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The bounds on the effective conductivities of heterogeneous media containing discretely suspended particles
with a graded interphase or graded particles are presented through introducing comparison materials. The
microstructures of the comparison materials are different from those of the considered heterogeneous media.
The comparison materials provide a means of obtaining optimized narrow bounds. The effective conductivities
of these composites are also predicted using the composite sphere assemblage �CSA� model. It is shown that
the CSA predictions are within the appropriate bounds for the considered media.
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I. INTRODUCTION

Predicting the effective physical properties �e.g., the di-
electric constant, the thermal or electric conductivity, and the
effective elastic constants, etc.� of heterogeneous media has
been a subject of scientific and engineering interest spanning
more than a century, attracting the attention of many lumi-
naries such as Maxwell, Rayleigh, and Einstein.1–3 Many ap-
proaches and predictive schemes have been proposed and
summarized in articles and textbooks.4–15 Among these ap-
proaches, bounding the possible range of the effective prop-
erties is of fundamental importance. Appropriate bounds can
be used to assess a particular predictive scheme, and they can
also constitute an accurate prediction of the effective proper-
ties when the bounding range is sufficiently narrow. Hashin
and Shtrikman6 gave the lower and upper bounds on the
effective conductivity of a multiphase heterogeneous me-
dium �each phase of the heterogeneous medium is homoge-
neous� by introducing a homogeneous comparison material.
The Hashin-Shtrikman bounds only rely on the properties
and volume fractions of the constituents of a heterogeneous
medium but not on the microstructure. With increased micro-
structural information, the bounds can be narrowed, increas-
ing further the precision of the prediction they pro-
vide.7,9,12–15 Moreover, bounds for nonlinear heterogeneous
media have been developed. For example, Ponte Castañeda12

obtained the three-point bounds and other estimates for
strongly nonlinear heterogeneous media by the variational
procedure making use of the effective properties of the linear
comparison materials.

The effective conductivities of graded heterogeneous me-
dia have been paid a lot of attention16–23 due to the increas-
ing interest in functionally graded materials �FGMs� which
have various engineering applications.24 The main character-
istic that distinguishes FGMs from conventional composite
materials is the tailoring of the graded composition and mi-
crostructure to achieve the desired function.25 For mechani-
cal properties, the main advantages of a graded material pro-
file range from the improved bonding strength and toughness
to wear and corrosion resistance.23,26 In nature, there also
exist many graded materials, such as biological cells because
of the inhomogeneous compartments inside the nuclei.27 In
addition, in most granular composites, the interface between
the particles and the matrix may not be very sharp and
smooth due to the diffusion and surface roughness.23,26,28

The change in the composition and/or microstructure induces
the gradients of the properties of the materials.28

Recently, core-shell nanoparticles with uniform or non-
uniform compositions have attracted the attention of re-
searchers in various fields.29–31 The alloyed semiconductor
quantum dots30,32 with graded internal structures have been
prepared to achieve continuous tuning of the optical proper-
ties without changing the particle size. For this kind of al-
loyed nanostructure, three factors, namely, the particle size,
the composition, and the internal structure, can be used to
control the quantum confinement effect and to provide novel
properties not available from the individual components.30,32

Goncharenko33 calculated the effective dielectric responses
of composites containing core-shell particles analytically and
numerically based on the Clausius-Mossotti/Maxwell Gar-
nett theory. By using ab initio calculations for Ge and Si
nanocrystals embedded in a SiC matrix, Weissker et al.34

demonstrated that the effective-medium theory works well
for crystallites with the minimum size about 1 nm. Core-
shell particles can be used as a constituent part of a compos-
ite medium, besides being functional devices on their
own.29,31,33,35–37 Therefore the effect of the graded properties
of core-shell nanoparticles on the effective conductivities
�e.g., the dielectric response� of the heterogeneous media in
which they are embedded is important in the application of
these particles.

The Hashin-Shtrikman bounds6 are for a heterogeneous
medium in which each constituent phase has a definite con-
ductivity and a definite volume fraction. Therefore, gener-
ally, they cannot be applied to heterogeneous media with
graded constituents. It is noted that Quintanilla and
Torquato16 presented certain n-point correlation functions for
graded composites containing inhomogeneous distribution of
spheres whose density obeys any specified variation in vol-
ume fraction. These functions are essential in the study of the
effective properties of the statistically inhomogeneous ran-
dom media. Wei et al.18 and Dong et al.19 predicted the ef-
fective dielectric constants of heterogeneous media contain-
ing spherical or cylindrical particles with different dielectric
profiles �e.g., simple power-law, linear, and exponential pro-
files� by using Landau’s formula5 and the differential effec-
tive dipole approximation. Lutz and Zimmerman23 studied
the effect of a graded interphase zone on the conductivity of
a particulate composite. Recently, Wu et al.38 predicted the
upper and lower bounds on the effective elastic properties for
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a composite containing particles with a graded interphase by
introducing a comparison material with a microstructure dif-
ferent from that of the composite. In this paper, also by in-
troducing comparison materials with microstructures differ-
ent from those of the considered heterogeneous media, we
present the bounds on the effective conductivities of hetero-
geneous media comprising continuous matrices and dis-
cretely suspended graded particles or homogeneous particles
with graded interphases. Moreover, the composite sphere as-
semblage �CSA� model is also used to estimate the effective
conductivities of these heterogeneous media and the predic-
tions from the CSA are compared with the bounds.

This paper is organized as follows. In the next section, the
theoretical framework leading to the upper and lower bounds
is presented. The numerical results of the bounds and the
CSA predictions for some graded interphases and graded par-
ticles are shown in Secs. III and IV, respectively. Finally,
some conclusions are drawn in Sec. V.

II. THEORY OF UPPER AND LOWER BOUNDS
FOR GRADED MEDIA

A. Upper and lower bounds

As pointed out by Hashin and Shtrikman,6 the problems
for predicting the effective magnetic permeability, dielectric
constant, electric conductivity, heat conductivity, and diffu-
sivity of heterogeneous media are mathematically analogous.
Thus we consider an electric conduction problem of a het-
erogeneous media. Let J�x� denote the local flux at position
x, and E�x� denote the local field intensity. Under the steady-
state condition with no source, the conservation of energy
requires that J�x� be divergence-free, i.e., � ·J�x�=0. The
intensity field E�x� is taken to be irrotational, i.e., �
�E�x�=0, where E�x�=−���x�, and ��x� is the potential
field. The linear constitutive relation, which relates J�x� to
E�x�, is J�x�=��x� ·E�x� or E�x�=��x� ·J�x�, where ��x�
and ��x� are the second-order conductivity and resistivity
tensors, respectively, and they are reciprocal. The energy dis-
sipated per unit volume in a material is a non-negative quan-
tity that is proportional to the inner product of the intensity
field and flux field,15 i.e.,

w�x� = 1
2E�x� · J�x� = 1

2E�x� · ��x� · E�x� � 0

or

w�x� = 1
2E�x� · J�x� = 1

2J�x� · ��x� · J�x� � 0

The above basic equations together with the corresponding
boundary and interface conditions can be used to solve the
local fields for the steady-state conduction problem.

We consider a representative volume element �RVE� with
the exterior boundary S �Fig. 1�a�� of an ergodic heteroge-
neous medium,15 hereinafter referred to as the real material,
consisting of a continuous matrix and discretely suspended
homogeneous particles with a graded interphase or graded
particles without an interphase. The local conductivity and
resistivity tensors of the heterogeneous medium at a point x
are denoted by ��x� and ��x�, respectively. Now introduce
an inhomogeneous, but also ergodic, comparison material

with a microstructure different from that of the considered
heterogeneous medium. For example, the comparison mate-
rial consists of a continuous and homogeneous matrix and
discretely suspended homogeneous �nongraded� particles
�Fig. 1�b��. The conductivity and resistivity tensors at a point
x in the comparison material are denoted by �0�x� and �0�x�,
respectively �Fig. 1�b��.

Apply the boundary condition ���S=−E� ·x on the exte-
rior boundary of the RVEs of the real and the comparison
materials in Figs. 1�a� and 1�b�, where the subscript S de-
notes the external boundary of the RVEs, and E� is the uni-
form externally applied intensity vector. Under this pre-
scribed boundary condition, the local intensity and local flux
vectors in the real heterogeneous material are denoted by
E�x� and J�x�, respectively; and those in the comparison
material are denoted by E0�x� and J0�x�, respectively. Then it
follows that

�E�x�� = �E0�x�� = E�, �1�

where �·� denotes the volume average of the corresponding

quantity. According to Eq. �1�, the macroscopic energy W̃R of
the real material is15

W̃R =
1

2
�E�x�� · �̄ · �E�x�� =

1

2
E� · �̄ · E�, �2�

where �̄ is the effective conductivity tensor of the real ma-

terial. Similarly, the macroscopic energy W̃C of the compari-
son material is15

W̃C =
1

2
�E0�x�� · �̄0 · �E0�x�� =

1

2
E� · �̄0 · E�, �3�

where �̄0 is the effective conductivity tensor of the compari-
son material. Using Eq. �14.31� in the book of Torquato15

and Eqs. �2� and �3�, the energy difference W̃R−W̃C can be
expressed as

E� · ��̄ − �̄0� · E�

= �E · �� · E� + ��E · �0 · �E�

+ �E0 · �0 · E + E · �0 · E0

− 2E0 · �0 · E0� �4�

or

FIG. 1. �Color online� A heterogeneous medium with a continu-
ous matrix and discretely suspended homogeneous particles with a
graded interphase or graded particles �a�, and the comparison ma-
terial with a continuous matrix and discretely suspended homoge-
neous �nongraded� particles �b�. For the meaning of y in Fig. 1�b�
see the text.
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E� · ��̄ − �̄0� · E� = �E0 · �� · E0� − ��E · � · �E�

+ �2E · � · E − E0 · � · E − E · � · E0�
�5�

where ��=��x�−�0�x� and �E=E�x�−E0�x�. It is easy to
prove that the third terms on the right-hand sides of Eqs. �4�
and �5� are identically zero under the given boundary condi-
tion. Therefore we have

E� · ��̄ − �̄0� · E� = �E · �� · E� + ��E · �0 · �E�

= �E0 · �� · E0� − ��E · � · �E� . �6�

Obviously, if �� is positively definite, then �̄− �̄0 is also
positively definite. From Eq. �6�, we can obtain the following
inequality:

E� · ��̄ − �̄0� · E� � �E0 · �� · E0� . �7�

In particular, if ��x�, �0�x�, �̄, and �̄0 are all isotropic ten-
sors, i.e.,

��x� = ��x�I, �0�x� = �0�x�I, �̄ = �̄I, �̄0 = �̄0I

�8�

then Eq. �7� becomes

��̄ − �̄0��E� · E�� � ����E0 · E0�� . �9�

From Eq. �7� or Eq. �9�, it is seen that the upper bound on
the effective conductivity of the real material can be obtained
through finding E0 and �̄0 for the comparison material.

Apply the boundary condition �J�S=J� on the exterior
boundaries of the RVEs of the real and comparison materials
in Figs. 1�a� and 1�b�, where J� is a constant flux vector.
Then, we have

�J�x�� = �J0�x�� = J�, �10�

where J�x� and J0�x� are the fluxes in the real and compari-
son materials, respectively. Following a procedure similar to
that for obtaining Eq. �6�, the following identity can be ob-
tained:

J� · ��̄ − �̄0� · J� = �J · �� · J� + ��J · �0 · �J�

= �J0 · �� · J0� − ��J · � · �J� , �11�

where ��=��x�−�0�x� and �J=J�x�−J0�x�. �̄ and �̄0 are
the effective resistivity tensors of the real and the compari-
son materials, respectively. From Eq. �11�, it can be seen that
if �� is positively definite, then �̄− �̄0 is also positively defi-
nite. It follows from the second equality in Eq. �11� that

J� · ��̄ − �̄0� · J� � �J0 · �� · J0� . �12�

In particular, for an isotropic material, Eq. �12� reduces to

�	̄ − 	̄0��J� · J�� � ��	�J0 · J0�� . �13�

It should be pointed out that although the above descrip-
tion is referred to as a heterogeneous medium consisting of a
continuous matrix and discretely suspended spherical par-
ticles, the theoretical framework and the obtained inequali-
ties in Eqs. �7� and �12� ��9� and �13� for the isotropic case�
are actually applicable to composites with arbitrary micro-

structures and volume fractions of the constituents so long as
the composites possess ergodicity, i.e., statistical
homogeneity.15 It is also seen that there are no restrictions on
the microstructure of the comparison materials except the
ergodicity. Thus the microstructure of a comparison material
can be different from that of the real material. In practice, it
is always expedient to choose a comparison material that
facilitates the calculation of the quantities �̄0, �̄0, E0, and J0.
In the following part of this paper, we shall apply the above
theoretical framework to macroscopically isotropic media
containing discretely suspended spherical particles with a
graded interphase or graded spherical particles, and give the
corresponding bounds on the effective conductivities.

B. Comparison materials and GSCM configuration

The radii of the spherical particles in both the material
containing spherical particles with a graded interphase and
that containing graded spherical particles without an inter-
phase are denoted by rP. For brevity, here and everywhere in
this paper, all length scales are regarded as being normalized
by the radius rP of the spherical particles. Thus x denotes the
normalized position vector of a material point, and r denotes
the normalized distance of a material point from the center of
a spherical particle. All the constituents of the considered
heterogeneous media are assumed to be isotropic. In the first
kind of heterogeneous medium, the conductivity of the
graded interphase is assumed to vary in the radial direction.
The outer radius of the graded interphase is denoted by rI, as
shown in Fig. 2�a�. The comparison material is chosen to be
an ergodic heterogeneous medium consisting of a continuous
homogeneous matrix and discretely suspended spherical ho-
mogeneous particles �Fig. 1�b��. The conductivities of the
constituents of the comparison material are chosen in the
following way. The conductivities of the particle and matrix
regions are chosen to be the same as those of the particles
and the matrix of the real material. The interphase region of
the comparison material is divided into two concentric sub-
regions, namely, the inner part and the outer part. The con-
ductivity of the inner part is chosen to be �0=�P �rP�r
�y ,rP�1�, where �P denotes the conductivity of the par-
ticles, and that of the outer part to be �0=�M �y�r�rI�
�Fig. 2�a��, where �M denotes the conductivity of the matrix.
Hence the so-obtained comparison material is a two-phase
heterogeneous medium consisting of the homogeneous ma-

FIG. 2. �Color online� GSCM configurations for calculating the
average quantities ����E0 ·E0�� and ��	�J0 ·J0��, and �̄0 of the
comparison materials of the two kinds of heterogeneous medium
with a graded interphase �a� and with graded particles �b�. For the
meaning of y in �a� and �b� see the text.
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trix and homogeneous particles, as shown in Fig. 1�b�. The
local intensity E0�x� and flux J0�x� in this two-phase hetero-
geneous medium, which are needed in the calculations of the
bounds in Eqs. �9� and �13�, are further calculated using the
GSCM configuration in Fig. 2�a�, which will be elaborated
below.

In the second kind of heterogeneous medium, the conduc-
tivity of the particles is assumed to vary in the radial direc-
tion. The comparison material is obtained in the following
way. A graded particle of radius rP is divided into two con-
centric parts, namely, the inner part with a radius y and the
outer part with the radius rP �Fig. 2�b��. The conductivity of
the inner part can be chosen to be an arbitrary constant. In
the calculations in this paper, it is chosen to be a constant
which is either equal to the conductivity at the center of the
original graded particle or equal to that at the dividing line
r=y. The conductivity of the outer part, which is actually a
spherical shell surrounding the inner particle, is chosen to be
that of the matrix of the real material. Therefore it is seen
that both of the comparison materials for the above two
kinds of heterogeneous medium are a two-phase heteroge-
neous medium consisting of a homogeneous matrix and ho-
mogeneous spherical particles, as shown in Fig. 1�b�.

As mentioned in Sec. II A, although the microstructure of
a comparison material can be different from that of the con-
sidered real material, it is always expedient to choose a mi-
crostructure to facilitate the calculation. For the heteroge-
neous medium containing homogeneous spherical particles
with a graded interphase, the conductivities of the particle
and the matrix regions of the comparison material are chosen
in such a way that ��=0 in these regions; for the heteroge-
neous medium containing graded spherical particles, the con-
ductivities of the particle and the matrix regions of the com-
parison material are chosen in such a way that ��=0 in the
matrix region. In this way, the calculations will be greatly
simplified. Moreover, it is noted that a graded spherical par-
ticle can be regarded as an infinitesimal spherical particle
with a graded interphase �the graded interphase starts from
the center of the particle�. However, as homogeneous par-
ticles with graded interphases may exist in many com-
posites,23,28 the cases for the graded interphase and graded
particles are considered separately in this paper.

In order to get the bounds from the inequalities in Eqs. �9�
and �13�, we need to calculate the fields E0�x�, J0�x�, and
�̄0 �	̄0� in the above-mentioned two-phase comparison mate-
rial. Many predictive schemes can be used to evaluate these
quantities, and different schemes will produce different ap-
proximate values of ����E0 ·E0�����	�J0 ·J0��� and �̄0 �	̄0�.
In this paper, we will use the generalized self-consistent
scheme39–42 to evaluate ����E0 ·E0�����	�J0 ·J0��� and
�̄0 �	̄0� of the comparison material. The reason for this is as
follows. The generalized self-consistent scheme, which was
originally proposed by Kerner,39 has been widely used in the
literature to predict the effective elastic constants and con-
ductivities of heterogeneous media containing spherical and
ellipsoidal particles, and the GSCM predictions have been
found to agree very well with the experimental data.40–43

Weber et al.43 studied the influence of the shape of randomly
oriented, nonconducting inclusions in a conducting matrix on

the effective electrical conductivity, and found that the elec-
tric conductivity predicted by the GSCM agrees with the
experimental results quite well. Moreover, Wu et al.38 pre-
dicted the bounds on the effective elastic moduli of a com-
posite containing spherical particles with a graded interphase
using the average strain and stress, which are the counter-
parts of ����E0 ·E0�� and ��	�J0 ·J0�� in the present conduc-
tion problem, calculated from the GSCM model of the com-
parison material. It is found that the obtained bounds very
well bracket the effective moduli predicted by other schemes
such as numerical computations and a differential scheme.
Another reason for choosing the GSCM is that the predicted
effective conductivity and the effective resistivity for a het-
erogeneous medium are reciprocal.

Following the above arguments, the GSCM configuration
for the comparison material of the first kind of heterogeneous
medium containing homogeneous particles with a graded in-
terphase is shown in Fig. 2�a�, and that for the comparison
material of the second kind of heterogeneous medium con-
taining graded particles is shown in Fig. 2�b�. It is seen that
both of these GSCM configurations consist of a homoge-
neous spherical particle of radius y embedded in a matrix
shell of outer radius rM, which is in turn embedded in an
infinite effective medium, where rM =y / fP

1/3, and fP is the
volume fraction of the homogeneous particles in the com-
parison material. Hence, in the following, we shall calculate
the average quantities ����E0 ·E0�� and ��	�J0 ·J0��, and
�̄0 �	̄0� using these GSCM configurations.

Under a remote intensity field E�=Ez
�ez along the z axis,

the local potential fields in the particle, the matrix and the
effective medium in Figs. 2�a� and 2�b� are given by, in the
spherical coordinate system,

�k = 	Fkr +
Gk

r2 
cos 
 �k = P,M,e� , �14�

where the sub- and superscripts P, M, and e denote the par-
ticle, the matrix, and the effective medium in the GSCM
configuration, respectively. GP=0 in the particle, and the
constants FP, FM, GM, Fe, and Ge in Eq. �14� are determined
by the following boundary and interface conditions in the
GSCM configuration:

�P = �M, Jr
P = Jr

M at r = y ,

�M = �e, Jr
M = Jr

e at r = rM ,

�e = − Ez
�r cos 
 at r → � , �15�

where Jr denotes the radial component of the flux. Based on
the local potential in Eq. �14� and the interface and boundary
conditions in Eq. �15�, the local fields in the particle �with
radius r=y� and in the matrix �with outer radius r=rM� can
be determined, and thus the effective conductivity �̄0 of the
comparison material can be obtained

�̄0 =
�M��1 + 2fP��P + 2�1 − fP��M�

�1 − fP��P + �2 + fP��M
, �16�

where �P and �M are the conductivities of the homogeneous
particle and matrix of the comparison material, respectively.
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Hashin40 has previously given the effective conductivity in
Eq. �16� using the GSCM. For the GSCM configuration, the
local intensity fields EP

0 and EM
0 in the particle and in the

matrix under E�=Ez
�ez are, respectively,

EP
0 = APzEz

�ez, EM
0 = Ez

��AMxex + AMyey + AMzez� �17�

in which

APz =
3�M

H0 ,AMx =
3y3 sin 2
��P − �M�

2r3H0 cos � ,

AMy =
3y3 sin 2
��P − �M�

2r3H0 sin �,

AMz =
1

H0��P + 2�M +
�1 + 3 cos 2
�y3

2r3 ��P − �M�� ,

�18�

where H0= �1− fP��P+ �2+ fP��M. ex, ey, and ez are the unit
base vectors of the Cartesian coordinate system, and r �y
�r�rM� is the radial distance from the origin. The local flux
fields J0

P and J0
M in the particle and in the matrix under a

remote field J�=Jz
�ez are, respectively,

J0
P = CPzJz

�ez, J0
M = Jz

��CMxex + CMyey + CMzez� �19�

in which

CPz =
3�P

H0
, CMx =

3y3 sin 2
��P − �M�
2r3H0

cos � ,

CMy =
3y3 sin 2
��P − �M�

2r3H0
sin �,

CMz =
1

H0
��P + 2�M +

�1 + 3 cos 2
�y3

2r3 ��P − �M�� ,

�20�

where H0= �1+2fP��P+2�1− fP��M.
From the above results, it is seen that the formulas in Eqs.

�9� and �16�–�18� constitute the equations to obtain the upper
bound on the effective conductivity of the real material; and
those in Eqs. �13�, �16�, �19�, and �20� constitute the equa-
tions to obtain the lower bound with 	̄0=1/ �̄0. However, the
bounds so obtained rely on the value of y. For this reason,
the bounds can be optimized by altering y. This will be il-
lustrated in the following.

III. APPLICATION TO SPHERICAL PARTICLES
WITH GRADED INTERPHASE

A. Optimized bounds for graded interphase

As indicated above, the interphase region of the compari-
son material is divided into two concentric subregions,
namely, the inner part ��0=�P, rP�r�y� and the outer part
��0=�M, y�r�rI�. In this case, ��=0 in the particle and
the matrix, and ���0 in the interphase zone. Therefore Eq.
�9� can be expressed as

�̄ � �̄0 + BI�y� , �21�

BI�y� =
f I

�E� · E��
����E0 · E0��I

=
1

�E� · E��

f IP����EP

0 · EP
0 ��IP

+ f IM����EM
0 · EM

0 ��IM� . �22�

Here, f I= �rI
3−rP

3 � /rM
3 is the volume fraction of the graded

interphases in the real material, f IP= �y3−rP
3 � /rM

3 , and f IM

= �rI
3−y3� /rM

3 . �·�I denotes the volume average over the entire
interphase �rP�r�rI�, �·�IP denotes the volume average
over the inner interphase �rP�r�y�, and �·�IM the volume
average over the outer interphase �y�r�rI�. Thus �̄0, BI,
EP

0 , and EM
0 are all functions of y. Under E�=Ez

�ez, BI�y� in
Eq. �22� can be simplified using Eqs. �17� and �18�

BI�y� = f IP���APz
2 �IP + f IM����AMx

2 + AMy
2 + AMz

2 ��IM .

�23�

Let the parameter y vary between rP and rI, namely, let fP
vary between fR and fR+ f I, where fR is the volume fraction
of the homogeneous particles in the real material, to give the
minimum value of the quantity on the right side of Eq. �21�.
Then the optimized upper bound �̄upp on �̄ can be obtained

�̄upp = min
�rP�y�rI�


�̄0�y� + BI�y�� . �24�

Likewise, the lower bound on the effective conductivity
of the composite with the graded interphase can be obtained
from Eq. �13�,

�̄ �
1

	̄0 + BI��y�
, �25�

in which

BI��y� =
f I

�J� · J��
��	�J0 · J0��I

=
1

�J� · J��

f IP��	�J0

P · J0
P��IP + f IM��	�J0

M · J0
M��IM� .

�26�

In Eqs. �25� and �26�, 	̄0 �	̄0=1/ �̄0�, �̄0, and BI� are all func-
tions of y. Under E�=Ez

�ez, BI��y� in Eq. �26� can be simpli-
fied using Eqs. �19� and �20�

BI��y� = f IP���CPz
2 �IP + f IM����CMx

2 + CMy
2 + CMz

2 ��IM .

�27�

Let the parameter y vary between rP and rI to give the
maximum value of the quantity on the right side of Eq. �25�.
Then the optimized lower bound �̄low on �̄ can be obtained

�̄low = max
�rP�y�rI�

� �̄0�y�
1 + �̄0�y�BI��y�� . �28�

Therefore, given a conductivity profile of the graded in-
terphase, the optimized upper and lower bounds can be ob-
tained from Eqs. �16�, �23�, �24�, �27�, and �28�. The proce-
dure is simple and easy to follow. In the following, some
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numerical results of the optimized bounds will be shown and
also compared with those obtained using the composite
sphere assemblage �CSA� model. The details of the CSA
model are given in the Appendix.

B. Examples of graded interphases

We consider two heterogeneous media with different con-
trasts between the conductivities of the matrix and particles.
In one medium, the conductivity of the particles is higher
than that of the matrix ��P=20�M�, and the ratio of the thick-
ness of the interphase to the radius of the particles is t=0.1.
In another, the conductivity of the particles is lower than that
of the matrix ��P=�M /20�, and t is also 0.1. In both of these
heterogeneous media, the conductivity profile of the inter-
phase is depicted by a simple power-law �I�r�=�PrQ� rP

�r�rI�, where Q is a power exponent. However, the con-
stant Q is determined by the condition ��I�r=rI

=�M.
The numerical results of the bounds for these two hetero-

geneous media are shown in Figs. 3 and 4, respectively. It
can be seen from Fig. 3 that the optimized lower bound and

the CSA are numerically indistinguishable from each other
for the case of �P=20�M. For the case of �P=�M /20, the
optimized upper bound and the CSA are numerically indis-
tinguishable from each other �Fig. 4�.

IV. APPLICATION TO GRADED SPHERICAL PARTICLES

A. Optimized bounds for graded particles

The effective conductivity of the heterogeneous medium
containing graded particles can be bounded by Eq. �9�

�̄ � �̄0 + BP�y� , �29�

in which

BP�y� =
fR

�E� · E��
����E0 · E0��P

=
1

�E� · E��

fPP����EP

0 · EP
0 ��PP

+ fPM����EM
0 · EM

0 ��PM�

= fPP���APz
2 �PP + fPM����AMx

2 + AMy
2 + AMz

2 ��PM .

�30�

Here, fR=rP
3 /rM

3 is the volume fraction of the graded par-
ticles in the real material, fPP=y3 /rM

3 and fPM = �rP
3 −y3� /rM

3 .
�·�P denotes the volume average over the particle �0�r
�rP�, �·�PP denotes the volume average over the inner part
of the particle �0�r�y�, and �·�PM denotes the volume av-
erage over the outer part of the particle �y�r�rP�. In this
case, �̄0 and BP�y� are all functions of y. Letting y vary
between 0 and rP �i.e., 0� fP� fR� to give the minimum
value of the quantity on the right side of Eq. �29�, then the
optimized upper bound �̄upp on �̄ can be obtained

�̄upp = min
�0�y�rP�


�̄0�y� + BP�y�� . �31�

The lower bound can be obtained from the inequality

�̄ �
1

	̄0 + BP��y�
�32�

in which

BP��y� =
fR

�J� · J��
��	�J0 · J0��P

=
1

�J� · J��

fPP��	�J0

P · J0
P��PP + fPM��	�J0

M · J0
M��PM�

= fPP���CPz
2 �PP + fPM����CMx

2 + CMy
2 + CMz

2 ��PM .

�33�

In Eqs. �32� and �33�, 	̄0 �	̄0=1/ �̄0�, �̄0, and BP��y� are all
functions of y. Letting y vary between 0 and rP to give the
maximum value of the quantity on the right side of Eq. �32�,
then the optimized lower bound �̄low on �̄ can be obtained

�̄low = max
�0�y�rP�

� �̄0�y�
1 + �̄0�y�BP��y�� . �34�

FIG. 3. Bounds and CSA prediction of the normalized effective
conductivity �̄ /�M of a heterogeneous medium containing spherical
particles with a graded interphase ��I�r�=�PrQ, �P=20�M, t=0.1�.
fR denotes the volume fraction of the particles in the heterogeneous
medium.

FIG. 4. Bounds and CSA prediction of the normalized effective
conductivity �̄ /�M of a heterogeneous medium containing spherical
particles with a graded interphase ��I�r�=�PrQ, �P=�M /20, t
=0.1�.
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Therefore, given a conductivity profile of the graded par-
ticles, the optimized upper and lower bounds can be obtained
from Eqs. �16�, �30�, �31�, �33�, and �34�. In the following,
some numerical results of the optimized bounds will be
shown and also compared with those obtained using the
composite sphere assemblage �CSA� model.

B. Examples of graded particles

Using the Landau’s formula,5 Wei et al.18 predicted the
effective dielectric constant of a heterogeneous medium con-
taining graded spherical particles with a linear dielectric pro-
file �P�r�=�M�b+cr� �where b and c are two constants�.
However, the prediction of Wei et al.18 is only valid for low
volume fractions of the particles. As mentioned in the begin-
ning of Sec. II A, the present theory is also applicable to the
prediction of the effective dielectric constants of heteroge-
neous media. Table I shows the numerical results calculated
from the optimized upper and lower bounds, the CSA model,
and those of Wei et al.18 for the considered medium. For
different ratios of b /c, the numerical results of the optimized
upper and lower bounds, the CSA prediction, and those of

Wei et al.18 are practically identical at fR=0.1. At fR=0.5, the
numerical results of the optimized upper and lower bounds
and those predicted by the CSA are also practically identical.

We further compare the optimized bounds with the CSA
for a heterogeneous medium containing graded particles with
a general power-law conductivity profile �P�r�=c�M�b+r�Q.
Figure 5 shows the variations of the bounds and the CSA
prediction as functions of the power exponent Q at fR=0.5.
The optimized bounds and the CSA are very close to each
other. Moreover, the data predicted by the CSA are always
within the bounds, albeit very narrow. Figure 6 shows the
variations of the optimized bounds and CSA prediction as
functions of the volume fraction of the particles for c=100,
b=1, and Q=−3. It is seen that the CSA prediction is always
within the bounds.

V. CONCLUDING REMARKS

In this paper, through introducing comparison materials
with homogeneous constituents, the bounds on the effective
conductivities of heterogeneous media containing homoge-

FIG. 5. Bounds and CSA prediction of the normalized effective
conductivity �̄ /�M of a heterogeneous medium containing graded
spherical particles with the conductivity profile �P�r�=c�M�b+r�Q

as functions of the exponent Q �c=1, b=2, and fR=0.5�.

TABLE I. Comparison of the optimized upper and lower bounds, the CSA, and the prediction of Wei et
al. �Ref. 18� for graded spherical particles with a linear dielectric profile �P�r�=�M�b+cr� at fR=0.1 and
fR=0.5.

b /c

fR=0.1 fR=0.5

Upper Lower
Wei et al.
�Ref. 18� CSA Upper Lower CSA

1 1.06213 1.05844 1.06006 1.06074 1.33673 1.32066 1.33048

10 1.24844 1.24838 1.24787 1.24840 2.85742 2.85687 2.85706

20 1.28520 1.28519 1.28488 1.28520 3.30104 3.30092 3.30095

30 1.29975 1.29975 1.29952 1.29975 3.49653 3.49649 3.4965

40 1.30754 1.30754 1.30737 1.30754 3.60657 3.60655 3.60655

50 1.31240 1.31240 1.31226 1.31240 3.67714 3.67713 3.67713

60 1.31572 1.31572 1.31560 1.31572 3.72624 3.72623 3.72623

70 1.31813 1.31813 1.31803 1.31813 3.76238 3.76237 3.76238

FIG. 6. Bounds and CSA prediction of the normalized effective
conductivity �̄ /�M of a heterogeneous medium containing graded
spherical particles with the conductivity profile �P�r�=c�M�b+r�Q

as functions of the volume fraction fR �c=100, b=1, and Q=−3�.
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neous particles with a graded interphase or graded particles
are presented. The comparison materials provide a means of
obtaining optimized bounds. The effective conductivities of
these heterogeneous media are also predicted using the com-
posite sphere assemblage �CSA� model. It is shown that the
CSA predictions are within the appropriate bounds for the
considered materials. Although the studies in this paper are
for graded heterogeneous media with linear properties, the
results can be useful in the studies of the effective constitu-
tive relations of nonlinear heterogeneous media following
the theoretical framework based on the concept of linear
comparison materials, as demonstrated, for example, in the
work of Ponte Castañeda.12 Moreover, the present theory can
be extended to the following cases: anisotropic and graded
spherical particles/interphases and graded ellipsoidal par-
ticles/interphases. It is emphasized that in this paper, we only
consider ergodic heterogeneous media. Thus the theoretical
framework based upon the comparison material presented in
Sec. II A is applicable to composites with arbitrary micro-
structures and volume fractions of the constituents so long as
the composites possess ergodicity, and the microstructure of
a comparison material can be different from that of the real
material. For statistically inhomogeneous materials, the ef-
fective conductivities need to be predicted by other methods
based upon the microstructural information.16
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APPENDIX

The configuration of the composite sphere assemblage
�CSA� model for the heterogeneous medium containing ho-
mogeneous particles with a graded interphase consists of
three concentric spheres with radii r=rP, r=rI, and r=rM
�Fig. 7�a��, which correspond to the radius of the particle, the
outer radius of the graded interphase, and the outer radius of
the matrix shell, respectively. The boundary conditions are
imposed at the outer boundary of the matrix shell �r=rM�.
The configuration of the CSA for the heterogeneous medium
containing graded particles consists of two concentric
spheres with radii r=rP and r=rM �Fig. 7�b��, which corre-
spond to the radius of the graded particle and the outer radius

of the matrix shell, respectively. The boundary conditions are
imposed at the outer boundary of the matrix shell �r=rM�.

Applying an intensity �or a flux� field along the z axis on
the boundary of r=rM, the boundary and the interface con-
ditions of the CSA model for the graded interphase are �Fig.
7�a��, in the spherical coordinate system,

�P = �I, Jr
P = Jr

I at r = rP,

�I = �M, Jr
I = Jr

M at r = rI,

�M = − �rM cos 
, Jr
M = �̄� cos 
 at r = rM , �A1�

where the sub- and superscripts P, I, and M denote the par-
ticle, the interphase, and the matrix, respectively. For a
graded interphase with a property profile depicted by a
simple power-law �I�r�=�PrQ, where Q is a power expo-
nent, the local potential field in the graded interphase is

�I = �FIr
D1 + GIr

D2�cos 
 , �A2�

where

D1 = 1
2 �− Q − 1 + ��Q + 1�2 + 8� ,

and

D2 = 1
2 �− Q − 1 − ��Q + 1�2 + 8� .

The local potential fields in the particle and the matrix are
given by Eq. �14�, and the constants FP, FI, GI, FM, and GM
in Eqs. �A2� and �14� are determined by the boundary and
interface conditions in Eq. �A1�, whereas GP=0. With the
solution of the fields, the effective conductivity of the com-
posite sphere with the graded interphase can be obtained.

Applying an intensity �or a flux� field along the z axis on
the boundary of r=rM, the interface and boundary conditions
of the CSA model for the graded particle are �Fig. 7�b��

�P = �M, Jr
P = Jr

M at r = rP,

�M = − �rM cos 
, Jr
M = �̄� cos 
 at r = rM . �A3�

For a particle with a conductivity depicted by a power-law
�P�r�=c�M�b+r�Q, where b and c are two constants, the
local potential in the graded particle is44

�P = FPF	
1,�1,�1,−
r

b

r cos 
 , �A4�

where


1 = 1
2 �Q + 3 − ��Q + 1�2 + 8� ,

�1 = 1
2 �Q + 3 + ��Q + 1�2 + 8� ,

�1=4, and F�
1 ,�1 ,�1 ,− r
b

� is the hypergeometric function.45

In the matrix, the local potential is still given by Eq. �14�.
The constants FP, FM, and GM in Eqs. �14� and �A4� are
determined by the boundary and interface conditions in Eq.
�A3�. Then the effective conductivity �̄ of the composite
sphere with the graded particle can be obtained.

FIG. 7. �Color online� Configurations of the CSA model for
heterogeneous media with graded interphase �a� and graded par-
ticles �b�.
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