ellipses in Fig. 1, flames with

small radii (e.g., 1 B Rf B 2 cm) are used in CPM so that

the pressure rise is negligible; conversely in CVM since

discernable pressure rise is required data corresponding to

relatively large flame radii are used.

The constant-pressure propagating spherical flame

method (CPM) was first used by Ellis [52] in 1928 who

investigated the confinement effect on flame shape in a

spherical glass chamber. In CPM, high-speed schlieren or

shadow photograph is used to record the flame front

propagation [53, 54], from which the evolution of flame

radius, Rf = Rf (t), is obtained. When the pressure rise is

negligible, the burned gas can be assumed to be static and

thus the flame speed relative to burned gas is Sb = dRf/

dt. Extrapolation to zero stretch rate is conducted to obtain

the unstretched flame speed with respect to burned gas, Sb
0.

Finally, the laminar flame speed is determined through

Su
0 = rSb

0, where r = qb/qu is the density ratio between

burned and unburned gases [55, 56]. There are two main

advantages of CPM [51]: (1) direct view from schlieren/

shadow photograph helps to identify the flame instability,

which thereby can be prevented in data processing; (2)

there exists a quasi-steady spherical flame propagation

period during which the stretch effect can be eliminated

through extrapolation to zero stretch rate. In the literature,

there are extensive studies on Su
0 measurement using the

CPM. The readers are referred to Refs. [9, 57, 58] and

references therein for more details.

The constant-volume propagating spherical flame

method (CVM) was first used in 1934 by Lewis and von

Elbe [49]. In CVM, outwardly propagating spherical flames

occur in a closed thick-walled spherical vessel and the

evolution of chamber pressure rather than flame radius is

recorded. Figure 1 shows that the pressure rise is evident

only when the flame radius is large enough. The recorded

pressure history is then used to determine Su
0 through cor-

relations between Su
0, pressure, pressure rise rate, and

burned mass fraction. This method has the advantage that

Su
0 for a given mixture over a wide range of pressures and
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temperatures can be simultaneously measured from a sin-

gle test [8]. Moreover, it is possible to use CVM to measure

Su
0 in engine-relevant pressures and temperatures of

50–70 atm. and 700–800 K [40]. However, CVM has the

disadvantage that the possible appearance of flame insta-

bility is not identified and thereby the accuracy in Su
0

measurement may be reduced.

Both CPM and CVM have been used to measure Su
0 at

high pressures [59, 60]. Because of the requisite of optical

access, the upper pressure limit of CPM is usually lower

than that of CVM. However, dual chambers have been used

to develop the pressure-release type high-pressure com-

bustion facilities [17, 20] and pressures up to 60 atm have

been reached for the CPM. The outer chamber is filled with

an inert mixture and thus flame propagation terminates as it

reaches the wall of the inner vessel. Therefore, excessive

pressure buildup can be prevented using dual chambers.

Compared to CVM, the main drawback of CPM is its

relatively low temperature ranges [40]. To increase the

initial temperature, both electrical heating [61] and external

heating oven [62] can be used which enable to increase the

initial temperature to 500 K. In the external heating oven,

an electrical fan is incorporated to keep the non-uniformity

of temperature below 5 K. Electrical heating is also used to

increase the initial temperature of the vessel in CVM [63].

For CPM, a pair of windows need to be embedded on the

surface of combustion chamber. Consequently, it is

impossible to conduct spherical flame experiments at

simultaneously high pressure and high temperature ranges

by CPM, and the temperature cannot reach the value close

to engine-relevant conditions [40]. Unlike CPM, CVM

does not require optical access and experiments can be

conducted in a completely closed chamber. Therefore, as

pointed out by Xiouris et al. [40], very high pressure and

temperature close to engine-relevant conditions can be

reached by CVM for realistic liquid fuels. Compared to

other methods, CVM was considered to be ‘‘the most

versatile and accurate’’ by Rallis and Garforth [8]. There-

fore, this review is focused on CVM.

3 Experiments and discrepancies in Su
0 measurement

using the CVM

Both experiments and simulations can be conducted to

obtain Su
0 using CVM. However, direct numerical simula-

tions of outwardly propagating spherical flames in a close

chamber with large pressure rise were only conducted by
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Fig. 1 (Color online) Schematic for the constant-pressure method (CPM) and constant-volume method (CVM) using propagating spherical

flames. The results in the two figures above were obtained from simulation for stoichiometric methane/air initially at normal temperature and

pressure (NTP) and in a spherical chamber of 6 cm in radius
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Chen et al. [51, 64] and Xiouris et al. [40]. Different groups

including Iijima and Takeno [45], Sharma et al. [65], Farrel

et al. [66], Yates et al. [67] and Matsugi et al. [68] used

CVM in their experiments. The main groups thoroughly

investigated Su
0 measurement by CVM experiment are

Metghalchi et al. [2, 31, 42, 60, 69–72], Stone et al.

[30, 44, 73–77] and Razus et al. [41, 63, 78, 79]. Before

2001, Metghalchi’s group only used a spherical chamber to

measure the pressure evolution [2, 60]. After 2001, they

used both spherical and cylindrical vessels. The cylindrical

vessel with optical access is used to identify possible

instability and cellular formation in flame front

[31, 42, 69–72]. Consequently, Su
0 obtained from CVM is

not affected by flame instability. Cellular formation is a

concern for lean H2/air mixture in which thorough inves-

tigation of cellularity is necessary by optical access [80].

Stone and coworkers used a spherical vessel with optical

access so that both pressure history and flame front history

were recorded in experiments [30, 44, 73]. Similar to

Metghalchi’s group, Stone’s group used flame front history

data to analyze flame instability and used pressure history

to get Su
0 by CVM. However the optical access in their

spherical chamber limited the peak pressure which can be

reached in experiments. Unlike these two groups, Razus

et al. [41, 63] only measured the pressure history and no

optical access was available in their spherical chamber.

Table 1 summarizes the characteristics of CVM experi-

ments performed by different groups to measure Su
0.

Although CVM has been popularly used by many

groups, there are still large discrepancies in Su
0 measured by

different groups for the same mixture at nearly the same

condition. Figure 2 shows the results measured for CH4/air

at normal temperature and pressure (NTP, 298 K and

1 atm) by different groups [45, 65, 66, 72, 75, 76] using

CVM (data measured from CPM for CH4/air at NTP were

compared in Ref. [58] and thereby were not repeated here).

The results predicted by CHEMKIN–PREMIX code [81]

based on GRI-Mech. 3.0 [82] are plotted together for

comparison. Smaller scatter is observed for near-stoichio-

metric mixtures; while larger scatter is observed for off-

stoichiometric mixtures. To quantify the discrepancies in

Su
0 measured from CVM, Fig. 3 shows the deviation of Su

0

measured by different groups [45, 65, 66, 72, 75, 76] from

that predicted by simulation, S0u;PREMIX [81]. Even for sto-

ichiometric CH4/air, the difference among normalized

values of S0u=S
0
u;PREMIX is around 18 %. For very lean and

rich CH4/air mixtures, the maximum difference is much

larger: 29 % and 28.5 % for / = 0.6 and 1.3, respectively.

It is noted that due to the lack of enough experimental data

for these two extreme equivalence ratios, the experiment

results are compared to simulation results.

Asmentioned before, Su
0measured fromCVMcan be used

to validate and develop chemical kinetic models. However,

the experimental data are useful only when the uncertainty in

Su
0 measurement is lower than the uncertainty in kinetic

models. Figure 4 shows the sensitivity-weighted uncertainty

momentum for Su
0 of CH4/air at NTP [58]. It is observed that

the sensitivity-weighted uncertainty momentum of main

elementary reactions is comparable to the relative discrep-

ancy in Su
0 measurement indicated by Fig. 3. To restrain the

uncertainty of chemical models, the lower the uncertainty in

experimental Su
0 measurement, the more useful of these data.

Therefore, efforts are still need to be devoted to improving

the accuracy of Su
0 measurement using the CVM.

Chen [58] reviewed different sources of uncertainty in Su
0

measurement using the CPM. Due to the similarity between

CVM and CPM, most of the uncertainty sources in CPM are

also important in CVM. The possible sources of uncertainty

in CVM are mixture preparation [9, 83, 84], ignition

[24, 57, 85, 86], buoyancy [87, 88], instability [20, 89, 90],

confinement [51, 91–93], radiation [93–98], stretch [51] and

data processing. Xiouris et al. [40] introduced a method to

quantify the uncertainty of Su
0 measurement in CPM

experiments. The method considers uncertainty from three

stages: mixture preparation, data acquisition and data pro-

cessing. Each of these stages are treated separately and the

accumulative uncertainty of these steps is calculated in final

step [40]. Similar procedure was used in Ref. [40] to assess

the uncertainty in Su
0 measured by CVM.

For mixture preparation, while negligible uncertainty is

anticipated from initial pressure variation, the uncertainty

for initial temperature variance of ±3 K is around 2 % and

it reaches to 2.5 %–4 % for initial temperature variance of

±5 K for CH4/air at NTP [58]. The uncertainty in equiv-

alence ratio strongly depends on the accuracy of pressure

gauge (usually the mixture is prepared using the partial

pressure method). For CH4/air at NTP and in lean and rich

cases of / = 0.6 and 1.4, the uncertainty of Su
0 measure-

ment is around 6 % when very accurate pressure gauges

with accuracy of ±0.05 % are used; while it reaches to

10 % when normal or low accuracy of ±0.25 % pressure

gauges are used [58]. To measure Su
0 for liquid fuels,

heating is used to evaporate the liquid fuel before entering

the combustion chamber [42, 70]. For liquid fuels, the

heating and vaporization of fuels also bring uncertainty in

the mixture composition [58].

In CVM, the ignition effect is negligible since data

processing is conducted for flames with obvious pressure

rise rate. The buoyancy effect is negligible for mixtures

with Su
0[ 15 cm/s [87] but it cannot be neglected for

highly diluted mixtures, for which micro-gravity experi-

ments are needed [88]. In Refs. [40, 99] radiation effects on

laminar flame speed measurement in propagating spherical

flames were investigated thoroughly. Xiouris et al. [40]

found that neglecting radiation heat loss when interpreting

experimental data in CVM can result in uncertainty as large
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as 15 % and they proposed a method to account for this.

For CO2 diluted mixtures, radiation absorption was found

to play an important role and the radiation induced

uncertainty is negligible for CPM [99]. The radiation effect

increases greatly as Su
0 decreases [97]. For CH4/air at NTP

and with the equivalence ratio in the range of 0.7–1.3, the

radiation-induced uncertainty in Su
0 measurement is around

3 %; and it reaches 5 % for very lean or rich cases of /
= 0.7 or 1.4. For near lean flammability mixture (0.5\/

Table 1 The characteristics of CVM experiments performed by different groups to measure Su
0

Group Mixture Vessel type and size Method incorporated

Metghalchi and

Keck [2, 60]

C3H8, CH3OH, C8H9N and

C8H18 in air

Spherical chamber/diameter: 15.24 cm A formula based on correction factor and

flame front area/CVM

Metghalchi et al.

[72]

CH4/diluent/air Spherical chamber/diameter: 15.24 cm Multi-zone model, in house code/Eq. (11) and

Markstein length is used to find Su
0/CVM

Metghalchi et al.

[31, 42, 69–71]

CH4/O2/Ar, JP-10/air,

C2H6O/diluent/air,

C10H22/air, HFC-32/air,

HFC-152a/air

(a) Cylindrical chamber with optical access:

to investigate shape of flame

(b) Spherical chamber/diameter: 15.24 cm to

find laminar flame speed

Multi-zone model, in house code/Eq. (11),

stretch rate is neglected/both CVM and

CPM

Stone et al. [76] CH4/diluent/air Spherical chamber/diameter: 15 cm Two-zone model, Eqs. (14), (22) and (26) are

used to find Su
0/CVM

Stone et al.

[30, 73–75]

CH3OH, CH4, C4H10,

C7H16, C8H18

C7H8, C6H5CH2CH3,

C2H6O and biogas in air

Spherical chamber/diameter: 16 cm; both

optical access and pressure transducer are

provided for the same experimental

facility

Multi-zone model (BOMB) program and

Eq. (25); stretch rate is neglected in

sufficient pressure rise/both CVM and CPM

Razus et al.

[63, 78]

C3H8/air and C2H6/air Spherical chamber/diameter: 10 cm; merely

pressure transducer was used

Two-zone model, Eqs. (10), (15), (21) and

stretch rate is neglected for P[ 1.5P0/CVM

Matsugi et al.

[68]

H2/NF3/N2, CH4/NF3/N2,

and C3H8/NF3/N2

Spherical chamber/diameter: 15.29 cm; both

optical access and pressure transducer are

provided for the same experimental

facility

Two-zone model, Eqs. (10), (14) and (26) are

combined and Markstein length is used to

find Su
0/both CVM and CPM

Xiouris et al. [40] Synthesis gas, CH4/air and

C3H8/air

(a) Cylindrical chamber with optical access:

to investigate thermal-diffusivity and

hydro-dynamic instabilities

(b) Spherical chamber/diameter: 20.32 cm to

find laminar flame speed

Multi-zone model, both DNS (TORC) and

experiment are used/Eq. (6) and stretch rate

is neglected for P[ 2.5P0 both CVM and

CPM

Fig. 2 (Color online) Laminar flame speed of CH4/air at NTP. The

symbols denote experimental results measured from CVM

[45, 65, 66, 72, 75, 76]. The line denotes numerical results predicted

by GRI-Mech. 3.0 [82] using CHEMKIN–PREMIX code [81]

Fig. 3 (Color online) Deviation of Su
0 measured by different groups

[45, 65, 66, 72, 75, 76] from S0u;PREMIX predicted by simulation based

on GRI-Mech. 3.0 [82]
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\ 0.6), the radiation-induced uncertainty is above 6 %.

The stretch effect was investigated by Chen et al. [51] and

it is negligible when the relative pressure rise is above

20 %. The shape and size of combustion vessel can also

affect the measurement using CVM. Unlike CPM, spheri-

cal vessel should be used for CVM experiments. Besides,

data processing should be conducted for P[ 2.5P0 [40] so

that the ignition and stretch effects are negligible. There-

fore, the combustion vessel should not be too small;

otherwise enough data cannot be measured before flame

reaches the wall. Dahoe [100] conducted the CVM exper-

iments in small cylindrical vessel (169 mL) for H2/air

mixture and observed oscillation in the pressure–time

curve of hydrogen–air deflagration. The oscillation is due

to cylindrical shape and small diameter of combustion

vessel. Ma et al. [101] conducted similar experiments in a

20 L spherical vessel and Salzano et al. [102] conducted

experiments in a 5 L cylindrical combustion vessel but

they did not find any oscillation in pressure-time history.

The last and the most important factor affecting the accu-

racy of Su
0 measurement from CVM is data processing.

There are different correlations among pressure, tempera-

ture, burned mass fraction and flame speed, which are used

by different researchers to obtain Su
0. These correlations and

their performance are introduced in the next section.

4 Determination of Su from CVM

Since the influence of stretch on laminar flame speed is

usually neglected in CVM [42, 69, 73, 78], in this section

we use Su instead of Su
0 to denote laminar flame speed.

Recently Xiouris et al. [40] confirmed this assumption in

their experiments and simulations, for pressure above two

and a half times of the initial pressure.

4.1 Assumptions and basic equations

In CVM, Su is determined based on the following

assumptions [8]: (1) the spherical flame front is smooth and

free from diffusion-thermal and hydrodynamic instabilities;

(2) both the unburned and burned gases are ideal; (3) the

pressure is uniformly distributed in the whole combustion

vessel; (4) the unburned gas is compressed isentropically;

(5) there is no dissociation or pre-flame reaction in the

unburned gas; (6) chemical equilibrium is reached imme-

diately behind the flame front, and (7) the radiation and

buoyancy effects are negligible.

Figure 5 schematically shows the flame propagation in a

closed spherical vessel. The spherical flame with the radius

of Rf is assumed to be ultimately thin and it separates the

burned and unburned gas regions. According to mass

conservation, we have

m0 ¼ mu þ mb; ð1Þ

where the subscripts ‘‘0’’, ‘‘u’’ and ‘‘b’’ denote the initial

states and states of unburned and burned gases,

respectively, and m stands for mass. From Eq. (1), we have

dmu

dt
¼ � dmb

dt
: ð2Þ

According to the definition of laminar flame speed, we

have

dmu

dt
¼ �4pR2

fquSu; ð3Þ

in which qu is the density of unburned gas. The mass of

unburned gas is mu ¼ 4pðR3
W � R3

f Þqu=3; where RW is the

Fig. 4 (Color online) Sensitivity-weighted uncertainty momentum,

dK, as a function of equivalence ratio for Su
0 of CH4/air at NTP.

dK = SK 9 (fK - 1) and fK is the uncertainty factor of Kth elementary

reaction (fK = 1.2 for R35, R36, R38, and R99; fK = 2.0 for R119;

fK = 4.0 for R52). Figure adapted from Ref. [58]

Fig. 5 (Color online) Schematic sketch of spherical flame propagat-

ing in a closed spherical vessel
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inner radius of the spherical chamber. Therefore, Eq. (3)

becomes

Su ¼
dRf

dt
� R3

W � R3
f

3R2
f qu

dqu
dt

: ð4Þ

Since the unburned gas is compressed isentropically, we

have

q0=qu ¼ ðP0=PÞ1=cu : ð5Þ

Substituting Eq. (5) into (4) yields

Su ¼
dRf

dt
� R3

W � R3
f

3PcuR
2
f

dP

dt
: ð6Þ

We introduce the burned mass fraction (BMF) defined

as x = mb/m0. Therefore, Eq. (1) becomes

mu ¼ ð1� xÞm0; ð7Þ

which indicates that

4p
3

R3
W � R3

f

� �
qu ¼ ð1� xÞ 4p

3
R3
Wq0: ð8Þ

Substituting Eq. (5) into (8) yields the following

relationship between flame radius and pressure

Rf

RW

¼ 1� ð1� xÞ P0

P

� �1=cu
" #1=3

: ð9Þ

Substituting Eq. (9) into (6) yields

Su ¼
RW

3
1� ð1� xÞ P0

P

� �1=cu
 !�2=3

P0

P

� �1=cu dx

dt
; ð10Þ

which is the formulation widely used to determine Su in

CVM. In this equation, BMF needs to be determined as a

function of pressure measured in experiments, i.e.,

x = x(P). This can be determined by the two-zone or

multi-zone models discussed in the next subsection.

4.2 Two-zone and multi-zone models

Two-zone and multi-zone models are used in CVM for-

mulation [43, 44, 72, 78]. In both models the flame is

assumed to be infinitely thin. The pressure is uniformly

distributed in the whole domain, which is confirmed by

simulation results shown in Fig. 6a for stoichiometric

CH4/air mixture. In both models, the unburned gas is

chemically frozen and compressed isentropically by the

propagating spherical flame [43]. In the multi-zone model,

a thermal boundary layer near the wall can be considered

in which heat loss occurs through the surrounding wall

[71, 72].

The main difference between two-zone and multi-zone

models is the treatment of burned gas. In the two-zone

model, the burned gas is assumed to have the same prop-

erties and the temperature gradient in burned gas is

neglected. In multi-zone model, the burned gas is divided

to multiple shells. While the temperature gradient is zero in

each shell, it differs from shell to shell and consequently

there is temperature gradient in the whole burned gas

region. In the two-zone model, neglecting the temperature

gradient in burned gas imposes some errors in evaluating

the BMF which is a crucial parameter to obtain Su by

CVM. Figure 6b shows the temperature distributions from

numerical simulation. It is observed that before

t15 = 15 ms, the temperature gradient in burned gas is

relatively small. However, obvious temperature gradient

occurs in burned gas during the spherical flame propagat-

ing toward the wall. Similar results were obtained in

experiments [30] and the temperature difference in burned

gas region between the inner shell and the outmost shell

was found to reach 500 K.

Fig. 6 (Color online) The evolution of pressure (a) and temperature

(b) distributions for stoichiometric CH4/air initially at NTP
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Metghalchi et al. [72] developed a multi-zone model for

CVM. In their multi-zone model, two nonlinear equations

based on mass and energy conservation are solved for

burned gas shells. These two equations are solved at each

time step for two unknowns, the burned gas temperature of

the outermost shell and the burned mass fraction at each

time step [72]. Isentropic relation is used to update tem-

perature. At each time step the flame radius is calculated as

a function of time from the BMF. The procedure is con-

tinued till the end of combustion. Metghalchi and

coworkers [31, 42, 69, 72] determined Su according to the

following relationship

Su ¼
m0

quAf

dx

dt
; ð11Þ

here Af = 4pRf
2 is the flame front area. The above equation

can be obtained by Substituting Eq. (7) into (3). The heat

transfer to the wall can be considered in the multi-zone

model by introducing the boundary layer displacement

thickness [72]. The total heat transfer to the wall for CH4/

air was found to be within 1 % and thereby is negligible

[72]. The readers are referred to Refs. [44, 71] for more

details about the multi-zone model. While in multi-zone

model x = x(P) is found by solving the conservation

equations for different shells in burned mass region, in two-

zone model an explicit correlation is used for x = x(P).

Choosing an appropriate formulation to find x = x(P) is

crucial for accurate measurement of Su in CVM.

A specific procedure can be prescribed to determine Su
in CVM. It consists of two steps: (1) to solve the conser-

vation equations to obtain BMF for different shells (for

multi-zone model) or to choose a correlation x = x(P) (for

two-zone model); (2) to choose an appropriate formulation

to evaluate Su. These two steps will be discussed respec-

tively in the next two subsections.

4.3 Relationship between burned mass fraction

and pressure

Using multi-zone model, Lewis and von Elbe [49] pro-

posed the following relationship between burned mass

fraction (BMF) and pressure:

x Pð Þ ¼ 1� RT0 Pe � Pð Þ=P0

RTu cb � cuð Þ= cu � 1ð Þ þ cb � 1ð Þk ;

with

k ¼ nb

nu

� �
CpbTb � CpuTu; ð12Þ

in which R is the universal gas constant; Pe is the final

pressure; cb and cu are the heat capacity ratio of burned and

unburned gases; Cpb and Cpu are molar heat capacity of

burned and unburned gases; nb and nu are number of moles

per unit mass of burned and unburned gas; and Tb varies for

different burning annular shells. Although k cannot be

directly computed or measured, it can be computed at the

limiting case of x(P = P0) = 0:

k ¼ RT0

cb � 1ð Þ
Pe

P0

� cb � 1

cu � 1

� �
: ð13Þ

Later Lewis and von Elbe [103] proposed the following

linear relationship between BMF and pressure:

x ¼ ðP� P0Þ
ðPe � P0Þ

: ð14Þ

This linear relationship is popularly used in CVM (e.g.,

[28, 51, 67, 68]).Grumer et al. [104] proposed a relationwhich

was claimed to be more accurate than the linear one of Lewis

and von Elbe [103]. However the relation of Grumer et al.

[104] is valid only for the restricted region of P\1.1P0.

O’Donovan and Rallis [47] proposed the following relation

which works for the whole combustion period:

x Pð Þ ¼
�Te=�Tbð Þ P=P0 � P=P0ð Þ cu�1ð Þ=cu

� �

Pe=P0 � �Te=�Tbð Þ P=P0ð Þ cu�1ð Þ=cu
: ð15Þ

In which �Tb and �Te are respectively the mass-averaged

burned gas temperature and its value at the end of

combustion. Since it is difficult to determine these two

temperatures, it was assumed that �Tb ¼ �Te and obtained the

following equation [46]:

x Pð Þ ¼ P� P0 P=P0ð Þðcu�1Þ=cu

Pe � P0 P=P0ð Þðcu�1Þ=cu
: ð16Þ

Nagy et al. [105] presented a correlation to measure

laminar flame speed in which x = x(P) was not used

explicitly. Luijten et al. [43] derived an explicit expression

for x = x(P) from the relation of Nagy et al. [105]:

x Pð Þ ¼ P1=cu � P
1=cu
0

P
1=cb
e P 1=cu�1=cbð Þ � P

1=cu
0

: ð17Þ

Rallis and Garfoth [8], suggested the following equation

in their review paper:

x Pð Þ ¼
a P=P0ð Þ1=cu�1
h i

P=P0ð Þ1=cu�a
; with

a ¼ q0b
q0

þ
1� q0b

�
q0

� �
P=P0 � 1ð Þ

Pe=P0 � 1ð Þ : ð18Þ

As mentioned before, the linear relationship between

BMF and pressure in Eq. (14) is popularly used. However,

Luijten et al. [43] found that the linear relationship has

noticeable error and they proposed an analytical correlation

which was claimed to be as accurate as the one obtained

from multi-zone model:
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x ¼ P� P0f Pð Þ
Pe � P0f Pð Þ ; with

f Pð Þ ¼ cb � 1

cu � 1
þ cu � cb

cu � 1

P

P0

� � cu�1ð Þ=cu
: ð19Þ

Luijten et al. [43] suggested that Eq. (19) can be

obtained by substituting Eq. (13) into (12) without the

requisite of any simplifying assumption which was

originally used by Lewis and von Elbe [49]. It is noted

that both cu and cb are used in the above equation.

According to our DNS of stoichiometric CH4/air at NTP, cb
changes from 1.27 to 1.25 during the spherical flame

propagation. Our analysis indicates that the burned mass

fraction, x, in Eq. (19) is very sensitive to the value of cb.
Usually the frozen heat capacity ratio, cb,frozen, is used and

it is about 1.25 for hydrocarbon/air mixtures. However,

chemical equilibrium shifting in burned gas substantially

affects the value of cb and a value of cb,shift = 1.17 was

suggested in Ref. [106] for hydrocarbon/air mixtures.

Unfortunately, there is no prescribed method to evaluate

cb,shift. We used an iterative method to relate cb,shift to

cb,frozen for different initial conditions of CH4/air mixture

and proposed the following empirical correlation:

cb;shift ¼
cb þ 8

8
: ð20Þ

A correlation of cb,shift = (cb ? 1)/2 is recently

suggested by Omari and Tartakovsky [107] to be used in

Eq. (19). Our comparative analysis by DNS shows that

Eq. (20) and cb,shift = 1.17 result in more accurate BMF

comparing to Ref. [107]. As mentioned before, it is difficult

to evaluate the average temperature in Eq. (15). Oancea

et al. [108] proposed the following approximation for
�Te=�Tb:

�Te
�Tb

¼ Pe

P

� � c��1ð Þ=c�

; with c� ¼ ln
Pe

P0

1� Tf;p

Tf;v

� �� �
;

ð21Þ

in which Tf,p and Tf,v are respectively the adiabatic flame

temperature of isobaric and isochoric combustion at

P = P0. Razus et al. [63] suggested to use data at

P[ 1.5P0 so that the influence of flame stretch and cur-

vature on Su can be circumvented.

The correlations presented to find BMF are summarized

in Table 2. The performance of these correlations for

x = x(P) is compared in Fig. 7 based on the accurate

results obtained from DNS using A-SURF

[58, 85, 93, 97, 109–112]. The 1D spherical combustion

chamber with the radius of RW = 5 cm was used in sim-

ulation. We considered stoichiometric methane/air mixture

at NTP and the methane oxidation mechanism GRI-Mech.

3.0 [82] was used. In simulation the flame front was

defined as the position of maximum heat release rate and

BMF was calculated using x = 1 - mu/m0 in which mu is

the total mass before the flame front (i.e., mass within

Rf\ r\RW).

In Eq. (17), cb,shift from Eq. (20) is used to increase the

accuracy. It is observed that the discrepancy of different

correlations is maximum in the midrange pressures. The

most accurate result is obtained by using Eq. (19) in which

Eq. (20) is used for cb. Similar suggestion was made by

Omari and Tartakovsky [107]. Equations (19) and (21)

have almost the same accuracy. The most deviated results

Table 2 Equations used to determine the burned mass fraction, x

Group Correlation Year Eq. nos.

Lewis and von Elbe [103] x ¼ ðP�P0Þ
ðPe�P0Þ 1951 (14)

O’Donovan and Rallis [47] x Pð Þ ¼
�Te= �Tbð Þ P=P0� P=P0ð Þ cu�1ð Þ=cuð Þ
Pe=P0� �Te= �Tbð Þ P=P0ð Þ cu�1ð Þ=cu 1959 (15)

Rallis and Tremeer [46] x Pð Þ ¼ P�P0 P=P0ð Þðcu�1Þ=cu

Pe�P0 P=P0ð Þðcu�1Þ=cu 1963 (16)

Nagy et al. [105] x Pð Þ ¼ P1=cu�P
1=cu
0

P
1=cb
e P 1=cu�1=cbð Þ�P

1=cu
0

1969 (17)

Rallis and Garforth [8] x Pð Þ ¼ a P=P0ð Þ1=cu�1½ �
P=P0ð Þ1=cu�a

; a ¼ q0
b

q0
þ 1�q0

b=q0ð Þ P=P0�1ð Þ
Pe=P0�1ð Þ 1980 (18)

Luijten et al. [43] x ¼ P�P0f Pð Þ
Pe�P0f Pð Þ ; f Pð Þ ¼ cb�1

cu�1
þ cu�cb

cu�1
P
P0

� � cu�1ð Þ=cu
2009 (19)

Oancea et al. [108] x Pð Þ ¼
�Te= �Tbð Þ P=P0� P=P0ð Þ cu�1ð Þ=cuð Þ
Pe=P0� �Te= �Tbð Þ P=P0ð Þ cu�1ð Þ=cu ;

�Te
�Tb
¼ Pe

P

� � c��1ð Þ=c�
;

c� ¼ ln Pe

P0
1� Tf ;p

Tf ;v

� �� �
1994 (15), (21)

Current work update, the value of cb,shift is close to 1.17 as

suggested in Ref. [106]

x ¼ P�P0f Pð Þ
Pe�P0f Pð Þ, f Pð Þ ¼ cb�1

cu�1
þ cu�cb

cu�1
P
P0

� � cu�1ð Þ=cu
; cb;shift ¼ cbþ8

8
2016 (19), (20)
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are obtained by Eq. (16) and the combination of Eqs. (17)

and (20); it is mainly because of the simplifying assump-

tions used to derive these relations which are discussed

earlier.

4.4 Equations for the determination of Su

Deriving a suitable correlation or choosing the most

appropriate one to determine Su from pressure evolution,

P = P(t), recorded in experiments is crucial in CVM. The

first equation for determining Su in CVM was proposed by

Lewis and von Elbe [49]:

Su ¼
dRi

dt

Ri

Rb

� �2
P

P0

� ��1=cu

; ð22Þ

in which Ri and Rb are respectively the radii of a shell before

and after combustion, P the instantaneous pressure, P0 the

initial pressure of premixture, and cu the specific heat

capacity ratio of unburned gas. However, Lewis and von

Elbe [49] used the two-zone model and didn’t include the

temperature gradient in the burned gas region. Fiock and

Marvin [48] proposed Eq. (6) to determine Su, which was

used forRf/RW[ 25 % [113]. Eschenbach andAgnew [114]

derived an equation only valid for slow burning mixtures

(flame speed smaller than one tenth of sound speed) and for

pressure rise\7 % of the initial pressure. O’Donovan and

Rallis [47] proposed Eq. (10) to determine Su.

Rallis and Tremeer [46] derived the following equation:

Sb ¼
q0
qu

a
dRf

dt
þ Rf

3

da
dP

dP

dt

	 

; ð23Þ

in which Sb is the flame speed with respect to burned gas. a
is defined as

a ¼ �qb
q0

¼
�Mb

M0

T0
�Tb

P

P0

¼
�Mb

�Me

�Te
�Tb

P

Pe

; ð24Þ

where M is molecular weight. In practice the variation in
�Mb and �Tb is small so the approximation of da/dP = 1/Pe

was suggested in Ref. [46]. Nevertheless, it is still difficult

to evaluate a. Nagy et al. [105] proposed to assume con-

stant and equal specific heat capacity ratio of burned and

unburned gas. As shown in Ref. [43], these assumptions

results in low accuracy.

Stone et al. [30, 44, 73–75] used an extended version of

Eq. (22) by the multi-zone model to determine Su:

Su ¼
dP

dt

� �
dRi;n

dP

� �
Ri;n

Rb;n

� �2
P0

P

� �1=cu

;

Ri;n ¼ x1=3RW;Rb;n ¼ RW 1� ð1� xÞ Pu;n�1

Pn�1

� �1=cu;n�1

" #1=3
;

ð25Þ

in which Ri,n and Rb,n are position of elemental shell before

burning and after burning in shell number n which are

function of pressure. These radii were calculated by the in

house code (BOMB program) in which multi-zone model

was used [30].

In CVM, usually the following power law is used to

express the laminar flame speed Su as a function of tem-

perature Tu and pressure P [2, 27, 29, 42, 68, 76, 78]

Su ¼ Su;0
Tu

Tu;0

� �a
P

P0

� �b

; ð26Þ

where Su,0 is the laminar flame speed at the reference

temperature and pressure of Tu,0 and P0; and a, b are

exponential constants. In CVM, Su,0, a and b are obtained

from data fitting. Therefore, the laminar flame speed at Tu,0
and P0 can also be obtained in CVM. Metghalchi and Keck

[60] found that the above power-law works accurately only

for pressure above 2 atm. The main drawback of using

power law is the requisite of extrapolation or data fitting.

Table 1 summarizes the main groups working on Su
measurement using the CVM and their methods to deter-

mine Su. Table 1 indicates that different groups used dif-

ferent Su correlations. However, to our knowledge, the

performance of these correlations were not compared in the

literature. According to previous discussions, the main

correlations to obtain Su are Eqs. (6), (10) and (22). Saeed

and Stone [44] extended the definition of Eq. (22) to

include temperature gradient in burned gas in Eq. (25). The

performance of these correlations in terms of evaluating Su
was compared for stoichiometric CH4/air initially at NTP

and the results were shown in Fig. 8. These results were

based on pressure history, P = P(t), from one-dimensional

simulation of spherical flame propagation in a closed

Fig. 7 (Color online) Relative error in BMF predicted by different

correlations as a function of normalized pressure for stoichiometric

CH4/air mixture initially at NTP
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chamber. Besides, the laminar flame speeds predicted by

the PREMIX code [81] were plotted in Fig. 8 for com-

parison. In Fig. 8, ‘‘direct’’ means that dRf/dt is directly

calculated from flame front history, Rf = Rf(t), from sim-

ulation using A-SURF; while ‘‘indirect’’ means that dRf/

dt is calculated from pressure history and BMF using

Eq. (9). We did not use experimental data since in exper-

iments the effects of radiation, ignition, flame instability

and mixture preparation cannot be completely circum-

vented. When the simulation data are used, these effects are

prevented and thereby the results are only affected by the

correlations used to evaluate Su. The pressure region show

in Fig. 8 is from 2.5 to 6.5 atm, in which the stretch effect

is negligible [40]. All the correlations yield very similar Su
and the difference among is within 1.5 cm/s. This shows

the importance of BMF: inserting the same BMF in dif-

ferent Su relations can reduce the discrepancy between

them. Figure 8 shows that, at elevated pressures Eq. (6) is

more accurate than Eqs. (10) and (25). However, Eq. (6) is

a subtraction of two large terms of similar magnitude.

Besides, many groups who perform CVM experiments

donot use optical access in combustion chamber and flame

front monitoring is not possible [40, 42, 78]. Therefore,

Eq. (6) is not popularly used in experiment. Similar sug-

gestion was also made by Omari and Tartakovsky [107]

based on their experimental results.

The power law is used to obtain the laminar flame speed

at NTP and the results are plotted in Fig. 9 as a function of

equivalence ratio. Besides, the laminar flame speeds pre-

dicted by the PREMIX are shown together for comparison.

Low scatter is observed in fuel–leaner mixtures. Compared

to PREMIX results, all correlations under-predict the flame

speed for fuel-rich mixtures. The scatter between different

correlations in near stoichiometric conditions is higher than

fuel–lean cases. Comparison in Figs. 8 and 9 indicates that

high sensitivity of power law (due to the large slope in Su–

P curve) increases the discrepancy among results obtained

from different correlations. To quantify the discrepancy,

Fig. 10 shows the results normalized by the value predicted

by PREMIX. It is observed that Eqs. (10) and (25) are

more accurate than Eq. (6) after extrapolation. It is noted

that the error from extrapolation may cancel the error from

using different correlations. However the definition of

Eq. (10) is much simpler compared to Eq. (25). Therefore,

Eq. (10) is recommended to be used for CVM when Su,0 is

required.

Figrue 11 shows Su determined by Eq. (10) and differ-

ent correlations for BMF already compared in Fig 7.

Because of their high discrepancy shown in Fig. 7,

Eqs. (16) and (17) were not considered in Fig. 11. The

deviation between results from different formulations and

those from A-SURF is shown to be large at low and high

pressure regions. The maximum deviation is observed from

Eq. (14). It is noted that the expression for BMF does not

have significant effect on Su for P[ 2.5P0. Extrapolation

based on Eq. (26) was conducted to get Su,0 at T0 = 298 K

and P0 = 1 atm as shown by solid lines in Fig. 11. It is

Fig. 8 (Color online) Laminar flame speed calculated from different

correlations as a function of pressure for stoichiometric CH4/air

mixture initially at NTP. Red dashed line: Eq. (6) by Fiock and

Marvin [48] in which dRf/dt is directly calculated by A-SURF; blue

dash-dotted line: Eq. (6) by Fiock and Marvin [48] in which dRf/dt is

from Eq. (9); pink dash-dot-dotted line: Eq. (10) by Rallis and

O’donovan [47]; black line: Eq. (25) by Saeed and Stone [30];

symbols: Su
0 measured with PREMIX

Fig. 9 (Color online) Laminar flame speed at Tu = 298 K and

P = 1 atm calculated from different correlations as a function of

equivalence ratio for CH4/air mixture initially at NTP. Red squares:

Eq. (6) by Fiock and Marvin [48] in which dRf/dt is directly

calculated by A-SURF; blue triangles: Eq. (6) by Fiock and Marvin

[48] in which dRf/dt is from Eq. (9); pink diamonds: Eq. (10) by

Rallis and O’donovan [47]; purple circles: Eq. (25) by Saeed and

Stone [30]; the solid black line: results from PREMIX
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seen that the expression for BMF has significant impact on

Su,0. The error of using Eq. (14) exceeds 10 % and the error

of using Eqs. (18), (19) and (21) is around 5 %. The

combination of Eqs. (19) and (20) is as accurate as

A-SURF result, which shows the importance of BMF when

extrapolation is performed to obtain Su,0 at initial temper-

ature and pressure.

5 Concluding remarks

The constant-volume propagating spherical flame method

(CVM) for laminar flame speed measurement is reviewed.

It is found that there are still large discrepancies in Su
0

measured by different groups for the same mixture using

the CVM, at nearly the same condition. Since Su
0 data with

large discrepancies cannot be used to optimize chemical

models, efforts are still needed to improve the accuracy of

Su
0 measurement. The possible sources of uncertainty in Su

0

measured by CVM are discussed and special attention is

devoted to the error encountered in data processing. Dif-

ferent correlations among pressure, temperature and flame

speed, which are used by different researchers to obtain Su
0,

are summarized and the performance of these correlations

are examined. It is shown that the combination of Eqs. (19)

and (20) is the most accurate in terms of evaluating the

dependency of BMF on pressure. For laminar flame speed,

Eqs. (6), (10) and (25) have similar accuracy. Because of

the simplicity of Eq. (10), it is recommended to be used for

CVM. Besides, Eq. (6) is the subtraction of two large terms

of similar magnitude and usually there is no availability of

optical access in CVM. Therefore, Eq. (10) instead of (6) is

recommended.

Further studies are still needed in order to obtain accu-

rate laminar flame speed from CVM. The possible areas of

future research on CVM are

(1). In CVM, it is assumed that no dissociation or pre-

flame reaction occurs in unburned gas. Large hydro-

carbon fuels has low-temperature chemistry and pre-

flame reaction might occur in unburned gas, espe-

cially at elevated initial temperature and pressure.

Therefore, it is necessary to check the validity of this

assumption and to examine the influence of pre-flame

reaction on the accuracy of laminar flame speed

measured by CVM.

(2). In all the correlations used in CVM for BMF and

laminar flame speed, radiation effects were not com-

prehensively examined though several studies consid-

ered radiation effects. For highly-diluted mixtures with

relatively low flame speed, the radiation effects might

be important. Besides, for CO2 or H2O diluted

mixtures, radiation absorption might also affect the

accuracy of laminar flame speed measured by CVM.

Therefore, the influence of radiation on the accuracy of

the correlations used in CVM still needs further study.

(3). In data processing, different ranges of pressure

history are used by different researchers and it is

not clear how the pressure history range affects the

accuracy of laminar flame speed measured by CVM.

Besides, different researchers used different pressure

regions in which the flame is stretch free. Though in

Ref. [40] it was proposed to only use pressure history

at P[ 2.5P0, the investigation was performed only

for a few cases. Further studies for different fuels and

for broad range of initial conditions are needed.

Fig. 10 (Color online) Deviation of Su
0 calculated by different

correlations from that predicted by simulation for CH4/air mixture

initially at NTP

Fig. 11 (Color online) Su determined by Eq. (10) and different

correlations (indicated in the figure) for BMF for stoichiometric CH4/

air mixture initially at NTP
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