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A fundamental understanding of cell-nanomaterial interaction is of essential importance to nano-

medicine and safe applications of nanotechnology. Here we investigate the adhesive wrapping of a soft

elastic vesicle by a lipid membrane. We show that there exist a maximum of five distinct wrapping phases

based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases

depend on the vesicle size, adhesion energy, surface tension of membrane, and bending rigidity ratio

between vesicle and membrane. These results are of immediate interest to the study of vesicular transport

and endocytosis or phagocytosis of elastic particles into cells.

DOI: 10.1103/PhysRevLett.107.098101 PACS numbers: 87.16.D�, 46.70.Hg, 87.17.Aa, 87.17.Rt

Although rapid progress has been made in understand-
ing the effects of size and shape on particle uptake into
cells [1,2], relatively little is known about the correspond-
ing effect of particle elasticity. Recent experiments have
provided mounting evidence of the importance of elastic
deformation in cellular uptake of nanoparticles. For ex-
ample, it has been found that macrophages are unable to
phagocytose very soft targets, which has profound impli-
cations on the functioning of the immune system [3].
Flexible erythrocytes can be strongly distorted during
phagocytosis due to strong interactions between cell mem-
brane and soft particles or vesicles [4]. Beningo and Wang
[5] have shown that phagocytosis of soft microparticles can
be hindered by particle deformation. Murine leukemia
virus (MLV) and human immunodeficiency virus (HIV)
particles regulate their mechanical properties at different
stages of the life cycle through internal morphological
reorganization [6]: Immature HIV viral particles are rela-
tively stiff for budding out of a host while mature HIV
particles are substantially softer for entry into a host [6].
Flexible micelles can circulate for prolonged periods in the
blood stream due to their flexible structures, allowing them
to deliver drugs to target tumor cells more efficiently [7]. In
drug delivery, softer, more flexible particles are expected to
inhibit phagocytosis, leading to a longer lifetime of parti-
cles in the circulation. Although the detailed mechanisms
of cellular uptake remain to be fully elucidated and can
vary in different cases, a general fact has been established
that cellular uptake of nanoparticles is strongly influenced
by their elastic properties. This calls for studies aimed at
understanding the effect of elastic deformation of particles
on cellular uptake.

Here we present the first theoretical model on the adhe-
sive wrapping of an elastic, deformable vesicle by a lipid
membrane, for a range of bending rigidity ratio between
the vesicle and membrane. Using theoretical analysis and
molecular simulations we will show how the wrapping
degree depends on the vesicle size, the adhesion energy,
the surface tension of the membrane, and the bending

rigidity ratio. We will determine the phase diagrams for
cellular uptake of three-dimensional axisymmetric (3D)
and two-dimensional (2D) particles, probing the transitions
between full wrapping, partial wrapping, and no wrapping
states. We will also discuss possible implications of our
results on relevant biological processes.
Note that there can be a number of alternative models for

an elastic particle. Here we model the engulfed particle as
an elastic vesicle with a constant total surface area At.
Consider such a vesicle wrapped by an initially flat mem-
brane with elastic deformation in both the vesicle and the
membrane, as shown in Fig. 1(a). The total energy of
the system can be described by the Canham-Helfrich
Hamiltonian as [8–11]
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FIG. 1 (color online). Schematic of an elastic vesicle wrapped
by an initially flat membrane. (a) The geometry of the system
with wrapping angle � and tangent angle c . Arclengths s and t
are defined along the vesicle and along the outer free part of the
membrane, measured from the bottom pole (s ¼ 0) and the
adhesion edge t ¼ 0 (s ¼ s1), respectively; r0 is the rðsÞ coor-
dinate at s ¼ s1. (b) Schematic of the three characteristic wrap-
ping states. No wrapping is the state with zero contact area. Full
wrapping is the state in which the left and right sides of the
membrane touch each other on the top of the vesicle. Partial
wrapping corresponds to the intermediate scenario with incom-
plete wrapping.
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þ ��A� �A3 þ �At; (1)

where M is the mean curvature, G is the Gaussian curva-
ture, �i and �

g
i are the bending and Gaussian moduli of the

three regions, respectively; �P ¼ Pout � Pin is the pres-
sure difference between the outside and inside of the
vesicle; V is the volume of the vesicle; � is the surface
tension of the membrane which is conjugated with
the excess area �A induced by wrapping; � is the specific
adhesion energy; and A3 is the contact area. The last term
arises from the constraint that the surface area At is fixed, �
being the Lagrange multiplier. Although not considered in
our model, a spontaneous curvature can be readily included
in the formulation. Hereafter we use subscripts 1, 2, and 3
to identify quantities associated with the inner free, outer
free, and the wrapped regions, respectively. To simplify our
description, we assume that the Gaussian modulus of the
adhesion region is �g

3 ¼ �g
1 þ �g

2 , which implies that the

Gaussian curvature does not affect the vesicle shape due to
the Gauss-Bonnet theorem [12]. We will further assume
�3 ¼ �1 þ �2 throughout the analysis, while recognizing
important exceptions such as the formation of clathrin or
caveolin coats during the wrapping process. All length
scales are scaled by the effective radius of the vesicle

a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
At=ð4�Þ

p
. In two dimensions, the vesicle length Lt

remains constant and the effective radius is a ¼ Lt=ð2�Þ.
Other dimensionless parameters are �� ¼ 2�a2=�2,
�� ¼ 2�a2=�2, � ¼ 2�a2=�2, and p ¼ �Pa3=�1.
The axisymmetric shapes in Fig. 1(a) are determined

from the tangent angle c ðsÞ with geometric relations _r ¼
cosc and _z ¼ sinc , where dots denote derivatives with
respect to the rescaled arclength s of the vesicle or to
arclength t of the outer free part of the membrane. For
the axisymmetric configuration, variation of the energy
functional in Eq. (1) gives rise to the following governing
equation for the vesicle shape

€c ¼ �
_c 2 tanc

2
�

_c cosc

r
þ cos2c þ 1

2r2
tanc

þ �2

2�i

ð�þ ��� ��Þ tanc þ �1

2�i

pr

cosc
(2)

for the wrapped region of the vesicle. The same equation
with �� and �� removed would hold for the inner free
region of the vesicle [13]. The equations that govern the
shape of the outer free part of the membrane can be
found in Ref. [11] and are listed in the Supplemental
Information [14] for the convenience of the reader. For
the two-dimensional configuration, the corresponding
shape equations of the vesicle are �i

€c =�1 ¼ � sinc þ
pr cosc (i ¼ 1, 3) and _� ¼ p sinc [10], and the shape
equation of the outer free membrane is €c ¼ ��sinc =2 [15].
The boundary conditions are c 3ð0Þ¼0 and r3ð0Þ¼0
at s ¼ 0, andc 1ðs2Þ ¼ � and r1ðs2Þ ¼ 0 at s¼ s2. The

remote boundary conditions are limt!1c 2ðtÞ ¼ 0 and
limt!1 _c 2ðtÞ ¼ 0 as t ! 1, which enforce the asymptotic
flatness of the membrane at large distances [11]. At the
adhesion edge s ¼ s1, the radial coordinate r and tangent
angle c must be continuous, and the variation of energy E
yields the following boundary conditions:

�1
_c 2
1 þ �2

_c 2
2 � �3

_c 2
3 ¼ 2�a2;

�1
_c 1 þ �2

_c 2 � �3
_c 3 ¼ 0;

(3)

which represent the balance of tangential force and torque
at s ¼ s1 [16]. Equation (3) reduces to _c 2ðs1Þ ¼ _c 3ðs1Þ
and _c 1ðs1Þ � _c 2ðs1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�a2=�1

p
in the limit �2 ! 1,

which coincides with the corresponding condition for a
vesicle on a flat or curved rigid substrate [10,17] or a rigid
particle wrapped by a lipid membrane [11,18]. In addition,
the condition for the balance of normal force at s ¼ s1
is [16]

�1
€c 1 þ �2

€c 2 � �3
€c 3 ¼ 0: (4)

The equilibrium configurations of the vesicle and mem-
brane can be found numerically by solving Eq. (2) with
continuity and boundary conditions in Eqs. (3) and (4).
These boundary conditions are only valid in the equilib-
rium state. To calculate the energy at any given value of the
wrapping degree f ¼ A3=At which may not be in equilib-
rium, the balance equations (3) and (4) do not hold. In that
case we vary the values of r0ð2 ½0; s1�Þ and � with a step
size 0.0005 in r0 and 0.001 in � for a given f, obtain
solutions by the shooting method and then determine the
shapes of the vesicle and membrane from solution with the
lowest energy. An equilibrium state corresponds to a local
extremum of free energy as f increases from 0 to 1.
Numerical results show that the boundary conditions in
Eqs. (3) and (4) are indeed satisfied in equilibrium states
[14]. The effect of pressure difference on the wrapping
phases is rather minor in 2D and negligible in 3D [14], and
is therefore neglected in the following analysis. A similar
method has been used to study the axisymmetric equilib-
rium shapes of erythrocytes considering vesicle-vesicle
adhesion [19].
We now investigate the effects of bending modulus ratio

�1=�2 and normalized adhesion energy �� on the stability of
different wrapping states. Figure 2 shows the energy
change�E ¼ E� E0 as a function of the wrapping degree
f, where E0 is the ground state energy taken as 8��1

for a spherical vesicle and ��1=a for a circular vesicle.
Figure 2(a) shows that there exist three phases in 2D. For
relatively small adhesion energy, the bending energy domi-
nates the wrapping process and full wrapping cannot hap-
pen. As �� increases, the stable wrapping state changes
from no wrapping to partial wrapping then to full wrap-
ping. For �� ¼ 10, the global minimum is f ¼ 1 for
�1=�2 � 1 and f < 1 for �1=�2 ¼ 0:1. This means that
larger adhesion energy is needed for a softer vesicle to be
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fully engulfed. Compared to the 2D case, the axisymmetric
configuration exhibits five possible phases (I–V) as intro-
duced in Ref. [11] [see Fig. 2(b)]. In phase I, �� is low and
�E increases monotonically with f. As �� increases, there
exists a stable state (no wrapping) and a metastable partial
wrapping state and phase II arises. Further increase of ��
results in a global minimum at a partial wrapping state with
an energy barrier to reach the metastable full wrapping
state (phase III). With increasing �� the stable partial wrap-
ping state becomes metastable with respect to a stable full
wrapping state (phase IV). If �� is large enough, the energy
barrier vanishes and the full wrapping state becomes the
only stable state in phase V. For each phase, there is a stable
state (global energy minimum) and possibly a metastable
state (local energy minimum). For very soft particles (e.g.,
�1=�2<1), the phase II0 no longer has no wrapping as the
stable state and partial wrapping as a metastable state;
instead the no wrapping state becomes unstable while
partial wrapping becomes stable. There are three cases of
possible energy evolution profiles as a function of the
wrapping degree. Case 1 exhibits a global energy mini-
mum at a relatively small f and possibly a metastable state
at a relatively large f; case 2 shows a global minimum at a
relatively large f and a possible metastable state at a

relatively small f; case 3 has only one global minimum
at large f [14]. The boundaries between these cases corre-
spond to the thin (dash-dotted and solid) lines in Figs. 3(d)
and 3(e). Figures 2(c) and 2(d) show sequences of vesicle-
membrane configurations in 2D and 3D at �� ¼ 2 for
different rigidity ratios �1=�2.
With the knowledge of energy functions for �1=�2, ��,

and ��, the phase diagrams of wrapping have been calcu-
lated and shown in Fig. 3. Note that the solution at f ¼ 1 is
unphysical since in that case two opposing parts of the
membrane on top of the particle will have crossed each
other. Therefore, the state of full wrapping needs to be
carefully defined [Fig. 1(b)]. In the 2D case, the shape
equation for the outer free part of the membrane associated
with a given wrapping angle � can be derived analyti-

cally as c 2 ¼ 4 arctan½tan�4 expð�t
ffiffiffiffiffiffiffiffiffi
��=2

p Þ�, where t is the
rescaled arclength of the outer free part [15]. With
the relation _r ¼ cosc , the rðtÞ coordinate can be deter-
mined as

rðtÞ ¼ r0 þ tþ
ffiffiffiffi
2

��

s
ð1� e

ffiffiffiffiffi
2 ��

p
tÞð1� cos�Þ

1� cos�2 þ e
ffiffiffiffiffi
2 ��

p
tð1þ cos�2Þ

: (5)

For a given set of r0, �, and ��, the minimum of rðtÞ can be
determined. The full wrapping condition is found from the
condition that the minimum of rðtÞ is equal to zero as
shown in Fig. 3(a). The critical condition for a rigid circu-
lar particle to be fully wrapped by a membrane is then
given by [18]ffiffiffiffi

��

2

r
sin� ¼ ffiffiffi

2
p � 2 cos

�

2
þ ln

�
tan

�

8

�
� ln

�
tan

�

4

�
; (6)

with � ¼ arccos½1� ð1� ffiffiffiffi
��

p Þ2= ���. The derivation of
Eq. (6) is based on the assumption that the full wrapping
state is a stationary state with zero slope along the energy
evolution curve as a function of wrapping degree, which is
true for large �1=�2 or small �1=�2 with large ��. For small
�1=�2 with small ��, the full wrapping state has the lowest
energy but the corresponding slope of the energy profile
does not vanish [14]. Figure 3(a) shows that a minimum
adhesion energy ��min is necessary for partial wrapping.
The softer the vesicle is, the smaller ��min is. For a rigid
circular particle, ��min ¼ 1 [18]. As �1=�2 decreases, ��
needs to increase to maintain the full wrapping state.
When �� � 0:5, there are small differences between the
transition lines from the state of partial wrapping to full
wrapping for different �1=�2. As �� increases, the differ-
ences become large and strikingly sensitive to �1=�2.
Since there is no analytical expression for rðtÞ in the 3D

case, we take f ¼ 1 as the full wrapping condition for
simplicity. For a rigid spherical particle, ��min ¼ 4 [11].
There is no phase II for �1=�2 ¼ 1 and 0.1 since the
adhesion energy can compensate for the bending energy
at the initial wrapping process for small �1=�2 [Figs. 3(d)
and 3(e)]. The effects of �1=�2 on the phase transition are

FIG. 2 (color online). Energy change �E as a membrane
wraps around a particle with wrapping degree f for different ��
and �1=�2 with �� ¼ 1. (a) Two-dimensional case, and (b) three-
dimensional case. Scatters in (a) are results from molecular
simulations [14]. In general, there exist 5 distinct wrapping
phases in 3D. Plots shown in (b) show that, under the selected
parameters, there are 2 stable (I, V) and 3 metastable phases
(II–IV). Among the 3 metastable phases, the underlined wrap-
ping states in (b) are the ones with lower energy. (c) 2D and
(d) 3D solutions to selective wrapping configurations at �� ¼ 2
for different particle-membrane rigidity ratios �1=�2.
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very small when �1=�2 � 1 but large for very soft vesicles
(�1=�2 ¼ 0:1). A general result from Fig. 3 is that stiffer
particles require lower adhesion energy for wrapping.
Comparison with Fig. 3(a) indicates that ��min is larger in
3D than in 2D for a given �1=�2, since the bending energy
density is larger in 3D. For a given �1=�2, the critical value
of �� for full wrapping is larger in 3D when �� is small
( ��< 1 for �1=�2 � 1, ��< 0:5 for �1=�2 ¼ 0:1). When ��
exceeds a certain value, the critical value of �� for full
wrapping in 3D becomes smaller, indicating that the up-
take of a two-dimensional particle could not be accom-
plished even if full wrapping becomes possible in
three dimension. In such cases, spherical particles can be
absorbed when cylindrical ones cannot.

The phase diagrams shown in Fig. 3 may have broad
implications for endocytosis or phagocytosis and drug or
gene delivery processes. If the adhesive interaction be-
tween a particle and membrane is not strong enough, it
will be difficult for the cell membrane to engulf a very soft
particle. To achieve the full wrapping state and engulf the
particle, the bending modulus of the particle needs to
increase. Protein coating formation and actin polymeriza-
tion beneath the membrane are effective methods to in-
crease bending modulus of the particle. For example,
binding of clathrin-associated proteins leads to a signifi-
cant increase in the rigidity of clathrin-coated vesicles
which is about 20 times that of the vesicle membrane
alone [20]. For streptavidin- and avidin-coated vesicles
�1 � 320kBT and �1 � 115kBT, respectively, which are
much larger than bare SOPC/capBio-DOPE vesicles with
�1 � 10kBT [21]. The actin concentration inside the phag-
ocytic cup has been estimated to increase the local stiffness

by a factor of 5 [22]. The phase diagrams in Fig. 3 provide
a possible alternative view on why clathrin and other
protein coatings as well as actin polymerization are in-
volved in many endocytosis and phagocytosis processes.
Macrophages have a preference to engulf rigid targets

with more actin filaments concentrated beneath stiffer
particles [5]. In some cases, infected macrophages are
drug targets; while in other cases, macrophages are not
target cells but act as barriers by phagocytosis preventing
particles from releasing their therapeutic cargos near or
within target cells [23]. Figure 3 demonstrates that uses of
soft particles and cylindrical particles can postpone or
prevent uptake. An alternative method is to increase the
bending modulus of the cell membrane. For three-
dimensional particles, the effects of particle elasticity on
cellular uptake are only evident when �1 < �2. Wormlike
viruses and particles with very high aspect ratios [2] may
be considered two-dimensional vesicles. For these types of
particles, controlling the particle stiffness can be essential
for controlling cellular uptake. Many particles can be used
as soft drug delivery particles such as polymer particles,
nanocapsules, and nanogel with high water content. The
elasticity- and geometry-induced inhibition of cellular up-
take will have important applications in the use of those
particles as drug delivery carriers.
Experiments show that MLV and HIV particles are stiff

during viral budding out of the host and soften during entry
activities [6]. For these viral particles, entry into the cell
often involves endocytosis and membrane fusion, in which
case full wrapping is not necessary for the uptake process.
In contrast, the budding process involves no membrane
fusion and requires full wrapping, so that the stiffness of

FIG. 3 (color online). Wrapping phase diagrams with respect to normalized adhesion energy �� and surface tension �� at different
values of the rigidity ratio �1=�2. (a) 2D case, dashed lines: boundaries between no wrapping and partial wrapping states, solid lines:
boundaries between partial and full wrapping states. (b)–(e) 3D cases for �1=�2 ¼ 1, 5, 1, 0.1, dotted lines: boundaries between
phases I and IIðII0Þ, dashed lines: boundaries between phases IIðII0Þ and III(III–V for �1=�2 ¼ 1, 0.1), dash-dotted lines: boundaries
between phases III and IV, solid lines: boundaries between phases IVand V. Symbols in (a) denoting transition boundaries between the
partial and full wrapping states are from molecular simulations [14].
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the particle can be expected to play a more important role.
However, softer particles experience smaller energy
changes during the wrapping process [see Fig. 2(a) for
2D cases] which might be preferred in case full wrapping
is not required. These results provide feasible explanations
why viral particles harden right before budding and then
soften again in the uptake stage [6].

Our analysis suggests that the reason why soft particles
are less prone to wrapping than stiff ones could be under-
stood as follows. For a rigid particle, the adhesive interac-
tion between the particle and membrane simply forces the
membrane to deform and wrap around the particle. In
contrast, Figs. 2(c) and 2(d) show that for a soft particle,
the deformation is partitioned between the particle and the
membrane at different stages of wrapping. A very soft
particle would initially spread along the membrane without
significant membrane deformation. Only at a later stage
will the membrane be forced to bend around the particle.
Thus, wrapping around a rigid particle involves a gentler
rise in elastic energy in the membrane as more membrane
area deforms around the particle. When wrapping around a
soft particle, the membrane does not deform initially but
then needs to catch up to almost the same configuration at
full wrapping. This means a more abrupt rise in elastic
energy at the later stage of wrapping and, consequently,
larger adhesion energy would be required to balance the
more rapid rise in elastic energy. Since it is this partition of
deformation at the early stage of wrapping that hinders the
full wrapping of a soft particle, alternative particle models,
such as a particle with a bulk elastic modulus or a thin shell
with shear rigidity, are not expected to change this basic
feature of particle-membrane interaction. Therefore, we
believe the conclusions of our study should be generic
and not specific to the present vesicle model.

In this Letter, we have performed both theoretical analy-
sis and molecular simulations to study the cellular uptake
of elastic nanoparticles. Using variational methods and free
energy functional for cell membrane wrapping around
elastic cylindrical (2D) or spherical particles (3D), we
have calculated the associated phase diagrams describing
transition boundaries between different wrapping phases.
We find that stiffer particles can achieve full wrapping
more easily than softer particles, while softer particles
experience smaller energy changes during wrapping and
might be more favorable in case full wrapping is not
necessary. The cellular uptake of particles is strongly
dependent on the particle size, shape, and physicochemical
properties of particles [1,2,24]. Our results suggest that
precise control of the particle elasticity can be another
appealing way to control cellular uptake. The present

model can be extended to problems such as phase separa-
tions and assembly of programmable soft materials.
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I. NUMERICAL RESULTS IN THE 2D CASE

Fig. S1 shows the energy change as a lipid membrane wraps around a 2D circular particle with wrapping degree

f for different γ̄ with very small σ̄ (p = 0, κ1/κ2 = 0.1, σ̄ = 0.15). When σ̄ is very small, a coexistence of the

partial and full wrapping states emerges, corresponding to two local energy minima. The wrapping states with

lower energy in the coexistence regions are underlined. For γ̄ = 3 the full wrapping state marked by the open

square arises before the wrapping fraction f reaches the position marked by the solid circle; in other word, the

solution at the solid point is unphysical in this case.
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FIG. S1: Energy change ∆E as a function of the wrapping degree f for different γ̄ with p = 0, κ1/κ2 = 0.1 and σ̄ = 0.15.

The solid circle on each curve corresponds to the global minimum. The open squares correspond to the full wrapping

states. The underlined wrapping states are the ones with lower energy.

Fig. S2(a) shows a zoom of the σ̄ ≤ 0.5 part of the phase diagram Fig. 3(a) in the main text. As σ̄ becomes

very small, a coexistence of the partial and full wrapping states emerges for particles with κ1 = 0.1κ2, as shown

in Fig. S1. Since the size of nanoparticles engulfed by cells is usually smaller than a few hundred nanometers and

the pressure difference ∆P is of the order of 1N/m2, we take p = ±2 as examples to investigate the contribution

of pressure difference to the wrapping phase diagrams. Compared with the phase diagram with p = 0 (see

Fig. 3(a)), the boundaries between partial and full wrapping states for κ1/κ2 = 20, 10, 1, 0.1 are slightly higher

at p = −2 (see Fig. S2(b)), and slightly lower at p = 2 (see Fig. S2(d)). In the region for small σ̄, the partial

and full wrapping states coexist only for κ1/κ2 = 0.1 at p = −2 (see Fig. S2(c)), but for both κ1/κ2 = 1 and 0.1
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at p = 2 (see Fig. S2(e) and (f)). Comparison of the 2D phase diagrams at different values of p indicates a finite

but minor effect of pressure difference on nanoparticle uptake.
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FIG. S2: Wrapping phase diagrams with respect to normalized adhesion constant γ̄ and surface tension σ̄ at different

values of the rigidity ratio κ1/κ2 in the 2D case. (a) A zoom on the region for small values of σ̄ with the normalized

pressure difference p = 0 and the rigidity ratio κ1/κ2 = 0.1 in Fig. 3(a) of the main text; (b) phase diagram with p = −2;

(c) a zoom of the small σ̄ part of the phase diagram in (b); (d) phase diagram with p = 2; (e),(f) zooms of the small σ̄

parts of the phase diagram in (d) with κ1/κ2 = 1 and 0.1, respectively. The underlined wrapping states are the ones with

lower energy.

Fig. S3 shows how the local geometric properties (such as the distance to symmetry axis r0, the wrapping angle

α, the curvatures ψ̇1(s1), ψ̇2(0) and ψ̇3(s1), and ψ̈1(s1), ψ̈2(0) and ψ̈3(s1); see Fig. 1) and wrapping fraction evolve

as σ̄ changes for γ̄ = 10 at the adhesion edge s = s1. For rigid particles, we have 1 +
√
2σ̄ sin α

2 =
√
γ̄, r0 = sinα,

f = α/π, ψ̇1 = ψ̇3 = 1, ψ̇2(t = 0) = −
√
2σ̄ sin α

2 = 1 −
√
γ̄, ψ̈1 = ψ̈3 = 0, and ψ̈2(t = 0) = σ̄

2 sinα. For

elastic particles, there are no analytical solutions. Numerical results show that in elastic cases r0 increases,

and α and f(s1) decrease with increasing σ̄, which has the same trend as the rigid case (see Fig. S3(a-c)).

Due to the deformation of the circular particle, the local curvatures at s = s1 are no longer constant. As σ̄

increases, curvatures ψ̇1(s1), ψ̇2(0) and ψ̇3(s1) decrease (see Fig. S3(d-f)). The softer the particle is, the larger

the deformation is and the more deviation would be from the rigid case. These results confirm that the contact

boundary conditions in Eqs. (3-4) are indeed satisfied.
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FIG. S3: (a) The distance to symmetry axis r0 of the adhesion edge s = s1, (b) the wrapping angle α, (c) the wrapping

fraction f(s1) = s1/π, (d),(e),(f) the contact curvatures and (g),(h),(i) ψ̈1, ψ̈2 and ψ̈3 at s = s1 of the inner free, outer

free and adhesion regions, respectively, as functions of σ̄ for different rigidity ratios κ1/κ2 at γ̄ = 10. The solid circle on

each curve in (a) corresponds to the full wrapping state which persists for even smaller σ̄. The lines have been colored

according to the conventions defined in (a).

II. NUMERICAL RESULTS IN THE 3D CASE

The governing equation for the vesicle shape is Eq. (2) in the main text. The equations that govern the shape

of the outer free part of the membrane can be found in Ref. [1] and are listed here as

ψ̈ =
1

r

(
sinψ

r
cosψ +

σ̄r

2
sinψ − ψ̇ cosψ +

µ

2
sinψ

)
,

µ̇ = ψ̇2 − sin2 ψ

r2
+ σ̄(1− cosψ),

ṙ = cosψ,

where dots denote derivatives with respect to the rescaled arclength of the outer free part of the membrane.

Fig. S4 shows typical energy landscapes of the three cases in phase II′ for several values of γ̄. In case 3 the

energy change between the global minimum and the full wrapping state (f = 1) is about 4kBT with κ2 = 20kBT ,

and might be overcome by thermal fluctuations. This indicates that the thin solid line in Fig. 3(e) can be viewed

as the transition line between phase II′ and phase V approximately.
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FIG. S4: Energy changes ∆E of the three cases in phase II′ as a function of the wrapping degree f for different γ̄ (p = 0,

κ1/κ2 = 0.1 and σ̄ = 2).

Fig. S5 (a) is a combination plot of the phase diagrams in Fig. 3(b-e) in which the phase boundary difference

is shown. Wrapping phase diagrams at p = ±2 are shown in Fig. S5(a) and (b). There is very small difference

between these three phase diagrams, indicating a negligible contribution of pressure difference to phase diagrams.
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FIG. S5: Wrapping phase diagrams with respect to normalized adhesion constant γ̄ and surface tension σ̄ at different

values of the rigidity ratio κ1/κ2 in the 3D case with normalized pressures p = 0,−2, 2 in (a), (b) and (c), respectively.

The definitions of phases I-V and II′ are in main text. The lines have been colored according to the conventions defined

in (a).

Fig. S6 shows the evolution of geometric properties and wrapping fraction of the global minimum states for

different κ1/κ2. For rigid particles ψ̇1 = ψ̇3 = 1, ψ̇2(t = 0) = 1−
√
γ̄, ψ̈1 = ψ̈3 = 0 and r0, α, f(s1) and ψ̈2(t = 0)

can be determined numerically. When σ̄ decreases from 5 to the values marked by the solid circles, the global

minimum states transfer from the partial wrapping states to full wrapping states (f = 1), and stay at f = 1 as

σ̄ decreases. Results in Fig. S6 confirm that the boundary conditions in Eqs. (3-4) are indeed satisfied.
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FIG. S6: (a) The distance to symmetry axis r0 of the adhesion edge s = s1, (b) the wrapping angle α, (c) the wrapping

fraction f(s1), (d),(e),(f) the contact curvatures, and (g),(h),(i) ψ̈1, ψ̈2 and ψ̈3 at s = s1 of the inner free, outer free and

adhesion regions, respectively, as functions of σ̄ for different rigidity ratios κ1/κ2 at γ̄ = 8. The lines have been colored

according to the conventions defined in (a).

III. MOLECULAR SIMULATIONS IN THE 2D CASE

In two dimensions the Canham-Helfrich Hamiltonian reduces to E =
∑

i=1,2,3

∫
uidAi + ∆PV + σ∆A − γA3,

where ui = κiC
2/2 (i = 1, 2, 3) are the bending energy densities of the membrane regions depending on C, the

local curvature of the membrane. Based on the elastic thin shell theory, the bending energy density of a thin

shell in two-dimensional deformation is u = DC2/2, where D = Eh3/[12(1 − ν2)] is the bending stiffness, E, ν

and h are the Young’s modulus, Poisson’s ratio and thickness of the shell, respectively [2]. Comparing it with the

Helfrich energy, we have a correspondence κ→ D, which enables us to model a circular vesicle and the membrane

as isotropic inextensible elastica in molecular simulations.

To simulate the wrapping of a particle in two dimensions (2D), we adopt a coarse grained simulation scheme

in which a one-layer-thick cylindrical shell and a one-layer-thick membrane are constructed. In this system, the

particles formed the shell and membrane are modeled by 3-body potential of Tersoff’s form, with parameters

from Refs. [3,4]. The interaction between particles of shell and membrane is described by the Lennard-Jones
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potential 4ε
[(

σ
r

)12 − (
σ
r

)6]
, where r is the distance of two particles, σ is the distance at which the potential is

zero and ε is the depth of the potential well. Driven by the adhesion energy, the membrane can wrap around

the shell. In such a manner, the simulation system can explicitly depict all the energy components of elastic

cylindrical shell-membrane system. For example, the total elastic energy of the modeled membrane is composed

of in-plane stretching energy and bending energy, similar to that of the cell membrane. In the simulations,

periodic boundary conditions are imposed in the axial direction of the shell during the wrapping process. For

simplicity, temperature is fixed at 1K in all simulations to eliminate the thermal effect. The rigidity of the shell

can be adjusted by the parameter of the Tersoff potential. The specific interaction energy γ and the bending

modulus κ1, κ2 are obtained with the methods described in Refs. [5,6].

[1] M. Deserno. Elastic deformation of a fluid membrane upon colloid binding. Phys. Rev. E 69, 031903 (2004).

[2] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd Ed., (McGraw-Hill, New York, 1961).

[3] S. J. Stuart, A. B. Tutein and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions.

J. Chem. Phys. 112, 6472 (2000).

[4] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott. A second-generation reactive

empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 14, 783 (2002).

[5] X. Shi, N. M. Pugno and H. Gao. Tunable core size of carbon nanoscrolls. J. Comput. Theor. Nanosci. 7, 517 (2010).

[6] X. Shi, Y. Cheng, N. M. Pugno and H. Gao. Tunable water channels with carbon nanoscrolls. Small 6, 739 (2010).


	PhysRevLett.107.098101
	Supplementary_information_without_highlights_LU13033



