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Abstract
Nano-onions are ellipsoidal or spherical particles consisting of a core
surrounded by concentric shells of nanometre size. Nano-onions produced by
self-assembly and colloidal techniques have different structures and
compositions, and thus differ in the state of strains. The mismatch of the
thermal expansion coefficients and lattice constants between neighbouring
shells induces stress/strain fields in the core and shells, which in turn affect
their physical/mechanical properties and/or the properties of the composites
containing them. In this paper, the strains in embedded and free-standing
nano-onions with uniform and non-uniform compositions are studied in
detail. It is found that the strains in the nano-onions can be modified by
adjusting their compositions and structures. The results are useful for the
band structure engineering of semiconductor nano-onions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The synthesis and characterization of particles with core–
shell structures have attracted a lot of attention in many
areas of science and technology. These particles, which
are ellipsoidal or spherical in shape and which consist of a
core surrounded by concentric shells of nanometre size, are
called ‘nano-onions’ because of this special structure [1, 2].
In order to obtain target properties, different systems, in
terms of materials and shell thickness (e.g. CdS/HgS/CdS,
CdS/HgS/CdS/HgS/CdS), have been produced [3, 4]. Multi-
fold core–shell structured particles of micrometre size are
called ‘micro-onions’ [5]. Nano-onions can be used on their
own as functional devices, besides being a constituent part of
a composite medium [2, 6–10]. Nano-onions are a kind of
quantum dot (QD). There are currently two leading methods
for producing nanometre-size semiconductor quantum dots
(QDs). The first is the self-assembled method [11, 12].
In this method, the quantum dot material is deposited on
top of a substrate with a different lattice constant, and the
resulting strain induces three-dimensional island growth (e.g.
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InAs/GaAs, InP/GaInP and Inx Ga1−x As/GaAs). The second
method is colloidal, which can produce nearly spherical QDs
(e.g. CdTe/CdSe and CdTex Se1−x ).

The alloyed QDs (e.g. Inx Ga1−x As, CdTex Se1−x ) have
attracted much interest recently because the behaviour of any
electronic devices made of these alloyed QDs is strongly
affected by an enriched but non-uniform composition [13].
The possibility of tuning a particular composition profile
via alloying is of great importance, as it represents another
degree of freedom in the design of self-assembled hetero-
epitaxial structures [14]. Hence, the assessment of composition
profiles and strains is important to both the identification
of the dominant growth mechanisms and the modelling of
the confining potential of quantum dots [14, 15]. Many
attempts have been made to measure the elastic strains and
the compositions of QD structures by using different methods
(e.g. atomic force microscopy, high-resolution electron
microscope analysis, x-ray absorption, etc) [16–24]. For
example, Rosenauer et al [18] evaluated the composition of
Inx Ga1−x As/GaAs QD structure by measuring local lattice
parameters and displacements, assuming a linear dependence
of the lattice parameter on the In content (Vegard’s law).
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Quantitative analysis has been performed using transmission
electron micrographs and finite-element modelling with the
appropriate sample geometry [18]. Lelarge et al [20] obtained
the strain distributions of Inx Ga1−x As/InP QD structure by
surface profile measurements using atomic force microscopy
(AFM) and finite-element calculations. Bruls et al [23]
performed cross-sectional scanning tunnelling microscopy and
finite-element analysis of InAs QD with the shape of a
truncated pyramid in a GaAs matrix and concluded that the dot
consisted of InGaAs alloy with the In concentration increasing
linearly towards the top of the dot. Rockenberger et al [24]
studied a free-standing CdTe(core)/CdS(shell) nanoparticle by
extended x-ray absorption. They observed changes in the bond
lengths of CdTe and CdS, and concluded that small mismatches
between the lattice parameters of the two materials can be
elastically compensated by adjusting their lattice dimensions
in a small interface layer, resulting in a strain. Therefore, they
used the classical theory of elasticity to calculate the strain
distribution within the core–shell structure by simulating the
mismatch strain by a uniform prescribed eigenstrain in the
core [24].

The mechanical behaviour of materials at the nanoscale
is different from that at the macroscopic scale due to the
increased ratio of the surface/interface to the volume. A
classical continuum model to explain the surface effect on the
elastic properties of nanostructures was formulated by Gurtin
and Murdoch [25]. Later, it was further developed by many
researchers [26–32] to analyse the elastic properties of nano-
structured materials. Miller and Shenoy [26, 29] compared
the results obtained by the classical continuum model with
those obtained by the atomistic simulations for nanobeams
and nanowires, and found that the two methods led to almost
the same results. As a nanostructure can be regarded as a
combination of a bulk and a surface [29], the mechanical
behaviour of a nano-structured material can be predicted
within the framework of continuum elasticity supplemented
by surface elasticity [26, 29, 33]. In fact, Yakobson and
Smalley [34] have noted that the laws of continuum mechanics
are amazingly robust and allow one to treat even intrinsically
discrete objects only a few atoms in diameter.

For heterogeneous electronic structures of fine scale, as
pointed out by Itskevich et al [35], Little et al [36], and
Pérez-Conde and Bhattacharjee [37], the misfit strain, the
surface stress and the applied external pressure all modify
the strain fields in them, and in turn affect the electronic
structures, and hence their physical properties. Although the
strain distributions of nano-structured materials (e.g. quantum
dot structures) have been studied extensively using continuum
approaches and atomistic simulations [38–46], no attempt
has been made to calculate the strain distributions in nano-
onions with non-uniform compositions, taking into account
also the surface stress effect. Generally, the quantum dot and
matrix are assumed to be isotropic in continuum approaches,
and this assumption has been proved to be very reasonable
when isotropic and anisotropic solutions for semiconductor
materials were compared, and is thus widely used [38].
However, it should be noted that the sensitivity of some
physical properties to strain could make anisotropic effects
important and the isotropic approximation should therefore
be treated with caution, particularly for layers oriented in

Figure 1. A spherical embedded nano-onion (a), and a spherical
free-standing onion (e.g. CdS/HgS/CdS, ZnS/CdS/ZnS and
CdS/HgS/CdS/HgS/CdS) (b).

certain crystallographic directions [39]. For most cases,
however, the anisotropy only marginally modifies the strain
distributions [39]. In this paper, we present a theoretical study
of the strains in embedded and free-standing nano-onions of
uniform and non-uniform compositions with surface/interface
effect.

2. Strain distributions in nano-onions with uniform
composition

2.1. Embedded nano-onions

Consider a spherical nano-onion (a multi-shell spherical
particle) embedded in an infinite elastic matrix, as shown
in figure 1(a). Let phase 1 denote the innermost core,
hereinafter referred to as the particle, and let phase I refer
to the shell bounded by the concentric and spherical surfaces
with radii rI and rI+1(I ∈ (1, M)), respectively. Let �1,
�k (k = 2, . . . , I, . . . , M) and �M+1 denote the regions
occupied by the particle, the multi-shells and the matrix,
respectively. The subscripts k (k = 1, 2, . . . I, . . . , M, M + 1)

are used to denote the quantities in the regions �k (k =
1, 2, . . . , I, . . . , M, M + 1), respectively. The interfaces
between the particle and neighbouring shell and those between
the shells further removed from the particle are perfectly
bonded. The particle, the multi-shells and the matrix are
homogeneous, linearly elastic and isotropic, characterized by
the bulk modulus κk , the shear modulus µk and the Poisson’s
ratio νk (k = 1, 2, . . . , I, . . . , M, M + 1).

As in the work of Cahn and Larche [47], we choose
the stress-free states of the spherical inclusion and its
surrounding phases as their reference states. The strains
induced by the mismatch of the lattice constants and thermal
expansion coefficients in nano-onions can be treated as
eigenstrains [24, 30, 40]. When uniform eigenstrains ε∗

I (I =
1, 2, . . . , M) are prescribed in the particle and the multi-shells,
the elastic strains εk(x) in the particle (k = 1), the multi-
shells (k = 2, 3, . . . , M), and the matrix (k = M + 1) can
be expressed as

εk = Sk
I : ε∗

I − ε∗
k (k = 1, 2, . . . , M + 1). (1)

It is noted that ε∗
M+1 = 0 in the above equation. Sk

I is the
Eshelby tensor in the kth phase, which relates the uniform
eigenstrain ε∗

I prescribed in the I th phase to the strain induced
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in the kth phase [48]. Thus the repeated subscript I in
equation (1) indicates summation from 1 to M . As stated in
section 1, the large ratio of surface/interface atoms to the bulk
can have a profound effect on the properties of nanostructures,
and this effect can be described by the classical continuum
model with consideration of the interface effect. Therefore,
the interface and boundary conditions to determine Sk

I are as
follows [30]:

uI + ε∗
I · x = uI+1 + ε∗

I+1 · x,

(σ I − σ I+1) · N = ∇S · σ s,

uM+1 = 0, σ M+1 = 0 at |x| → +∞,

(2)

where x is the position vector and N is the unit normal vector to
the interface between the I th and (I +1) th phases, and ∇S ·σ s

denotes the interface divergence of the interface stress tensor
σ s . Details are given in [30]. Sk

I satisfying the conditions
equation (2) can be determined following the same procedure
as used by Duan et al [49] in determining the Eshelby tensor in
the absence of interface stress σ s .

The interface stress σ s depends on the state of the elastic
strain εs [27, 50, 51] and σ s = σ 0 + S : εs [26], where σ 0 is
the initial interface stress and S is the interface modulus tensor.
However, the interface moduli are difficult to determine,
and no data are currently available for the semiconductor
materials. Therefore, without loss of the physical essence, in
this paper we only consider a constant isotropic interface stress
σ s(= σ01), where 1 is the second-order unit tensor in two-
dimensional space.

2.2. Free-standing nano-onions

Figure 1(b) shows a spherical free-standing nano-onion
consisting of a core and concentric multi-shells of nanometre
size. Besides the uniform eigenstrains ε∗

I (I = 1, 2, . . . , M −
1) prescribed in the particle and the multi-shells, we also
assume that an isotropic surface stress vector τ (τ = τ1;
we distinguish it from the interface stress σ 0) and an external
hydrostatic pressure Pex act on the outer surface of the nano-
onion. Then the elastic strains in the core and the multi-shells
are

εk = Sk
I : ε∗

I −ε∗
k + Ek(τ , Pex) (k = 1, 2, . . . , M). (3)

Here the procedures used to obtain Sk
I are similar to those

used to obtain the Eshelby tensors for the embedded nano-
onion mentioned above. However, the interface and boundary
conditions for this case are

uI + ε∗
I · x = uI+1 + ε∗

I+1 · x,

(σ I − σ I+1) · N = ∇S ·σ s,

σM · N = 0 at |r| → rM.

(4)

It is noted that ε∗
M = 0 in the present case and I ∈ (1, M − 1)

in equations (3) and (4). Ek(τ, Pex) in equation (3) is the elastic
strain tensor in the core and shells due to the surface stress τ

and exterior hydrostatic pressure Pex. The displacement fields
in the core and shells due to τ and Pex are

uk
r (τ, Pex) = Fkr + Gk

r 2
(k = 1, 2, . . . , M), (5)

and the components of Ek(τ, Pex) in the spherical coordinates
are

Ek
rr (τ, Pex) = Fk − 2Gk

r 3
,

Ek
θθ (τ, Pex) = Ek

ϕϕ(τ, Pex) = Fk + Gk

r 3
,

(6)

where G1 = 0 and the non-vanishing constants Fk and Gk are
determined from the continuity conditions of the displacement
and stress fields at the interfaces between the shells, and the
following boundary conditions at the outermost boundary (r =
rM):

σM
rr = −2τ

rM
− Pex. (7)

It is noted that equations (1) and (3) can apply to arbitrary
uniform eigenstrains ε∗

I prescribed in the core and multi-shells.
For QD structures with a uniform composition, the

mismatch of the lattice constants or thermal expansion
coefficients of different constituents can induce an initial
misfit strain. According to the definitions of an embedded
QD [40] and a free-standing core–shell particle [24], the misfit
strains arising from the different lattice constants and the
thermal expansion coefficients between different phases are,
respectively,

ε∗
m0 = ain − aex

aex
, ε∗

tm0 = (αin − αex)
T , (8)

where ain, aex and αin, αex are the lattice constants and the
thermal expansion coefficients of the interior and exterior
phases, respectively. 
T is the temperature difference. For
example, the misfit strain due to the mismatch of the lattice
constants of the CdTe(core)/CdS(shell) structure is 11.6%, and
that of ZnS(core)/CdS(shell) is −7.0%.

3. Strain distributions in nano-onions with
non-uniform composition

The first expression in equation (8) is the so-called Vegard’s
law [52]. It is noted that Vegard’s law for alloyed materials
is a linear function: Ealloy = x EA + (1 − x)EB, where
EA, EB and Ealloy are the respective properties of pure A,
pure B and the alloy Ax B1−x , and x is the fraction of one
ingredient in a material point [53]. For example, experiments
have shown that the lattice constant of the non-uniform
nano-onion (Znx Cd1−x S) exhibits a nearly linear relation
with the Zn content x , which is consistent with Vegard’s
law [54, 55]. In the following, we assume that a spherical
nano-onion has a spherically symmetric composition, i.e. the
non-uniform composition is a function of the radial co-ordinate
r only. Therefore, the misfit eigenstrain ε∗(r) induced by the
mismatch of the lattice constants and the thermal expansion
coefficients can be expressed as

ε∗(r) = ε∗
m(r)(er ⊗ er + eθ ⊗ eθ + eϕ ⊗ eϕ), (9)

where er , eθ and eϕ are the local unit base vectors in the
spherical coordinate system, and ε∗

m(r) is the misfit strain.
The misfit strains induced by the lattice constants and thermal
expansion coefficients are [46]

ε∗
m(r) = x(r)ε∗

m0, ε∗
m(r) = x(r)ε∗

tm0, (10)
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(a) (b)

Figure 2. A spherical embedded nano-onion with non-uniform
composition (e.g. Inx Ga1−x As) (a), and a spherical free-standing
nano-onion with a non-uniform composition (e.g. CdTex Se1−x ) in
the core (b).

where x is the fraction of the ingredient at location r . If
x ≡ 1, equation (10) reduces to those of a uniform composition
(equation (8)).

The non-uniform distribution of the eigenstrain will result
in an elastic field in a free-standing particle, namely the core
of the nano-onion, even when the surface of the particle is
not constrained. Therefore, in order to determine the elastic
fields in an embedded nano-onion (figure 2(a)) and a free-
standing core–shell nano-onion (figure 2(b)) induced by the
non-uniform eigenstrain in equation (10), we first seek the
elastic field in a free-standing core. According to the theory
of elasticity, the governing equation for obtaining the eigen-
displacement vector u∗ is as follows:

Ci jkl (u
∗
k,l j − ε∗

kl, j ) = 0, (11)

where the eigenstrain ε∗
i j is given in equation (9) and Ci jkl is

the elastic moduli tensor of the core. Next, in order to obtain
simple analytical solutions, we assume that the elastic moduli
of the non-uniform core are constant, i.e. for example, the
elastic moduli of the Inx Ga1−x As core are those of InAs and the
elastic moduli of the CdTex Se1−x core are those of CdTe. This
is a reasonable assumption, because the compounds in the core
have usually nearly identical elastic constants. Substituting
equation (10) into (11), it follows that the only non-vanishing
component of the displacement vector u∗, viz u∗

r (r) must
satisfy the equation

r 2 ∂2u∗
r

∂r 2
+ 2r

∂u∗
r

∂r
− 2u∗

r − (1 + ν1)

(1 − ν1)
ε∗

m0r 2 ∂x

∂r
= 0, (12)

where ν1 is the Poisson ratio of the core. Therefore,
equation (12) and the corresponding boundary conditions
constitute the basic equations for finding u∗

r (r). For a known
variation of x , e.g. it could vary in a linear, logarithmic or
exponential manner with r , u∗

r (r) can be determined easily. In
particular, if x(r) in equation (10) is assumed to be a linear
function in the radial co-ordinate r

x(r) = b0 + b1
r

rco
, (13)

where b0 and b1 are two constants and rco denotes the radius
of the non-uniform core, then the corresponding u∗

r (r) is given
by equation (12)

u∗
r (r) = r D1 + D2

r 2
+ b1(1 + ν1)r 2ε∗

m0

4rco(1 − ν1)
. (14)

The constants D1 and D2 are determined from the traction-
free condition at the outer boundary of the free core and the
condition for avoiding the singularity at the origin, and are

D1 = b0ε
∗
m0 + (1 − 2ν1)b1ε

∗
m0

2(1 − ν1)
, D2 = 0. (15)

It is seen that, even when the surface of the nano-particle
is not constrained, the non-uniform eigenstrain still causes an
elastic stress/strain field in the particle. When the non-uniform
core is embedded in an infinite (relative to the core size) or
finite alien medium, the constraint imposed by the exterior
medium will cause an additional elastic field. In what follows,
we will calculate this field by embedding the non-uniform core
in an infinite medium or a finite shell. For the embedded nano-
onion shown in figure 2(a), the displacement fields in the core
and the matrix are given by equation (5) with k = 1 and k = 2,
respectively, and F2 = 0, G1 = 0. The constants F1 and G2

are determined from the following interface conditions:

u2
r = u1

r + u∗
r |r=rco , σ 2

rr − σ 1
rr = 2σ0

rco
, (16)

where u1
r is the displacement in the core caused only by

the constraint imposed by the matrix, and u2
r is the total

displacement in the matrix. For the embedded nano-onion with
non-uniform composition, the components of the elastic strains
ε1 and ε2 in the non-uniform core and the uniform matrix
due to the above-mentioned linear radial misfit strain are, in
spherical coordinates,

ε1
rr = −µ2(Hε∗

m0 + 2σ ∗
0 )

3κ1 + 4µ2
+ εR

rr ,

ε1
θθ = ε1

ϕϕ = −µ2(Hε∗
m0 + 2σ ∗

0 )

3κ1 + 4µ2
+ εR

θθ , (17)

ε2
rr = −2ε2

θθ = −2ε2
ϕϕ = − (3Hε∗

m0κ1 − 8µ2σ
∗
0 )r 3

co

2(3κ1 + 4µ2)r 3
, (18)

in which

εR
rr = ε∗

m0b1

2(1 − ν1)

[
1 − 2ν1 − (1 − 3ν1)

r

rco

]
,

εR
θθ = ε∗

m0b1

4(1 − ν1)

[
2 − 4ν1 − (3 − 5ν1)

r

rco

]
,

(19)

where H = 4b0 + 3b1, σ ∗
0 = σ0/(rcoµ2), and κ1, κ2 and µ1,

µ2 are the bulk moduli and shear moduli of the core and the
infinite matrix, respectively.

The free-standing nano-onion is assumed to be composed
of a non-uniform core and a uniform shell with the non-
uniform eigenstrain ε∗ prescribed in the core. Also, an
isotropic surface stress τ and an external hydrostatic pressure
Pex are exerted at the outer surface of the shell. According
to the superposition principle of the elasticity theory, the total
elastic strains are equal to the sum of the strains caused by the
three factors (ε∗, τ and Pex). The procedure for obtaining the
solution due to ε∗ is similar to that for the embedded onions.
Therefore, the components of the elastic strain tensors ε1 and
ε2 in the non-uniform core and the uniform shell are

ε1
rr = −�1

3χ
+ εR

rr , ε1
θθ = ε1

ϕϕ = −�1

3χ
+ εR

θθ , (20)

ε2
rr = �2 − 2�3r 3

co

r 3
, ε2

θθ = ε2
ϕϕ = �2 + �3r 3

co

r 3
, (21)
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Figure 3. Distributions of normalized elastic strains εzz/ε
∗
m0 and

εx x/ε
∗
m0 in the embedded nano-onion Inx Ga1−x As/GaAs structure

subjected to an eigenstrain ε∗ in equation (9).

with

�1 = µ2[3(1 − ρ3
1)Hε∗

m0κ2 + 2(3κ2 + 4ρ3
1µ2)σ

∗
0 ]

+ (3κ2 + 4µ2)(Pex + 2µ2τ
∗),

�2 = ρ3
1µ2(3Hε∗

m0κ1 − 8µ2σ
∗
0 )

3χ

− (3κ1 + 4µ2)(Pex + 2µ2τ
∗)

3χ
,

�3 = κ2(3Hε∗
m0κ1 − 8µ2σ

∗
0 )

4χ
+ (κ1 − κ2)(Pex + 2µ2τ

∗)
χ

,

χ = 4(1 − ρ3
1)κ2µ2 + κ1(3κ2 + 4ρ3

1µ2),

(22)

where τ ∗ = τ/(rshµ2), κ1, κ2 and µ1, µ2 are the bulk moduli
and shear moduli of the core and shell, respectively. ρ1 =
rco/rsh, where rsh denotes the outer radius of the shell.

4. Numerical results

For semiconductor structures, the important combinations of
the strain components are the hydrostatic strain εh,

εh = εxx + εyy + εzz, (23)

and the biaxial strain εb [45],

εb =
√

(εxx − εyy)2 + (εyy − εzz)2 + (εzz − εxx )2, (24)

because εh usually shifts the conduction-band and valence-
band edges and εb modifies the valence bands by splitting the
degeneracy of light- and heavy-hole bands [39].

It is noted that the elastic moduli of nano-structured
QDs are different from those of bulk materials due to the
increased ratio of the surface to the volume. The elastic moduli
of nanoparticles (or nanowires and nanofilms, etc) can be
characterized by apparent (or effective) moduli, which reflect
the surface effect [29, 33, 56, 57], and a simple scaling law for
the properties of nano-structured materials has been given by
Wang et al [33]. However, because of the lack of information
on the surface properties of QDs under consideration, we
cannot determine the exact effective elastic moduli of nano-
structured QDs. Therefore, we make two approximations in the
numerical calculations to follow. First, we neglect the effect
of interface stress (i.e. σ 0). However, as the effect of the

Figure 4. Distribution of normalized biaxial strain εb/ε
∗
m0 in the

embedded nano-onion Inx Ga1−x As/GaAs structure subjected to an
eigenstrain ε∗ in equation (9).

surface stress (i.e. τ ) on the outer surface of the shell can be
very important for nanoparticles [58], we consider the effect of
a surface stress in the free-standing nano-onion. Second, the
elastic moduli of nano-structured QDs are assumed to be the
same as those of the corresponding bulk materials.

4.1. Embedded nano-onion with non-uniform composition

In the following, we will analyse the elastic strain distribution
in the embedded nano-onion Inx Ga1−x As (core)/GaAs(matrix)
(figure 2(a)) due to the misfit strain described by equations (10)
and (13). It is noted that the embedded nano-onion InAs
(figure 1(a), M = 1) is a special case of Inx Ga1−x As
(with x(r) = 1). The radius of the core Inx Ga1−x As is
rco = 9 nm, and the lattice constants of InAs and GaAs
are a = 6.0584 Å, a = 5.6532 Å, respectively. The
elastic constants of bulk InAs and GaAs are as follows:
InAs—bulk modulus 71.7 GPa, Poisson’s ratio 0.267; GaAs—
bulk modulus 92.8 GPa, Poisson’s ratio 0.236 [59]. For
the Inx Ga1−x As core, we consider two radial compositional
profiles of the core (equation (13): Case A—b0 = 0.8, b1 =
−0.2; Case B—b0 = 1, b1 = 0. Case B corresponds to a
core of uniform composition. Figure 3 shows the distributions
of the normalized elastic strains εzz/ε

∗
m0 and εxx/ε

∗
m0 in the

Inx Ga1−x As/GaAs structure. The results show that the ratios
of εzz/ε

∗
m0 and εxx/ε

∗
m0 in the Inx Ga1−x As/GaAs structure

are greatly affected by the composition. For the uniform
core (InAs/GaAs) structure, the elastic strain in the core is
also uniform, and the curves of εxx and εzz merge into one
in the core, whereas the elastic strains in the non-uniform
core of Inx Ga1−x As/GaAs are non-uniform. Moreover, the
InAs/GaAs system has a constant hydrostatic strain (εh) in the
core and zero hydrostatic strain in the matrix (Case B), whereas
for the Inx Ga1−x As/GaAs system the hydrostatic strain is not
uniform in the core (Case A). The variation in εb/ε

∗
m0 is shown

in figure 4. In the InAs/GaAs system, εb = 0 inside the core
(Case B), whereas for the Inx Ga1−x As/GaAs system, εb does
not vanish (Case A). The biaxial strain in the matrix is positive
and is a function of the position, decaying with the distance
away from the core/matrix interface in both the InAs/GaAs
and Inx Ga1−x As/GaAs systems. Such a strain can modify the
confining potential, leading to carrier localization [39].
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Figure 5. Distributions of normalized elastic strains εzz/ε
∗
m0 and

εx x/ε
∗
m0 in the free-standing nano-onion CdTex Se1−x subjected to an

eigenstrain ε∗ in equation (9) and a surface stress τ .

Figure 6. Distribution of normalized biaxial strain εb/ε
∗
m0 in the

free-standing nano-onion CdTex Se1−x subjected to an eigenstrain ε∗
in equation (9) and a surface stress τ .

4.2. Free-standing nano-onions with non-uniform composition

Next, we analyse the elastic strain distribution in the
free-standing nano-onion CdTex Se1−x (core)/CdSe(shell) (fig-
ure 2(b)) due to the misfit strain and surface stress. It is noted
that the free-standing nano-onion CdTe/CdSe (figure 1(b),
M = 2) is a special case of CdTex Se1−x (with x(r) = 1),
and we assume that the radii of the core and shell of the
CdTex Se1−x nano-onion are rco = 9 nm and rsh = 12 nm,
respectively. The elastic constants of the core (CdTe) and
shell (CdSe) bulk materials are as follows: CdTe—bulk mod-
ulus 41.9 GPa, Poisson’s ratio 0.41; CdSe—bulk modulus
54.6 GPa, Poisson’s ratio 0.4. The lattice constants of CdTe
and CdSe are a = 6.49 Å and a = 6.055 Å, respectively.
For the CdTex Se1−x , we again consider two radial composi-
tional profiles of the core (equation (13)): Case A—b0 = 0.8,
b1 = −0.4; Case B—b0 = 1, b1 = 0. Case B again corre-
sponds to a uniform core. We assume that the surface stress is
τ = 1 N m−1 for the free-standing nano-onion. Figures 5 and 6
show the distributions of the normalized elastic strains εzz/ε

∗
m0,

εxx/ε
∗
m0 and εb in the CdTex Se1−x nano-onion. The results

show that the ratios of εzz/ε
∗
m0, εxx/ε

∗
m0 and εb are different for

two cases. The elastic strains are uniform in the core for Case
B, whereas they are non-uniform for Case A. However, the nu-
merical results of the elastic strains for the two cases approach
each other in the core. Contrary to those of the core, the elastic
strains in the shell are vastly different, which means that they
are greatly influenced by the composition of the nano-onion.

Figure 7. Distribution of normalized elastic strain εzz/ε
∗
m0 in the

free-standing nano-onions Znx Cd1−x S and CdS/ZnS/CdS subjected
to an eigenstrain ε∗ in equation (9) and a surface stress τ .

Figure 8. Distribution of normalized biaxial strain εb/ε
∗
m0 in the

free-standing nano-onions Znx Cd1−x S and CdS/ZnS/CdS subjected
to an eigenstrain ε∗ in equation (9) and a surface stress τ .

4.3. Comparison between nano-onions with uniform and
non-uniform compositions

Let us compare the elastic strain distribution in the non-
uniform nano-onion Znx Cd1−x S with that in the nano-onion
with multi-shells CdS/ZnS/CdS (M = 3). The elastic
constants of bulk ZnS and CdS are as follows: ZnS—bulk
modulus 81.6 GPa, Poisson’s ratio 0.4; CdS—bulk modulus
62.3 GPa, Poisson’s ratio 0.4. The lattice constants of ZnS
and CdS are a = 5.409 Å and a = 5.815 Å, respectively.
Therefore, the misfit strain due to the mismatch of the lattice
constants of ZnS(core)/CdS(shell) is ε∗

m0 = −7.0%. We
consider two cases for Znx Cd1−x S: Case A—b0 = 0.8, b1 =
−0.4; Case B—b0 = 1, b1 = 0, and rco = 9 nm, rsh =
12 nm. For CdS/ZnS/CdS, rco1 = 6 nm, rsh1 = 9 nm, and
rsh2 = 12 nm. Case B corresponds to a uniform core. The
normalized elastic strain (εzz/ε

∗
m0) and the normalized biaxial

strain (εb/ε
∗
m0) are shown in figures 7 and 8. It can be seen that

the distributions of the elastic strains are strongly dependent
on the compositions and structures of the nano-onions, and
are different for Znx Cd1−x S and CdS/ZnS/CdS (M = 3).
Note that the elastic strain in the core (0 � z � 1.0) of
CdS/ZnS/CdS is uniform, whereas the strain in the core of
Znx Cd1−x S is non-uniform.

Three factors, namely the particle size, composition,
and internal structure, have been used to achieve continuous
tuning of the optical properties of quantum dots [53, 60].
From figures 3–8 and the above analysis, it can be seen that
the strain can be modified by adjusting the composition via
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the two parameters b0 and b1 in the Inx Ga1−x As/GaAs and
CdTex Se1−x nano-onion systems. Likewise, the strain in nano-
onions with multi-shells (figures 1(a) and (b)) can be modified
by adjusting the thickness and the number (M) of the shells
according to equations (1) and (3)—see figures 7 and 8. Bailey
and Nie [53] have shown that continuous tuning of the optical
properties of the CdTex Se1−x quantum dots can be achieved by
changing the composition (Se:Te molar ratio) and the internal
structure without changing the particle size. The composition
changes the strain, and the strain affects the optical properties
of CdTex Se1−x . Moreover, Bailey and Nie [53] indicated that
the tuning of the optical properties through a change in the
composition and the internal structures is more advantageous
than through a change in the particle size in some applications
such as nanoelectronics, superlattice structures, and biological
labelling.

5. Conclusions

Nano-onions can be used on their own as functional devices,
besides being a constituent part of a composite medium. The
mismatches of the lattice constants and thermal expansion
coefficients can induce significant strains in nano-onions,
which in turn will affect their physical/mechanical properties.
In this paper, a theoretical study of the strains in the embedded
and the free-standing nano-onions with uniform and non-
uniform compositions is presented within the framework of
continuum mechanics supplemented by surface elasticity. The
detailed numerical results show that the strains in the nano-
onions can be modified by adjusting the compositions and
structures of these heterogeneous particles. The information
on the strain distributions can be useful for the band structure
engineering of semiconductor quantum dots.
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