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Abstract

This paper first presents the Eshelby tensors and stress concentration tensors for a spherical

inhomogeneity with a graded shell embedded in an alien infinite matrix. The solution is then

specialized to inhomogeneous inclusions in finite spherical domains with fixed displacement or

traction-free boundary conditions. The Eshelby tensors in the infinite and finite domains and the

stress concentration tensors are especially useful for solving many problems in mechanics and

materials science. This is demonstrated on two examples. In the first example, the strain distributions

in core–shell nanoparticles with eigenstrains induced by lattice mismatches are calculated using the

Eshelby tensors in the finite domains. In the second example, the Eshelby and stress concentration

tensors in the three-phase configuration are used to formulate the generalized self-consistent

prediction of the effective moduli of composites containing spherical particles within the framework

of the equivalent inclusion method. The advantage of this micromechanical scheme is that, whilst its

predictions are almost identical to the classical generalized self-consistent method and the third-order

approximation, the expressions for the effective moduli have simple closed forms.
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1. Introduction

The synthesis and characterization of particles with core–shell structures have attracted a lot
of attention in many areas of science and technology. In materials science and engineering,
these particles have been used as reinforcements and tougheners in composites. In solid-state
physics, core–shell nanoparticles are found to exhibit novel physical effects and properties,
such as quantum confinement effect, and novel electronic, magnetic and optical properties (e.g.
Zhou et al., 1996; Rockenberger et al., 1998; Brongersma, 2003; Goncharenko, 2004).
Core–shell particles can be used as functional devices on their own, besides being a constituent
part of a composite medium (e.g. Williamson and Zunger, 1999; Lauhon et al., 2002; Abe and
Suwa, 2004; Goncharenko, 2004). Many researchers have studied the strain distributions in
heterogeneous electronic structures of fine scale, e.g. quantum dot structures (Gosling and
Willis, 1995; Freund and Johnson, 2001; He et al., 2004) and shown that the strain affects the
optical properties of these structures by modifying the energies and wave functions of the
confined carriers. For core–shell nanoparticles, as pointed out by Little et al. (2001), and Perez-
Conde and Bhattacharjee (2003), the misfit strain, the surface stress and the applied external
pressure all modify the strain fields in them, which in turn affect the electronic structures, and
hence their physical properties.
Core–shell structures also widely exist in conventional particle-reinforced composites

and nanocomposites due to complicated interactions between the particle surface and the
matrix (e.g. Theocaris, 1987; Tzika et al., 2000) and the need for good bond between the
reinforcement and the matrix. The elastic properties of the interphase can be uniform or
variable through its thickness (Ostoja-Starzewski et al., 1996). The inhomogeneity
problems with graded interphases have attracted a lot of attention (e.g. Lutz and
Zimmerman, 1996; Wang and Jasiuk, 1998). However, almost all the existing works on
inclusion/inhomogeneity problems with graded (inhomogeneous) interphases are con-
cerned with the solutions of stress fields under special loading conditions or with the
predictions of effective elastic moduli. It is noted that Ding and Weng (1998), and Weng
(2003) have predicted the effective bulk moduli of composites containing spherical particles
and graded matrices using a three-phase model containing a graded interphase.
The Eshelby formalism (Eshelby, 1957, 1959) for an inclusion/inhomogeneity is one of the

cornerstones in the solutions of many problems in materials science, solid-state physics and
mechanics of composites. The classical Eshelby formalism is for an inclusion/inhomogeneity
without an interphase in an infinite matrix. In this paper, we shall give the solution of the
Eshelby formalism for a spherical particle with a graded interphase embedded in an infinite
medium. The Eshelby tensors in the whole region when an eigenstrain is prescribed in the
particle and the stress concentration tensors under remote loading will be presented. When
the stiffness of the infinite medium is set to be infinite or zero, the Eshelby tensors in a finite
domain with a fixed displacement or traction-free boundary condition are given. The
application of the Eshelby formalism in the finite and infinite domains is demonstrated on
two examples, namely, the calculation of the strains in core–shell nanoparticles and the
prediction of the effective moduli of particle-reinforced composites.

2. Solution of spherical inhomogeneity with graded interphase

Consider a spherical inhomogeneity with a graded interphase embedded in an infinite
elastic matrix, as shown in Fig. 1. The radius of the inhomogeneity and the outer radius of
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Fig. 1. A spherical inhomogeneity (1) with an interphase ðIÞ in an infinite matrix (2).
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the interphase are denoted by a and b, respectively. For brevity, in the following, all length
scales are regarded as being normalized by the radius of the inhomogeneity. The interface
between the inhomogeneity and interphase is denoted by G1I (r ¼ 1Þ, and the interface
between the interphase and matrix is denoted by GI2 (r ¼ b=aÞ. The inhomogeneity and
matrix are homogeneous, linearly elastic and isotropic, characterized by the bulk modulus
kk, the shear modulus mk and the Poisson ratio nk. Here, and in the following, the subscript
and superscript k ¼ 1; I ; 2 denote the inhomogeneity, the interphase and the matrix,
respectively. For expediency, define modulus ratio gij ¼ mi=mj ði; j ¼ 1; I ; 2Þ. In the
spherical coordinate system (r; y;jÞ, with the origin coinciding with the centre of the
spherical inhomogeneity, the bulk and shear moduli of the interphase are assumed to be
power-law functions of r

kI ðrÞ ¼ k0rQ; mI ðrÞ ¼ m0r
Q; nI ¼ const:; (1)

where k0;m0 and Q are constants.
Assume that the inhomogeneity is subjected to a uniform eigenstrain e�. It is expedient

to split the eigenstrain tensor into its dilatational part e�mI
ð2Þ and deviatoric part e�e , i.e.

e� ¼ e�mI
ð2Þ þ e�e , (2)

where e�m ¼ ðtr e�Þ=3. Thus, the solution under the uniform eigenstrain e� is obtained by the
superposition of the solutions under e�mI

ð2Þ and e�e , respectively. In the following, the
solution under e�mI

ð2Þ will be called a dilatational solution, and that under e�e a deviatoric
solution.

We solve first the inhomogeneous inclusion problem with the graded interphase when the
only non-zero component of e� is e�zz. Obviously, the displacements in the interphase for the
dilatational part of e�zz have the following form in the spherical coordinate system:

uI
r ¼ oI

r ðrÞ; uI
y ¼ 0; uI

j ¼ 0. (3)

Substituting Eqs. (1) and (3) into the equilibrium equations gives

d2oI
r

dr2
þ
ð2þQÞ

r

doI
r

dr
þ

2nI Q

1� nI

� 2

� �
oI

r

r2
¼ 0. (4)
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The solution of Eq. (4) is

oI
r ðrÞ ¼ F I

zzr
h5 þ GI

zzr
h6 ,

h5; h6 ¼ �
1

2
Qþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 9þQ

ð2� 10nI Þ

ð1� nI Þ

s" #
, ð5Þ

where FI
zz and GI

zz are constants to be determined by the continuity and boundary
conditions, and the subscript zz indicates that the solution is for the eigenstrain
component e�zz.
Now we consider the deviatoric solution for e�zz. By analogy with the solutions for

homogeneous media, we assume that the displacements for the graded interphase have the
following form in the spherical coordinate system:

uI
r ðr; yÞ ¼ UI

r ðrÞP2ðcos yÞ; uI
yðr; yÞ ¼ UI

yðrÞ
dP2ðcos yÞ

dy
; uI

jðrÞ ¼ 0, (6)

where P2ðcos yÞ is the Legendre polynomial of order two, and UI
r ðrÞ and UI

yðrÞ are
unknown functions of r. Substituting Eq. (6) along with Eq. (1) into the equilibrium
equations gives

½Qþ 4� 2nI ðQþ 2Þ�UI
r þ r

qUI
r

qr
� ½Qþ 12� 2nI ðQþ 6Þ�UI

y

þ ðQþ 2Þð1� 2nI Þr
qUI

y

qr
þ ð1� 2nI Þr

2 q
2UI

y

qr2
¼ 0,

½2nI ðQþ 4Þ � 5�UI
r þ ðQþ 2Þð1� nI Þr

qUI
r

qr
þ ð1� nI Þr

2 q
2UI

r

qr2

þ 3½3� 2nI ðQþ 2Þ�UI
y � 3r

qUI
y

qr
¼ 0. ð7Þ

To solve Eq. (7), we introduce the operator (Wylie and Barrett, 1982)

rm qmU

qrm
¼ hðh� 1Þ . . . ðh�mþ 1ÞU . (8)

Substituting Eq. (8) into Eq. (7), while eliminating UI
r and UI

y, gives a characteristic
equation in h

ð1� nI Þh
4
þ ð2� 2nI þ 2Q� 2QnI Þh

3
þ ðQ2 �Q2nI þQ

þQnI þ 13nI � 13Þh2
þ ð3Q2nI �Q2 þ 17QnI � 15Qþ 14nI � 14Þh

þ ð4Q2nI þ 4QnI � 4Q� 24nI þ 24Þ ¼ 0. ð9Þ

Eq. (9) has two sets of roots. The first set contains real roots, and the second contains
complex ones. The four real roots h1, h2, h3 and h4 are

h1 ¼ �
Qþ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R� T
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nI

p ; h2 ¼ �
Qþ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R� T
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nI

p ,

h3 ¼ �
Qþ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ T
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nI

p ; h4 ¼ �
Qþ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ T
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nI

p , ð10Þ
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where

R ¼ ð1� nI ÞðQ
2 þ 4Qþ 29Þ � 4QnI ,

T ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nI Þ½�25Q2nI þ 44Q� 100ðQnI þ nI � 1Þ� þQ2ð3nI þ 1Þ

q
. ð11Þ

The corresponding displacement fields in the graded interphase are given in Eq. (6) with

UI
r ðrÞ ¼ AI

zzrh1 þ BI
zzrh2 þ CI

zzr
h3 þDI

zzr
h4 ,

UI
yðrÞ ¼

eAI

zzrh1 þ eBI

zzr
h2 þ eCI

zzr
h3 þ eDI

zzr
h4 , ð12Þ

where AI
zz;B

I
zz;C

I
zz;D

I
zz;
eAI

zz,
eBI

zz,
eCI

zz and eDI

zz are constants to be determined from the
continuity and boundary conditions. Substituting Eq. (12) into Eq. (7) gives the

corresponding relations between AI
zz;B

I
zz;C

I
zz;D

I
zz and eAI

zz,
eBI

zz;
eCI

zz; eDI

zz

Xi ¼ �eXi

12� 12nI þQð1� 2nI Þ � ð1� 2nI Þ½hiðQþ 1Þ þ h2
i Þ�

ð2QnI �Q� hi � 4þ 4nI Þ
, (13)

where i ¼ 1; 2; 3; 4, X1;X2;X3 and X4 stand for AI
zz;B

I
zz;C

I
zz and DI

zz, respectively, andeX1; eX2; eX3 and eX4 for eAI

zz; eBI

zz;
eCI

zz and eDI

zz, respectively. The complex roots (two pairs of

complex conjugate roots) of Eq. (9) are

h1 ¼ m1 þ id1; h2 ¼ m1 � id1; h3 ¼ m2 þ id2; h4 ¼ m2 � id2, (14)

where

m1 ¼ m2 ¼ �
Qþ 1

2
; d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ T
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nI

p ; d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R� T
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nI

p . (15)

The displacement fields in the graded interphase corresponding to these complex roots are
again given by Eq. (6) with

UI
r ðrÞ ¼ AI

zz cosðd1 ln rÞrm1 þ BI
zz sinðd1 ln rÞrm1

þ CI
zz cosðd2 ln rÞrm2 þDI

zz sinðd2 ln rÞrm2 ,

UI
yðrÞ ¼

eAI

zz cosðd1 ln rÞrm1 þ eBI

zz sinðd1 ln rÞrm1

þ eCI

zz cosðd2 ln rÞrm2 þ eDI

zz sinðd2 ln rÞrm2 . ð16Þ

Substituting Eq. (16) into Eq. (7) gives the corresponding relations between AI
zz,

BI
zz;C

I
zz;D

I
zz and eAI

zz; eBI

zz;
eCI

zz; eDI

zz, i.e.

AI
zz ¼

HA

X
(17)
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in which

HA ¼ eAI

zzfð1� 2nI Þ
2Q2 þ 16ð1� nI Þð1� 2nI ÞQþ 48ð1� nI Þ

2

�m1½Q
2ð1� 2nI Þ

2
þ 2Qð1� 2nI Þð2� 3nI Þ � 8ð1� n2I Þ�

þ ð1� 2nI Þ½�2m2
1ð1� nI ÞðQþ 2Þ �m2

1 �m3
1 � d2

1ð2QnI

� 3þ 4nI þm1Þ�g þ eBI

zzf½�ð1� 2nI Þ
2Q2 � 6ð1� 2nI Þð1� nI ÞQ

� 8ð1� nI Þð2� nI Þ�d1 � ð1� 2nI Þ½2d1m1ðQ� 2QnI þ 4� 4nI Þ

þ d1m2
1 þ d3

1�g,

X ¼ d2
1 þ ½m1 þ ðQþ 4� 2QnI � 4nI Þ�

2. ð18Þ

BI
zz is obtained by replacing eAI

zz,
eBI

zz and d1 in HA with eBI

zz,
eAI

zz and �d1, respectively. CI
zz

is obtained by replacing eAI

zz,
eBI

zz, m1 and d1 in HA and X with eCI

zz,
eDI

zz, m2 and d2,

respectively, and DI
zz is obtained by replacing eAI

zz,
eBI

zz, m1 and d1 with eDI

zz,
eCI

zz, m2 and

�d2, respectively.
In the inhomogeneity and matrix, the elastic solutions are also given by Eqs. (5), (6) and

(12) but with Q ¼ 0, since their elastic moduli are constant. This means that h1 ¼ 3; h2 ¼ 1;
h3 ¼ �2; h4 ¼ �4; h5 ¼ 1; h6 ¼ �2. The solutions in Eqs. (5), (6) and (12) as applied to the
inhomogeneity and matrix are identified with the superscripts 1 and 2, respectively.
In the Cartesian coordinate system, the deviatoric solution in Eq. (6) under e�zz has the

following form:

uI
x ¼

1

2
UI

r 3
z2

r2
� 1

� �
x

r
� 3UI

y
xz2

r3
,

uI
y ¼

1

2
UI

r 3
z2

r2
� 1

� �
y

r
� 3UI

y
yz2

r3
,

uI
z ¼

1

2
UI

r 3
z2

r2
� 1

� �
z

r
þ 3UI

y 1�
z2

r2

� �
z

r
, ð19Þ

where UI
r and UI

y are given in Eq. (12) for the case of real roots of Eq. (9), or Eq. (16) for
the case of complex roots. Thanks to the spherical symmetry of the inhomogeneity
problem under consideration, the deviatoric solutions under e�xx and e�yy can be obtained by
the simultaneous permutation of the subscripts and the coordinates x; y and z from the
displacements in Eq. (19). This procedure can also be found in the paper of Duan et al.
(2005). Thus, it will not be reproduced here. However, as can be seen from Eq. (19), the
displacements under e�xx and e�yy will also contain the functions UI

r and UI
y given in Eq. (12),

but the subscript zz should be replaced by xx and yy, respectively.
Now the solutions under shear eigenstrains e�xy, e

�
xz and e�yz will be sought. We consider

first the solution under shear eigenstrain e�xy. Following a procedure similar to those in the
works of Christensen and Lo (1979), and Duan et al. (2005), namely, by assuming that the
displacements contain some unknown functions of r and substituting them into the
equilibrium equations to solve the unknown functions, the displacements for the graded
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interphase in the spherical coordinate system can be obtained

uI
r ¼

3

2
UI

r ðrÞ sin
2 y sin 2j,

uI
y ¼

3

2
UI

yðrÞ sin 2y sin 2j,

uI
j ¼ 3UI

yðrÞ sin y cos 2j, ð20Þ

where UI
r ðrÞ and UI

yðrÞ are obtained from Eq. (12) or (16) by replacing the subscript zz with
xy. Wang and Jasiuk (1998) gave the elastic solution of a spherical inhomogeneity with an
inhomogeneous interphase (with the power-law variation in elastic moduli) in an infinite
matrix under non-vanishing remote shear stress s0xy. Their solution is similar to those in
Eq. (20). Luo and Weng (1987) gave the elastic solution of a spherical inhomogeneity with
a homogeneous interphase in an infinite matrix under non-vanishing eigenstrains
e�xx ¼ �e

�
yy. Their solution can be obtained directly from Eqs. (20) after a p=4 coordinate

transformation and setting Q ¼ 0. Using the same procedure as above, we get the
displacements under shear eigenstrain e�xz

uI
r ¼

3

2
UI

r sin 2y cosj; uI
y ¼ 3UI

y cos 2y cosj; uI
j ¼ �3UI

y cos y sinj (21)

and those under shear eigenstrain e�yz

uI
r ¼

3

2
UI

r sin 2y sinj; uI
y ¼ 3UI

y cos 2y sinj; uI
j ¼ 3UI

y cos y cosj, (22)

where UI
r ðrÞ and UI

yðrÞ in Eqs. (21) and (22) are obtained from Eq. (12) or (16) by replacing
the subscript zz with xz and yz, respectively.

We have obtained above the basic solutions under six different eigenstrains. Using the
relations between the displacements and strains, and the Hooke’s law, the stress fields can

be obtained. The constants Ak
pq;B

k
pq;C

k
pq;D

k
pq;F

k
pp and Gk

pp ðp; q ¼ x; y; zÞ under six different

eigenstrains are determined from the continuity and boundary conditions

u1 þ e� � x ¼ uI ; r1 �N1 ¼ rI �N1 at G1I ,

uI ¼ u2; rI �N2 ¼ r2 �N2 at GI2,

u2 ¼ 0; r2 ¼ 0 at r!1, ð23Þ

whereN1 andN2 are the unit normal vectors to G1I and GI2, respectively. It is found that under

e�xx ¼ 1; e�yy ¼ 1; e�zz ¼ 1; e�xy ¼ 1; e�xz ¼ 1 and e�yz ¼ 1, respectively, the constants Ak
pq ðp; q ¼

x; y; zÞ are equal for each of k ¼ 1; I ; 2, e.g., Ak
xx ¼ Ak

yy ¼ Ak
zz ¼ Ak

xy ¼ Ak
xz ¼ Ak

yz. The

constants Bk
pq, Ck

pq, Dk
pq, F k

pq and Gk
pq also obey their own respective identities. Therefore, for

brevity, we introduce constants Ak, Bk, Ck, Dk, F k and Gk for the inhomogeneity and matrix
ði.e. k ¼ 1; 2Þ such that

Ak �
Ak

pq

12nk

; Bk �
Bk

pq

2
; Ck �

Ck
pq

2ð5� 4nkÞ
; Dk � �

Dk
pq

3
,

Fk � Fk
pp; Gk � Gk

pp, ð24Þ

where pp ¼ xx; yy; zz and pq ¼ xx; yy; zz; xy; xz; yz denote the loading cases e�xxa0; e�yya0;
e�zza0; e�xya0; e�xza0 and e�yza0, respectively. In the inhomogeneity (k ¼ 1), C1;D1 and G1
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vanish; in the matrix (k ¼ 2), A2;B2 and F 2 vanish. For the graded interphase we introduce
constants Mi ði ¼ 1; 2; . . . ; 6Þ and Nj ðj ¼ 1; 2; 3; 4Þ such that

M1 � AI
pq; M2 � BI

pq; M3 � CI
pq; M4 � DI

pq; M5 � FI
pp,

M6 � GI
pp; N1 � eAI

pq; N2 � eBI

pq; N3 � eCI

pq; N4 � eDI

pq. ð25Þ

From Eq. (25), it follows that the relations between Mi and Ni ði ¼ 1; 2; 3; 4Þ obey Eq. (13)
when the roots are real (e.g. homogeneous interphase), and Eqs. (17) and (18) when they are
complex.
Therefore, the final elastic fields in the inhomogeneity and matrix contain the constants

Ak, Bk, Ck, Dk, F k and Gk (k ¼ 1; 2), and those in the interphase the constants Mi ði ¼

1; 2; . . . ; 6Þ and Nj ðj ¼ 1; 2; 3; 4Þ. These constants are easily obtained from the correspond-
ing continuity conditions and remote boundary conditions in Eq. (23), but the expressions
are generally lengthy for the three-phase configuration of Fig. 1. Therefore, they are not
reproduced here. Knowing these constants, the Eshelby tensors for the three phases can be
calculated from the formulas given in the next section, where we shall also discuss their
general properties. Detailed expressions for the constants for spherical inhomogeneous

inclusions in finite domains will however be given in Section 4.

3. Eshelby tensors in three phases

The Eshelby tensors relate the total strains ek in the three phases to the prescribed
uniform eigenstrain in the inhomogeneity, i.e.

ekðrÞ ¼ SkðrÞ : e�; ðk ¼ 1; I ; 2Þ. (26)

Because of the geometrical and physical symmetry of the problem under consideration, the
Eshelby tensors in the three phases are all transversely isotropic tensors with any of the
radii being an axis of symmetry. Moreover, these Eshelby tensors here are generally
position-dependent. Using the Walpole notation (Walpole, 1981) for transversely isotropic
tensors, a fourth-order tensor SkðrÞ with the above-mentioned radial symmetry can be
expressed in a concise matrix form

SkðrÞ ¼ eSk
ðrÞ � eET

, (27)

in which

eSk
ðrÞ ¼ ½S

k
1ðrÞ Sk

2ðrÞ Sk
3ðrÞ Sk

4ðrÞ Sk
5ðrÞ Sk

6ðrÞ �, (28)

eE ¼ ½E1 E2 E3 E4 E5 E6 �, (29)

where r (r ¼ rn) is the position vector. n ¼ niei is the unit vector along the radius passing
the material point at which the Eshelby tensor is calculated. ni is the direction cosine of r
and i ¼ 1; 2; 3 denote x-, y- and z-directions, respectively. Sk

pðrÞ ðp ¼ 1; 2; . . . ; 6Þ are
functions of r, and Ep ðp ¼ 1; 2; . . . ; 6Þ are the six elementary tensors introduced by
Walpole (1981).
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From the elastic solutions in Section 2, the Eshelby tensors in the inhomogeneity and the

matrix are given by Eq. (27) with eS1
ðrÞ and eS2

ðrÞ being

eS1
ðrÞ ¼

1þ B1 þ 2F1 þ 3ð7� 8n1ÞA1r
2

1þ 2B1 þ F 1 þ 36n1A1r
2

1þ 3B1 þ 3ð7� 4n1ÞA1r2

1þ 3B1 þ 3ð7þ 2n1ÞA1r2

�B1 þ F 1 � 18n1A1r
2

�B1 þ F1 � 3ð7� 8n1ÞA1r2

26666666664

37777777775

T

, (30)

eS2
ðrÞ ¼

6D2=r5 þ 2½G2 � 2ð1þ n2ÞC2�=r3

12D2=r5 � 2½G2 þ 2ð5� 4n2ÞC2�=r3

3D2=r5 þ 6C2ð1� 2n2Þ=r3

�12D2=r5 þ 6C2ð1þ n2Þ=r3

�6D2=r5 � 2½G2 � ð5� 4n2ÞC2�=r3

�6D2=r5 þ ½G2 þ 4ð1þ n2ÞC2�=r3

26666666664

37777777775

T

, (31)

where A1;B1, F1, C2;D2 and G2 are given in Eq. (24). The Eshelby tensor in the graded

interphase has a more complicated form with eSI
ðrÞ being

eSI
ðrÞ ¼ �

1

2

P4
i¼1

2liðci þ eiÞ �
P6
i¼5

4liMi

P4
i¼1

liðci þ 2ei þ f i þ gi þ 4ki þ liÞ �
P6
i¼5

2lihiMi

P4
i¼1

2liei

P4
i¼1

2liðei þ kiÞ

P4
i¼1

li ci þ gi

� �
�
P6
i¼5

2lihiMi

P4
i¼1

liðci þ f iÞ �
P6
i¼5

2liMi

2666666666666666666666664

3777777777777777777777775

T

. (32)

When the roots of Eq. (9) are real, li, ci; ei; f i; gi; ki and li ði ¼ 1; 2; 3; 4Þ in Eq. (32) are

li ¼ rhi�1 ði ¼ 1; 2; . . . ; 6Þ,

ci ¼Mi; ei ¼ �3Ni; f i ¼ �3Mi þ 6Ni; gi ¼Miðhi � 1Þ,

ki ¼ �
3
2
½Mi þNiðhi � 3Þ�; li ¼ �3Miðhi � 3Þ þ 6Niðhi � 3Þ. ð33Þ
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The constants Mi ði ¼ 1; 2; . . . ; 6Þ and Nj ðj ¼ 1; 2; 3; 4Þ are given in Eq. (25). When the
roots are complex, li in Eq. (32) are

l1 ¼ rm1�1 cosðd1 ln rÞ; l2 ¼ rm1�1 sinðd1 ln rÞ; l3 ¼ rm2�1 cosðd2 ln rÞ,

l4 ¼ rm2�1 sinðd2 ln rÞ; l5 ¼ rh5�1; l6 ¼ rh6�1. ð34Þ

Then ci; ei; f i; gi; ki and li ði ¼ 1; 2; 3; 4Þ are given below. For i ¼ 1

c1 ¼M1; e1 ¼ �3N1; f 1 ¼ �3M1 þ 6N1,

g1 ¼M1ðm1 � 1Þ þM2d1; k1 ¼ �
3
2
½M1 þN1ðm1 � 3Þ þN2d1�,

l1 ¼ �3M1ðm1 � 3Þ þ 6N1ðm1 � 3Þ � 3M2d1 þ 6N2d1. ð35Þ

For i ¼ 2 the constants can be obtained by replacing M1, N1, M2, N2, m1 and d1 in
Eq. (35) with M2, N2, M1, N1, m1 and �d1, respectively, for i ¼ 3 by replacing them with
M3, N3, M4, N4, m2 and d2, respectively, and for i ¼ 4 with M4, N4, M3, N3, m2 and �d2,
respectively.
When the interphase is homogeneous (non-graded, Q ¼ 0), h1 ¼ 3; h2 ¼ 1; h3 ¼ �2;

h4 ¼ �4; h5 ¼ 1; h6 ¼ �2. Mi and Ni ði ¼ 1; 2; 3; 4Þ are related to each other through

Mi ¼ Ni
½12� 12nI � ð1� 2nI Þðhi þ h2

i Þ�

ðhi þ 4� 4nI Þ
; ði ¼ 1; 2; 3; 4Þ. (36)

For consistency with the expressions in Eqs. (30) and (31), for the homogeneous
interphase, we introduce constants AI ;BI ;CI ;DI ;F I and GI . The relations between them
and M1, M2, M3, M4, M5 and M6 in Eq. (25) are

AI �
M1

12nI

; BI �
M2

2
; CI �

M3

2ð5� 4nI Þ
; DI � �

M4

3
; FI �M5; GI �M6.

(37)

Therefore, for the homogeneous interphase (Q ¼ 0), eSI
ðrÞ is given by

eSI
ðrÞ ¼

BI þ 2FI þ 3ð7� 8nI ÞAI r2 þ 2½GI � 2ð1þ nI ÞCI �
1
r3
þ 6DI

1
r5

2BI þ FI þ 36nI AI r2 � 2½GI þ 2ð5� 4nI ÞCI �
1
r3
þ 12DI

1
r5

3BI þ 3ð7� 4nI ÞAI r2 þ 6ð1� 2nI ÞCI
1
r3
þ 3DI

1
r5

3BI þ 3ð7þ 2nI ÞAI r2 þ 6ð1þ nI ÞCI
1
r3
� 12DI

1
r5

�BI þ FI � 18nI AI r2 � 2½GI � ð5� 4nI ÞCI �
1
r3
� 6DI

1
r5

�BI þ F I � 3ð7� 8nI ÞAI r2 þ ½GI þ 4ð1þ nI ÞCI �
1
r3
� 6DI

1
r5

266666666664

377777777775

T

. (38)

Under dilatational eigenstrain e� ¼ e�mI
ð2Þ, the total strain in the inhomogeneity is given by

e1 ¼ e�mS
1 : Ið2Þ. It can be verified that S1 : Ið2Þ is a constant tensor and thus the stress field in

the inhomogeneity is uniform even in the three-phase configuration with a graded
interphase. If the inhomogeneity, the interphase and the matrix have the same elastic
moduli, then the Eshelby tensors given in Eqs. (30) and (31) reduce to the classical interior
and exterior Eshelby tensors for a spherical inclusion.
As we shall demonstrate in Section 7, the volume average Eshelby tensors can be used to

predict the effective moduli of composites. Here, we give the volume average of the
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Eshelby tensor for the spherical inhomogeneous inclusion in the studied three-phase model
when the interphase is a (non-graded) homogeneous material. The average tensor is
defined as

S̄
1
¼

1

V1

Z
V1

eS1
ðrÞ e�ET

dV , (39)

where V 1 is the volume of the inhomogeneity. Performing the volume integration, it is
found that S̄

1
is an isotropic tensor

S̄
1
¼ ð1þ 3F 1ÞJþ 1þ

63A1

5
þ 3B1

� �
K, (40)

where

J ¼ 1
3
Ið2Þ � Ið2Þ; K ¼ �1

3
Ið2Þ � Ið2Þ þ Ið4sÞ, (41)

with Ið2Þ and Ið4sÞ being the second- and fourth-order symmetric identity tensors,
respectively. For an inhomogeneous inclusion with a non-graded interphase, the procedure
for the solutions of the constants F 1, A1 and B1 has been depicted above. Their expressions
will not be given here for they are lengthy. Instead, we give the detailed expressions for
these constants when the spherical inhomogeneity has the same elastic constants as the
interphase, namely, when the inhomogeneous inclusion degenerates into an inclusion in a
spherical region which, in turn, is embedded in an alien infinite matrix. In this case,
g1I ¼ m1=mI ¼ 1, g2I ¼ m2=mI ¼ g21 ¼ m2=m1 and n1 ¼ nI , and the infinite matrix material
has different elastic moduli. Then the constants F 1, A1 and B1 are

F1 ¼ �
2ð1� 2n1Þ

3H1
f½1� r3ð1� g21Þ�ð1þ n1Þ � 4g21n1 þ 2g21g,

A1 ¼
2ð1� r2Þr5ð1� g21Þ

H2
,

B1 ¼
2r3H12

15H2½�8� 7g21 þ 5ð2þ g21Þn2�
�

7� 5n1
45� 45n1

, ð42Þ

with r ¼ a=b and

H1 ¼ 3ð1� n1Þ½1þ 2g21 þ ð1� 4g21Þn1�,

H2 ¼ 3ð1� n1Þ½7ð1þ 4g21Þ þ 5ð1� 8g21Þn1�,

H12 ¼ ð200n21 � 300n1 � 63r2 þ 175Þð7� 5n2Þg2
21 þ 3g21f75n1ð7� 9n2Þ

� 25n21ð13� 15n2Þ � 7½25þ 3r2 � 5ð5þ 3r2Þn2�g

þ ð4� 5n2Þð25n21 þ 126r2 � 175Þ. ð43Þ

When g21 ¼ 1, n1 ¼ n2 and r ¼ 1, S1 in Eq. (27) and S̄
1
in Eq. (40) degenerate into the

classical Eshelby tensor, denoted by S0, for a spherical inclusion in an infinite homogeneous
medium.



ARTICLE IN PRESS
H.L. Duan et al. / J. Mech. Phys. Solids 54 (2006) 1401–14251412
4. Eshelby tensors in finite domains

4.1. Fixed displacement boundary condition

Letting the moduli of the infinite matrix in the three-phase problem in Section 3 tend to
infinity, we obtain the solution for a spherical inhomogeneous inclusion in a finite domain
whose outer boundary is fixed. In this case, when the shell is homogeneous (Q ¼ 0), the
Eshelby tensors in the finite domain are given through Eqs. (27), (30) and (38), and the
constants A1;B1;F 1, AI ;BI ;CI ;DI , FI and GI are

F 1 ¼ �
ð1� 2n1Þ½2þ r3 � ð4� r3ÞnI �

W 1
; A1 ¼

175g1Ir
5ð1� r2Þð1� nI Þ

W 2
,

B1 ¼
W 3

3W 2
; F I ¼ �

r3g1I ð1þ n1Þð1� 2nI Þ

W 1
; GI ¼ �

F I

r3
,

AI ¼
5g1Ir

5ð1� r2Þ
W 2

½28� 40n1 þ g1I ð7þ 5n1Þ�; BI ¼
r3g1I W 4

3W 2
,

CI ¼
5g1I

3W 2
½W 5r7 �W 6ð7� 10nI Þ�; DI ¼

2g1I

W 2
½W 5r5 �W 6ð7� 10nI Þ�, ð44Þ

where g1I ¼ m1=mI and W i ði ¼ 1; 2; . . . ; 6Þ are

W 1 ¼ 3g1I ð1� r3Þð1þ n1Þð1� 2nI Þ þ 3ð1� 2n1Þ½2þ r3 � ð4� r3ÞnI �,

W 2 ¼ 4ð1� g1I Þð4� 5nI ÞW 5r10 þ 25W 7r7 þ ð1� g1I ÞW 6½126r5

� 25ð7� 12nI þ 8n2I Þr
3� þ 2W 6ð7� 10nI Þ½�7þ 5nI � 2g1I ð4� 5nI Þ�,

W 3 ¼ � 4ð4� 5nI ÞW 5r10 þ 25W 8r7 þ 63W 9r5 þ 25W 6ð7� 12nI þ 8n2I Þr
3

þ 2W 6ð49� 105nI þ 50n2I Þ,

W 4 ¼ � 4ð4� 5nI ÞW 5r7 �W 6ð�175þ 63r2 þ 300nI � 200n2I Þ,

W 5 ¼ ð7� 10n1Þð7þ 5nI Þ � g1I ð7þ 5n1Þð7� 10nI Þ,

W 6 ¼ � 28þ 40n1 � g1I ð7þ 5n1Þ, ð45Þ

with

W 7 ¼ 2ð7� 10n1Þð7� n2I Þ � g2
1I ð7þ 5n1Þð7� 12nI þ 8n2I Þ

þ g1I ½�7ð7� 6nI þ 8n2I Þ þ n1ð49þ 66nI þ 20n2I Þ�,

W 8 ¼ � 2ð7� 10n1Þð7� n2I Þ þ g1I ½7ð14� 21nI þ 4n2I Þ þ n1ð7� 42nI þ 20n2I Þ�,

W 9 ¼ � 2W 6 � 35g1I ð1� nI Þ. ð46Þ

When the inhomogeneity and the homogeneous shell have the same elastic moduli
(g1I ¼ 1; n1 ¼ nI ), the solution reduces to that of a spherical inclusion in a finite domain.

4.2. Traction-free boundary condition

Letting the moduli of the infinite matrix in the three-phase configuration in Fig. 1
vanish, we obtain the solution for a spherical inhomogeneity in a finite domain with a
traction-free boundary condition. In this case, when the shell is homogeneous (Q ¼ 0), the
Eshelby tensors in the finite domain are given through Eqs. (27), (30) and (38), and the
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constants A1;B1;F1, AI ;BI ;CI ;DI ;FI and GI are

F1 ¼
2ð1� r3Þð1� 2n1Þð1þ nI Þ

W 10
; A1 ¼ �

350r5g1I ð1� r2Þð1� nI Þ

W 11
,

B1 ¼
W 12

3W 11
; F I ¼ �

2r3g1I ð1� 2nI Þð1þ n1Þ
W 10

; GI ¼
F I ð1þ nI Þ

2r3ð1� 2nI Þ
,

AI ¼ �
10r5g1I ð1� r2Þ½7ð4þ g1I Þ � 5ð8� g1I Þn1�

W 11
; BI ¼

r3g1I W 13

3W 11
,

CI ¼ �
5g1I

6W 11
½4W 5r7 þW 6ð7þ 5nI Þ�; DI ¼ �

g1I

W 11
½4W 5r5 þW 6ð7þ 5nI Þ�, ð47Þ

where W 5 and W 6 are given in Eq. (45), and W n ðn ¼ 10; 11; 12; 13Þ are

W 10 ¼ � 6ð1� r3Þð1� 2n1Þð1þ nI Þ � 3g1I ð1þ n1Þ½1þ 2r3 þ ð1� 4r3ÞnI �,

W 11 ¼ 4ð1� g1I Þð7� 5nI ÞW 5r10 þ 50W 15r7 � 252ð1� g1I ÞW 6r5

þ 25ð1� g1I Þð7� n2I ÞW 6r3 þW 6ð7þ 5nI Þ½�7� 8g1I þ 5ð1þ 2g1I ÞnI �,

W 12 ¼ � 4ð7� 5nI ÞW 5r10 � 50W 14r7 � 25ð7� n2I ÞW 6r3

þ ð49� 25n2I ÞW 6 � 126½�10ð8� g1I Þn1 þ 7ð8� 3g1I þ 5g1InI Þ�r5,

W 13 ¼ � 4ð7� 5nI ÞW 5r7 þ 126W 6r2 � 25W 6ð7� n2I Þ, ð48Þ

with

W 14 ¼ n1½7ð20þ g1I Þ � 42g1InI � 20ð1� g1I Þn
2
I �

� 7½14ð1� g1I Þ þ 21g1InI � 2ð1þ 2g1I Þn
2
I �,

W 15 ¼ 7½7ð�2þ g1I þ g2
1I Þ � 6g1I ð1þ 2g1I ÞnI þ 2ð1þ 2g1I Þ

2n2I �

þ n1½7ð20� 7g1I þ 5g2
1I Þ � 6g1I ð11þ 10g1I ÞnI � 20ð1þ g1I � 2g2

1I Þn
2
I �. ð49Þ

When the inhomogeneity and the homogeneous shell have the same elastic moduli,
i.e. g1I ¼ 1; n1 ¼ nI , the solution reduces to that of a spherical inclusion in a free finite
domain.

It is noted that Li et al. (2005), and Wang et al. (2005) recently solved the circular and
spherical inclusion problems in finite circular and spherical regions with fixed displacement
or traction-free boundary conditions, and gave the corresponding Eshelby tensors. The
present solutions are different from those of Li et al. (2005), and Wang et al. (2005) in that
the former are for inhomogeneous inclusions.

5. Stress concentration tensors in three phases

In this section, we solve the elastic field in the three-phase region shown in Fig. 1 when a
uniform stress field r0 is prescribed at infinity. It is noted that previously, Herve and Zaoui
(1993) have solved the elastic field in an infinite medium containing a spherical
inhomogeneity with multiple homogeneous shells. Here, like the case for a general
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eigenstrain, the solution for a general remote stress r0 is also obtained by superposition.
Under the respective remote loadings s0xxa0;s0yya0;s0zza0;s0xya0;s0xza0 and s0yza0, the
elastic solutions have the same forms as those under the corresponding eigenstrains.
However, the usual stress and displacement continuity conditions at G1I and GI2 and

the remote boundary conditions should be satisfied. It is found that under s0xx ¼ 1; s0yy ¼ 1;

s0zz ¼ 1;s0xy ¼ 1;s0xz ¼ 1 and s0yz ¼ 1, respectively, the constants Ak
pq;B

k
pq;C

k
pq;D

k
pq;F

k
pp and

Gk
pp ðp; q ¼ x; y; zÞ in Eqs. (5), (6), (12) and (16) for the inhomogeneity (superscript 1), the

graded interphase (superscript I) and the matrix (superscript 2) still obey the identities like
Ak

xx ¼ Ak
yy ¼ Ak

zz ¼ Ak
xy ¼ Ak

xz ¼ Ak
yz. Thus, we introduce constants Ak, Bk, Ck, Dk, F k and

Gk ðk ¼ 1; 2Þ for the inhomogeneity and matrix such that

12nkAks0pq � mkAk
pq; 2Bks0pq � mkBk

pq; 2ð5� 4nkÞCks0pq � mkCk
pq,

� 3Dks0pq � mkDk
pq; Fks0pp �

2ð1þ nkÞ

1� 2nk

mkFk
pp; Gks0pp � mkGk

pp, ð50Þ

where p; q ¼ x; y; z denote different loading cases. In the inhomogeneity (k ¼ 1), C1;D1

and G1 vanish; in the matrix (k ¼ 2), A2 and F2 vanish. For the graded interphase we
introduce constants Mi ði ¼ 1; 2; . . . ; 6Þ and Nj ðj ¼ 1; 2; 3; 4Þ such that

M1s0pq � mI AI
pq; M2s0pq � mI BI

pq; M3s0pq � mI CI
pq; M4s0pq � mI DI

pq,

N1s0pq � mI
eAI

pq; N2s0pq � mI
eBI

pq; N3s0pq � mI
eCI

pq; N4s0pq � mI
eDI

pq,

M5s0pp � mI FI
pp; M6s0pp � mI GI

pp. ð51Þ

From Eq. (51), it follows that the constants Mi and Ni ði ¼ 1; 2; 3; 4Þ obey Eq. (13) when
the roots of Eq. (9) are real (e.g. homogeneous interphase), and Eqs. (17) and (18)
when they are complex. Therefore, the final elastic fields in the inhomogeneity and
matrix contain the constants Ak, Bk, Ck, Dk, Fk and Gk (k ¼ 1; 2), and those in the
interphase the constants Mi ði ¼ 1; 2; . . . ; 6Þ and Nj ðj ¼ 1; 2; 3; 4Þ. These constants are
easily obtained from the corresponding continuity conditions and remote boundary
conditions.
The stress concentration tensors TkðxÞ ðk ¼ 1; I ; 2Þ relate the total stresses rkðxÞ in the

three phases to the prescribed uniform remote stress r0,

rk ¼ TkðrÞ : r0; ðk ¼ 1; I ; 2Þ. (52)

The stress concentration tensors have the same properties as those of the Eshelby tensors;
therefore, TkðrÞ can be expressed as follows:

TkðrÞ ¼ eTk
ðrÞ � eET

, (53)

where

eTk
ðrÞ ¼ ½T

k
1ðrÞ Tk

2ðrÞ Tk
3ðrÞ Tk

4ðrÞ Tk
5ðrÞ Tk

6ðrÞ �. (54)
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In the inhomogeneity, eT1
ðrÞ is

eT1
ðrÞ ¼

2B1 þ 2F1 þ 6ð7þ 6n1ÞA1r
2

4B1 þ F1 � 12n1A1r2

6B1 þ 6ð7� 4n1ÞA1r2

6B1 þ 6ð7þ 2n1ÞA1r2

�2B1 þ F 1 þ 6n1A1r
2

�2B1 þ F1 � 6ð7þ 6n1ÞA1r2

26666666664

37777777775

T

. (55)

In the matrix, eT2
ðrÞ is

eT2
ðrÞ ¼

1þ 12D2=r5 þ 4½G2 � 2ð1� 2n2ÞC2�=r3

1þ 24D2=r5 � 4½G2 þ 2ð5� n2ÞC2�=r3

1þ 6D2=r5 þ 12C2ð1� 2n2Þ=r3

1� 24D2=r5 þ 12C2ð1þ n2Þ=r3

�12D2=r5 � 4½G2 � ð5� n2ÞC2�=r3

�12D2=r5 þ 2½G2 þ 4ð1� 2n2ÞC2�=r3

26666666664

37777777775

T

. (56)

In the inhomogeneous interphase, eTI
ðrÞ is

eTI
ðrÞ ¼

P4
i¼1

2liðci þ eiÞ þ
P6
i¼5

4li
ð1þhin2Þ
1�2n2

Mi

P4
i¼1

liðci þ 2ei þ f i þ gi þ 4ki þ liÞ þ
P6
i¼5

2li
½hiþð2�hiÞn2�

1�2n2
Mi

P4
i¼1

2liei

P4
i¼1

2liðei þ kiÞ

P4
i¼1

liðci þ giÞ þ
P6
i¼5

2li
½hiþð2�hiÞn2�

1�2n2
Mi

P4
i¼1

liðci þ f iÞ þ
P6
i¼5

2li
ð1þhin2Þ
1�2n2

Mi

2666666666666666666666664

3777777777777777777777775

T

. (57)

When the roots of Eq. (9) are real, li is given by Eq. (33), and the other constants are

ci ¼
1

�1þ 2nI

½ð1þ hinI ÞMi � 6nI Ni�; ei ¼ 3Ni,

f i ¼
1

�1þ 2nI

½�3ð1þ hinI ÞMi þ 6ð1þ nI ÞNi�,

gi ¼ �ðhi � 1ÞMi; ki ¼
3
2
½Mi þ ðhi � 3ÞNi�,

li ¼ �ð9� 3hiÞMi � 6ðhi � 3ÞNi. ð58Þ
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When the roots are complex (two pairs of complex conjugate roots), li ði ¼ 1; 2; . . . ; 6Þ are
given by Eq. (34). For i ¼ 1,

c1 ¼
1

�1þ 2nI

½ð1þm1nI ÞM1 � 6nI N1 þ nI M2d1�; e1 ¼ 3N1,

f 1 ¼
1

�1þ 2nI

½�3ð1þm1nI ÞM1 þ 6ð1þ nI ÞN1 � 3nI M2d1�,

g1 ¼ �ðm1 � 1ÞM1 �M2d1; k1 ¼
3
2
½M1 þ ðm1 � 3ÞN1 þN2d1�,

l1 ¼ �ð9� 3m1ÞM1 � 6ðm1 � 3ÞN1 þ 3M2d1 � 6N2d1. ð59Þ

For i ¼ 2, the constants can be obtained by replacing M1, N1, M2, N2, m1 and d1 in
Eq. (59) with M2, N2, M1, N1, m1 and �d1, respectively, for i ¼ 3 by replacing them with
M3, N3, M4, N4, m2 and d2, respectively, and for i ¼ 4 with M4, N4, M3, N3, m2 and �d2,
respectively.
When the interphase is homogeneous (Q ¼ 0), h1 ¼ 3; h2 ¼ 1; h3 ¼ �2; h4 ¼ �4; h5 ¼ 1;

h6 ¼ �2. For consistency with the expressions in Eqs. (55) and (56), we introduce
constants AI ;BI ;CI ;DI ;F I and GI such that

12nI AI �M1; 2BI �M2; 2ð5� 4nkÞCI �M3,

� 3DI �M4; FI �
2ð1þ nI Þ

1� 2nI

M5; GI �M6. ð60Þ

Therefore, for the homogeneous interphase (Q ¼ 0), eTI
ðrÞ is given by

eTI
ðrÞ ¼

2BI þ 2F I þ 6ð7þ 6nI ÞAI r2 þ 12DI
1
r5
þ 4½GI � 2ð1� 2nI ÞCI �

1
r3

4BI þ FI � 12nI AI r2 þ 24DI
1
r5
� 4½GI þ 2ð5� nI ÞCI �

1
r3

6BI þ 6ð7� 4nI ÞAI r2 þ 6DI
1
r5
þ 12ð1� 2nI ÞCI

1
r3

6BI þ 6ð7þ 2nI ÞAI r2 � 24DI
1
r5
þ 12ð1þ nI ÞCI

1
r3

�2BI þ FI þ 6nI AI r2 � 12DI
1
r5
� 4½GI � ð5� nI ÞCI �

1
r3

�2BI þ F I � 6ð7þ 6nI ÞAI r2 � 12DI
1
r5
þ 2½GI þ 4ð1� 2nI ÞCI �

1
r3

266666666664

377777777775

T

. (61)

The volume average of the stress concentration tensor T̄
1
for the inhomogeneity, which is

useful in micromechanical approaches, is given by

T̄
1
¼

1

V 1

Z
V1

eT1
ðrÞ e�ET

dV ¼ 3F1Jþ
6

5
ð21A1 þ 5B1ÞK. (62)

When g1I ¼ 1 and nI ¼ n1, T1 in Eq. (53) and T̄
1
in Eq. (62) degenerate into the classical

stress concentration tensor T0 for a spherical inhomogeneity embedded in an alien infinite
matrix.

6. Strain distributions in core–shell nanoparticles

A core–shell nanoparticle is usually composed of two different materials, e.g. CdSe
coated CdS, ZnS coated CdSe, ZnSe coated CdSe, and CdS coated CdSe, etc. Many
core–shell nanoparticles are nearly spherical and have a diameter of a few (3–5) (Danek
et al., 1996; Peng et al., 1997; Dabbousi et al., 1997) to 11 nanometres (Kim et al., 2005).
Because of the mismatch of the lattices of the materials, significant mismatch strains may
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Fig. 2. (a) CdTe/CdS core–shell particle; (b) ZnS/CdS core–shell particle.
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develop in core–shell nanoparticles (e.g. Rockenberger et al., 1998; Little et al., 2001). The
lattice mismatch strain and the thermal strain can be treated as eigenstrains. In addition to
the lattice mismatch, the large surface stress and applied external pressure can also produce
a substantial lattice contraction (Little et al., 2001; Itskevich et al., 1998). In this section,
we will use the Eshelby tensors in the finite domain with the traction-free boundary
condition to analyze the elastic strain field in a core–shell particle under an eigenstrain e�, a
uniform and isotropic surface stress t and external hydrostatic loading Pex, as shown in
Figs. 2(a) and (b). The strain field in the core and shell can be obtained by using the
Eshelby tensors in Eqs. (27), (30) and (38) for an arbitrary uniform eigenstrain prescribed
in the core, with the constants A1;B1;F 1, AI ;BI ;CI ;DI ;F I and GI given in Eqs. (47) and
(48). The elastic strain tensors e1el and eI

el in the core and shell induced by e�, t and Pex are

e1el ¼ S1 : e� � e� þ e1ðt;PexÞ; eI
el ¼ SI : e� þ eI ðt;PexÞ, (63)

where S1 and SI are the Eshelby tensors in the core and shell, and they are given in
Eqs. (27), (30) and (38). e1ðt;PexÞ and eI ðt;PexÞ in Eq. (63) are the elastic strain tensors in
the core and shell due to t and Pex. The components of e1ðt;PexÞ and eI ðt;PexÞ in the
spherical coordinate system are

e1rrðt;PexÞ ¼ e1yyðt;PexÞ ¼ e1jjðt;PexÞ ¼ �
mI ð3kI þ 4mI Þ

3w
2t� þ

Pex

mI

� �
,

eI
rrðt;PexÞ ¼ L1 �

2L2

r3
; eI

yyðt;PexÞ ¼ eI
jjðt;PexÞ ¼ L1 þ

L2

r3
, ð64Þ

where t� ¼ t=ðbmI Þ, and

w ¼ 4ð1� r3ÞkImI þ k1ð3kI þ 4r3mI Þ,

L1 ¼ �
mI ð3k1 þ 4mI Þ

3w
2t� þ

Pex

mI

� �
; L2 ¼

mI ðk1 � kI Þ

w
2t� þ

Pex

mI

� �
. ð65Þ

Rockenberger et al. (1998) calculated the elastic strain distribution in the CdS coated CdTe
core–shell system (CdTe/CdS, Fig. 2(a)) due to a dilatational eigenstrain e� ¼ e�mI

ð2Þ by
assuming that the elastic constants of the CdTe core and CdS shell are the same within the
framework of continuum mechanics. In order to compare our results with those of
Rockenberger et al. (1998), we consider the strain field induced by a dilatational
eigenstrain e� ¼ e�mI

ð2Þ. For the core–shell structure, the misfit strain induced by the
different lattice constants of the core and shell is e�m ¼ ðaco � ashÞ=ash, where aco and ash are
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Fig. 3. Distributions of normalized elastic strains ezz=e�m and exx=e�m in a CdTe/CdS core–shell nanoparticle

subjected to e�m and t. It is noted that the core (0pzp1:0) is under hydrostatic compression. Thus, the curves of

exx and ezz merge into one in the core for each of the three cases.
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the lattice constants of the core and shell, respectively. For example, the misfit strains are
11.6% for the CdTe/CdS core–shell structure and �7:0% for ZnS/CdS (Fig. 2(b)). Here,
we give the numerical results for the CdTe/CdS nanoparticle for three cases: (I) The core
and the shell have the same elastic constants with an eigenstrain e�mI

ð2Þ in the core; (II) The
core and the shell have different elastic constants with an eigenstrain strain e�mI

ð2Þ in the
core; (III) A surface stress t on the outer surface of the particle is superimposed on the
strain field of case (I). For the CdTe/CdS core–shell system, the outer radius rsh of the
nanoparticle is 0.9 nm with r ¼ 0:84 (Rockenberger et al., 1998). The elastic strains
exx ðexx ¼ eyyÞ and ezz along the z-axis (a radius) are plotted in Fig. 3. It is found that for
this material combination the assumption that the core and the shell have the same elastic
constants generates a relative difference ðeðIIÞ � eðIÞÞ=eðIÞ ¼ 56% of the strain in the core,
because the elastic constants of CdTe (bulk modulus 41.9GPa, Poisson ratio 0.41) and
CdS (bulk modulus 62.3GPa, Poisson ratio 0.4) are different. Therefore, the difference in
the elastic constants results in a significant difference in the strain field, which may have
great effect on the physical properties. If we assume that there is a surface stress
t ¼ 1N=m, then the effect of the surface stress on the magnitude of the strains is
remarkable, and it may cause a substantial lattice contraction. The CdTe core is under
hydrostatic compression, and the CdS shell is under biaxial tension in the tangential
directions and compression in the radial direction.

7. Micromechanical scheme based on Eshelby and stress concentration tensors of three-phase

configuration

Many micromechanical schemes have been developed to predict the effective elastic
constants of linear composites (e.g. Aboudi, 1991; Bornert et al., 1996; Nemat-Nasser and
Hori, 1999; Torquato, 2002; Milton, 2002). The framework for predicting the effective
properties of nonlinear composites has also been well developed (Talbot and Willis, 1985;
Pontecastaeda and Suquet, 1998; Willis, 2000). The work of Segurado and LLorca (2002)
for linear composites containing non-overlapping identical spheres showed that for rigid
spheres, Torquato’s third-order approximation (TOA, Torquato, 1998) gives the effective
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moduli closest to the numerical computation; for a glass-sphere/epoxy composite, the
predictions of the generalized self-consistent method (GSCM, Christensen and Lo, 1979)
and the TOA are practically identical, and they are very close to the numerical
computation; and for spherical voids, the GSCM, the TOA and the numerical
computation give practically identical results. In this case, the prediction of the
Mori–Tanaka method (MTM, Mori and Tanaka, 1973; Benveniste, 1987) is also very
close to the other two theoretical schemes and the numerical computation. However, it is
noted that the MTM may severely underestimate the effective shear moduli of composites
containing hard inhomogeneities, especially at large volume fractions, as is shown in the
papers of Segurado and LLorca (2002), and Ma et al. (2004). It would therefore appear
that from an overall point of view, the GSCM and the TOA tend to give the best results. It
is noted that the three-phase model (GSCM) takes into account the matrix atmosphere,
which is important in the prediction of the effective properties (Zheng and Du, 2001).
Therefore, in this section, using the three-phase configuration in Fig. 1, we propose a
micromechanical scheme to predict the effective moduli of composites containing spherical
particles based upon the solutions of the inhomogeneity problems obtained in the previous
sections.

We consider a two-phase composite composed of a continuous matrix and randomly
distributed spherical particles. The effective stiffness tensor C� and compliance tensor D�

of the composite can be calculated from the following expressions (Hill, 1963):

C� ¼ C2 þ f ðC1 � C2Þ : Ē
1
, (66)

D� ¼ D2 þ f ðD1 �D2Þ : T̄
1
, (67)

where C1 and D1 denote the stiffness and compliance tensors of the particles, respectively,
and C2 and D2 those of the matrix. f is the volume fraction of the particles. Ē

1
in Eq. (66) is

the strain concentration tensor in a particle, and T̄
1
in Eq. (67) is the stress concentration

tensor. They are defined as

ē1 ¼ Ē
1
: e0; r̄1 ¼ T̄

1
: r0, (68)

where e0 and r0 are the uniform strain and stress tensors when the material is
homogeneous, and ē1 and r̄1 are the volume average strain and stress tensors in a
particle, respectively. Among various micromechanical schemes, the GSCM evaluates Ē

1

or T̄
1
based on the three-phase model where a particle is embedded in a finite matrix shell

that, in turn, is embedded in an infinite equivalent medium with the yet-unknown effective
properties of the composite, as shown in Fig. 4(a). It is noted that the matrix shell (region
2) in Fig. 4(a) corresponds to the interphase I in Fig. 1, and the equivalent homogeneous
medium (region c) corresponds to the infinite matrix in Fig. 1. Because we have given the
stress concentration tensor (Eq. (62)) for the inhomogeneity in the three-phase
configuration, we can directly substitute it into Eq. (67) to calculate the effective
compliance tensor of the composite. By doing so, it is found that the obtained effective
bulk and shear moduli of the composite are identical to those given by Christensen and Lo
(1979), and Huang et al. (1994). The effective shear modulus needs to be solved from a
quadratic equation. Likewise, we can calculate the strain concentration tensor Ē

1
and

substitute it into Eq. (66) to calculate the effective stiffness tensor, which is found to be
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identical to that obtained from Eq. (67). Thus, the results of the GSCM are confirmed in a
unified tensorial approach.
In the following, instead of using the exact average stress concentration tensor in

Eq. (62), we shall introduce the approximate volume average stress and strain
concentration tensors by applying the Eshelby equivalent inclusion method to the three-
phase configuration. To this end, we calculate the average stress concentration tensor by
applying the equivalent inclusion method to the region 1, i.e. the spherical inhomogeneity,
in Fig. 4(a). Assume that the volume average stress in this inhomogeneity in the three-
phase configuration in Fig. 4(a) is r̄1 while the remote stress is r0. For the same remote
stress, when we replace the spherical inhomogeneity with the stiffness tensor C1 by the
matrix material with the stiffness tensor C2, the volume average stress in the same region is
denoted by r̄m, as shown in Fig. 4(b). This volume average stress r̄m can be related to the
remote stress by the relation

r̄m ¼ B : r0, (69)

where the fourth-order tensor B is equal to the classical stress concentration tensor T0.
Generally, r̄m is different from r̄1. As in the classical Eshelby equivalent inclusion method,
the spherical matrix region 1 is further given a uniform eigenstrain e� (Fig. 4(c)) such that
the following equivalency condition is satisfied:

C1 : ðēm þ ē0Þ ¼ C2 : ðēm þ ē0 � e�Þ, (70)

where ēm ¼ D2 : r̄m ¼ D2 : B : r0. As in the work of Luo and Weng (1987), the disturbed
strain ē0 is related to the interior Eshelby tensor S̄

1
through

ē0 ¼ S̄
1
: e�, (71)

where S̄
1
is given in Eq. (40). From the above relations, the volume average stress in the

spherical particle can be obtained

r̄1 ¼ C1 : ē
1 ¼ C1 : ðēm þ ē0Þ � T̄

�
: r0, (72)

where

T̄
�
¼ ½Ið4sÞ � C1 : S̄

1
: ðD1 �D2Þ�

�1 : C1 : D2 : B � a�Jþ b�K. (73)
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Likewise, the strain concentration tensor Ē
�
, which relates the volume average strain ē1 to

the remote strain e0 in the relation ē1 ¼ Ē
�
: e0, is given as

Ē
�
¼ ½Ið4sÞ � S̄

1
: D2 : ðC2 � C1Þ�

�1 : A, (74)

where the fourth-order tensor A relates the volume average strain ēm to the remote strain e0

through the relation ēm ¼ A : e0 (Fig. 4(b)), and A ¼ D1 : B : C2.
It is found that the dilatational component a� of the approximate average stress

concentration tensor T̄
�
in Eq. (73) is identical to that of the exact average stress

concentration tensor T̄
1
. The expression of the deviatoric component b� is different from

that of the exact one. Fig. 5 shows the variations of the ratios b1=b0 and b�=b0 with the
volume fraction of the inhomogeneities for two composites with different stiffness
contrasts. b0 is the deviatoric component of the classical stress concentration tensor for an
inhomogeneity in an infinite medium. In calculating b1 and b� shown in Fig. 5, we need the
effective elastic constants mc and nc of the equivalent homogeneous medium (region c) in
Fig. 4. These constants are calculated using the GSCM. It is seen that the values of b� and
b1 are practically identical for these composites. The numerical results for other
combinations of the stiffnesses of the three phases also exhibit the similar feature.
Therefore, we can conclude that the approximate stress concentration tensor T̄

�
is very

accurate. Thus, we shall replace T̄
1
in the general expression (67) with T̄

�
to predict the

effective compliance tensor of composites containing randomly distributed spherical
particles.

When substituting T̄
�
into Eq. (67), it is found that the obtained effective bulk modulus

is identical to that given by the GSCM using T̄
1
. Thus, it will not be discussed further. The

effective shear modulus, denoted by mc, needs to be solved from the following quadratic
equation in m� ðm� ¼ mc=m2Þ:

Am2� þ Bm� þ C ¼ 0, (75)
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where

A ¼ �½126f 7=3
� 252f 5=3

þ 50ð7� 12n2 þ 8n22Þf �ð1� g12Þ þ 4ð7� 10n2ÞN,

B ¼ ½252f 7=3
� 504f 5=3

þ 150ð3� n2Þn2f �ð1� g12Þ � 3ð7� 15n2ÞN,

C ¼ �½126f 7=3
� 252f 5=3

þ 25ð7� n22Þf �ð1� g12Þ � ð7þ 5n2ÞN, ð76Þ

with N ¼ �7þ 5n2 � 2g12ð4� 5n2Þ and g12 ¼ m1=m2. It is seen that the coefficients A, B

and C are much simpler than their counterparts in the classical GSCM. In the following,
we shall compare the effective shear moduli given by the present model with those given by
other methods for various composites to confirm its accuracy.
We first compare the effective shear moduli predicted by the present model with the

classical Hashin–Shtrikman bounds (Hashin and Shtrikman, 1963), the GSCM
(Christensen and Lo, 1979), the TOA (Torquato, 1998) and the numerical computations
of Segurado and LLorca (2002) for three composites which contain stiff spheres with
m1=m2 ¼ 10; n1 ¼ n2 ¼ 0:25; E1 ¼ 70GPa, n1 ¼ 0:2, E2 ¼ 3GPa, n2 ¼ 0:38; and rigid
spheres with n2 ¼ 0:25, respectively. The comparisons are shown in Figs. 6(a)–(c). In all
the figures, mc denotes the effective shear modulus of the composite. It is seen that the
effective shear modulus predicted by the present model is practically identical to those
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composites containing stiff spheres with m1=m2 ¼ 10; n1 ¼ n2 ¼ 0:25 (a), glass beads E1 ¼ 70GPa, n1 ¼ 0:2,
E2 ¼ 3GPa, n2 ¼ 0:38 (b), and rigid spheres with n2 ¼ 0:25 (c).



ARTICLE IN PRESS

1.0

0.8

0.6

0.4

0.0 0.0 0.1 0.2 0.3 0.4 0.50.2 0.4 0.6 0.8 1.0

0.2

µ c / µ
2

µ c / µ
2

1.0

0.8

0.6

0.4

0.2

f f

HS upper bound HS upper bound

HS lower bound

Present model

Present model
Numerical result

GSCM

GSCM

TOA

TOA

(a) (b)

Fig. 7. Comparison of the effective shear moduli predicted by the present model with other methods for

composites containing soft spheres with m1=m2 ¼ 1=10; n1 ¼ n2 ¼ 0:25 (a), and voids with n2 ¼ 0:25 (b).

H.L. Duan et al. / J. Mech. Phys. Solids 54 (2006) 1401–1425 1423
predicted by the GSCM and TOA for the composite with m1=m2 ¼ 10 (Fig. 6(a)). For the
other two composites, the present predictions are also almost indistinguishable from those
of the GSCM (Figs. 6(b) and (c)). In Figs. 7(a) and (b), we compare the effective shear
moduli predicted by the present model with other methods for two composites containing
soft spheres and voids, respectively. It is seen that the present predictions are practically
identical to those of the GSCM, the TOA and the numerical results (for composite
containing voids). Moreover, it is found that the effective bulk and shear moduli obtained
by substituting the strain concentration tensor in Eq. (74) into Eq. (66) are identical to
those obtained by using T̄

�
in Eq. (67). This feature demonstrates that the present model is

also self-consistent.

8. Conclusions

The Eshelby and stress concentration tensors are derived for a spherical inhomogeneity
with a graded shell embedded in an infinite elastic matrix. The general Eshelby tensors are
then specialized to inhomogeneous inclusions in finite domains under fixed displacement or
traction-free boundary conditions. These tensors are very useful for solving many
problems in mechanics and materials science, e.g. the strain fields in core–shell
nanoparticles which have a novel composite structure and myriad application in many
fields. Finally, a micromechanical scheme is proposed to predict the effective moduli of
composites containing spherical particles. The main advantage of this scheme is that,
whilst its predictions of the effective moduli are almost identical to those of the classical
generalized self-consistent method (GSCM) and the third-order approximation (TOA), the
resulting expressions are simple and concise.
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