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Abstract. The Eshelby equivalent inclusion method is generalized to calculate the stress fields 
related to spherical inhomogeneities with two interface conditions depicted by the interface stress 
model and the linear-spring model. It is found that the method gives the exact results for the 
hydrostatic loading and very accurate results for a deviatoric loading. The method can be used to 
predict the effective properties of composites with the interface effects. 

Introduction 
Interfacial bonding condition is one of the important factors that affect the properties of a composite. 
Therefore, many models have been proposed to simulate the interface properties in composites, e.g. 
the linear-spring model (LSM) [1-4]. Recently, the interface stress effect has attracted considerable 
attention of researchers in materials science and mechanics from different aspects for its importance 
in nanostructured materials [5-7]. Duan et al. [8-10] gave the Eshelby formalism and 
micromechanical framework with the interface stress effect and predicted the effective moduli of 
composites containing spherical inhomogeneities or voids with the surface/interface stress effects.  

The Eshelby equivalent inclusion method [11] is very useful in micromechanics.  In the previous 
papers [9,10], the authors have given the stress concentration tensors under remote loading and the 
Eshelby tensors under eigenstrain for inhomogeneities with the linear-spring interface model and 
the interface stress model. However, the problems have not been studied within the formalism of 
the Eshelby equivalent inclusion method. Therefore, in this paper, the Eshelby equivalent inclusion 
method for spherical inhomogeneities with the interface stress model (ISM) and the linear-spring 
interface model (LSM) is presented. The accuracy of the elastic fields in the inhomogeneities and in 
the matrices obtained using the equivalent inclusion method is examined for these two models. The 
results show that the Eshelby equivalent inclusion method for inhomogeneities with the interface 
effects in a volume average sense generally gives very accurate stress fields, and thus it is very 
useful in the prediction of the effective moduli of composites containing inhomogeneities with the 
interface effects. 

Interface and Boundary Conditions 

We first consider the inhomogeneous inclusion problem, namely, a spherical inhomogeneity 
embedded in an alien infinite elastic matrix is given a uniform eigenstrain ε*, where the interface 
Γ12 between the inhomogeneity and the matrix is simulated by the interface stress model (ISM) or 
the linear-spring model (LSM). For this problem, the Eshelby tensors Sk(x) (k = 1,2) relate the 
strains εk(x) in the inhomogeneity (k = 1), denoted by Ω1, and the matrix (k = 2), denoted by Ω2, to 
the prescribed uniform eigenstrain ε* in the inhomogeneity, i.e. 

εk(x) = Sk(x): ε*          (k = 1, 2),     1 2∀ ∈Ω +Ωx                                                                           (1) 

where x is the position vector. The interface and boundary conditions for the interface stress model 
(ISM) and linear-spring model (LSM) subjected to ε* are as follows: 
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where +α β= ⊗γ P n n , and α  and β  are two parameters describing the bonding conditions in the 
tangential and normal directions, respectively. (2)= − ⊗P I n n , (2)I  is the second-order identity tensor 
in three-dimensional space, and n is the unit normal vector to the interface Γ12. S∇ ⋅ τ  denotes the 

interface divergence of τ at Γ12. For an elastically isotropic interface, the constitutive equation, 
which relates the interface stress τ to the interface strain εs can be expressed as [7-10, 12] 

2 (tr )s s
s sµ λ= +τ ε ε 1 , where sλ  and sµ  are the interface moduli, and 1 is the second-order unit 

tensor in two-dimensional space. For a coherent interface, the interface strain εs is equal to the 
tangential strain in the abutting bulk materials. 

Unlike the classical counterpart for an ellipsoidal inhomogeneity without the interface effects, 
the interior Eshelby tensors with the interface stress and the linear-spring interface are generally 
position-dependent [9]. However, the volume average Eshelby tensors in the inhomogeneities are 
isotropic tensors, which can be expressed as follows: 

1
1 1ξ ς= +S J K                                                                                                                                 (3) 

where (2) (2)1
3

= ⊗J I I , (2) (2) (4 )1
3

s= − ⊗ +K I I I . (4 )sI  is the fourth-order symmetric identity tensor, and 

the two constants 1ξ  and 1ς  are given in the paper of Duan et al. [9]. When the inhomogeneity has 
the same elastic constants as those of the matrix, the inhomogeneous inclusion problem degenerates 
into an inclusion problem.  

Eshelby Equivalent Inclusion Method with Interface Effects 
The Eshelby equivalent inclusion method is convenient for solving inhomogeneity problems when 
the elastic fields in the inhomogeneities are uniform; however, it is difficult to obtain exact closed-
form solutions using this method for general non-uniform elastic fields in inhomogeneities, e.g. the 
inhomogeneity problems with the interface effects. In this section, we will apply the Eshelby 
equivalent inclusion method in a volume average sense to the spherical inhomogeneities with the 
above-mentioned two interface effects. 

To this end, we calculate the average stress concentration tensors and the exterior (in the matrix) 
stress fields by applying the Eshelby equivalent inclusion method in a volume average sense to the 
region 1 shown in Fig. 1(a), i.e. the spherical inhomogeneity in an infinite matrix. Assume that the 
volume average stress in the inhomogeneity with either of the interface effects is 

1σ  while the 
remote stress is 

0σ . For the same remote stress, when we replace the spherical inhomogeneity with 
the stiffness tensor C1 (compliance tensor D1) by the matrix material with the stiffness tensor C2 

(compliance tensor D2), the volume average stress in the same region is denoted by mσ , as shown 
in Fig. 1(b). The boundary-value problem in Fig. 1(b) has been solved in the paper of Duan et al. 

[10]. This volume average stress mσ  can be related to the remote stress by 

0:m =σ B σ                                                                                                                                      (4) 

where the fourth-order tensor B is given in the paper of Duan et al. [10]. 
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Fig. 1. A spherical inhomogeneity with an interface effect in an infinite medium (a), and the 
Eshelby equivalent inclusion method in a volume average sense ((b) and (c)). Region 1 denotes the 

inhomogeneity; region 2 represents the matrix. 

Generally, mσ  is different from 1σ . As in the classical Eshelby equivalent inclusion method, the 
spherical matrix region 1 is further given a uniform eigenstrain ε* (Fig. 1(c)) such that the following 
equivalency condition is satisfied in a volume average sense: 

1 *
1 2

' ': ( ) : ( )m m= + = + −σ C ε ε C ε ε ε                                                                                             (5) 

where the disturbed volume average strain 'ε  is related to the interior average Eshelby tensor 1S  
through 

1 *' :=ε S ε                                                                                                                                       (6) 

It should be pointed out that the eigenstrain problem in Fig. 1(c) is solved using the interface and 
boundary conditions in Eq. 2. Therefore, 1S  in Eq. 6 is given in Eq. 3 for an inclusion problem. 
Following the standard procedure of the Eshelby equivalent inclusion method, we get 

1 (4 ) 1 1 0 * 0
1 1 2 1 2[ : : ( )] : : : : :s −= − − ≡σ I C S D D C D B σ T σ                                                               (7) 

For an isotropic spherical inhomogeneity, the volume average stress concentration tensor *T  can 
be expressed as 

* * *α β= +T J K                                                                                                                              (8) 

The exact volume average stress concentration tensor, denoted by 1T , can be obtained by solving 
the inhomogeneity problem in Fig. 1(a) directly, which has been previously obtained by Duan et al. 
[10]. In the following section, the approximate volume average stress concentration tensor *T  will 
be compared with the exact one 1T . 

Similarly, there are two ways to determine the local stress field in the matrix with each of the 
interface effects. The first is to solve the boundary-value problem directly, and the local stress field 

in the matrix obtained by this way is the exact one, denoted by 
2 ( )σ x  (Fig. 1(a)), which can be 

related to the remote stress by 
2 2 0( ) ( ) :=σ x T x σ , where 

2 ( )T x  is given in the paper of Duan et al. 

[10]. The second is to obtain the local stress field 
2
* ( )σ x  in the matrix by the Eshelby equivalent 

inclusion method, and the result obtained by this way is an approximate one, denoted by 
2 2 0
* ( ) ( ) :=σ x T x σ . 2 ( )T x can be obtained using the superposition procedure shown in Figs. 1(b) and 

1(c), with the equivalent eigenstrain ε* solved from Eqs. 5 and 6. 
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Comparison of Exact and Approximate Stress Fields 
For both of the interface stress model (ISM) and the linear-spring model (LSM), it is found that the 
dilatational component *α of the approximate average stress concentration tensor *T  is identical to 
that of the exact average stress concentration tensor 1T . The expression of the deviatoric 
component *β  is different from that of the exact counterpart tensor. Thus, the accuracy of the 
deviatoric component *β  is examined by comparing it with its exact counterpart, denoted by 1β . 
Generally, *β  is a function of 1 2/µ µ , 1ν , 2ν , sλ , sµ  and R, where R is the radius of the spherical 
inhomogeneity. Here we take 1 2 0.3ν ν= = . As it has been proved that the interface stress model 
can accurately approximate a thin and stiff interphase [13,14]. When the interphase is thin and stiff, 

sλ  and sµ  can be calculated from the formulas 2 /(1 )s I I Itλ µ ν ν= − , s I tµ µ= , where Iµ  and Iν  are 
the shear modulus and the Poisson ratio of the interphase, respectively, and t is the interphase 
thickness. Fig. 2 shows the variations of the ratios 1 0/β β  and *

0/β β  with the stiffness ratio 

10 1 2log ( / )η µ µ=  of the inhomogeneity and matrix for two sets of interphase properties, namely, I: 
0.01t R= , 0.3Iν = , 120Iµ µ= ; II: 0.01t R= , 0.3Iν = , 15Iµ µ= . 0β  is the deviatoric component 

of the stress concentration tensor without the interface effect. It is seen that the values of *β  and 1β  
are practically identical for the two cases. The numerical results for other cases also exhibit this 
feature. Therefore, we can conclude that the approximate average stress concentration tensor *T  
obtained using the Eshelby equivalent inclusion method in the above volume average sense is very 
accurate. 

Now we compare the local elastic fields 
2
* ( )σ x  and 

2 ( )σ x  in the matrix for the spherical 
inhomogeneity with the interface stress model (ISM). It is found that under remote hydrostatic 

loading 
0 0 (2)σ=σ I  the approximate stress field 

2
* ( )σ x  and the exact solution 

2 ( )σ x  in the matrix 
are identical; they are different under remote deviatoric loading. Therefore, we compare the radial 

stresses 
2
rrσ  and 

2
*rrσ  in the matrix under remote shear loading 

0 0
xyσ σ= . In this case, it is expedient 

to express them in the following forms in the spherical coordinate system: 

2 2sin sin 2rr rrTσ θ ϕ= ,  2 * 2
* sin sin 2rr rrTσ θ ϕ=                                                                              (9) 

where rrT  and *
rrT  are the amplitudes of 2

rrσ  and 2
*rrσ , respectively. Fig. 3 shows the variations of 

rrT  and *
rrT  along the radial direction for two sets of interphase properties, namely, I: 0.01t R= , 

0.3Iν = , 1100Iµ µ= ; II: 0.01t R= , 0.3Iν = , 120Iµ µ= .  sλ  and sµ  are obtained in the same way 
as for Fig. 2. It can be seen from Fig. 3 that the exact and approximate solutions of rrT  and *

rrT  are 
very close to each other for each of the considered interphase properties. The numerical results for 
other stress components in the matrix also exhibit this feature. Therefore, we can conclude that the 
approximate stress field 2

* ( )σ x  is also very accurate. 
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Fig. 2. Comparison of *β  and 1β  for ISM          Fig. 3. Comparison of 2
* ( )σ x  and 2 ( )σ x  for ISM 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of *β  and 1β  for LSM        Fig. 5. Comparison of 2
* ( )σ x  and 2 ( )σ x  for LSM 

We have also compared the approximate and exact solutions for the linear-spring model (LSM), 
shown in Figs. 4 and 5. Fig. 4 corresponds to Fig. 2, and Fig. 5 corresponds to Fig. 3. They have the 
similar features to those of the results for the interface stress model. However, it should be noted 
that the linear-spring model can be equivalent to a thin and soft interphase [1,14]. Thus, the spring 
constants α and β in Eq. 2 for the linear-spring interface model can be calculated from the formulas 

/I tα µ= , 2 (1 ) /[ (1 2 )]I I Itβ µ ν ν= − − . Fig. 4 shows the variations of the ratios 1 0/β β  and 
*

0/β β  

with the stiffness ratio 10 1 2log ( / )η µ µ=  of the inhomogeneity and matrix for two soft interphases, 

namely, I: t=0.01R, 0.3Iν = , 10.05Iµ µ= ; II: t=0.01R, 0.3Iν = , 10.2Iµ µ= . Fig.5 shows the 

variations of rrT  and 
*

rrT  along the radial direction for two soft interphases, I: t=0.01R, 0.3Iν = , 
10.01Iµ µ= ; II: t=0.01R, 0.3Iν = , 10.05Iµ µ= . It can be seen from Fig.5 that the exact solutions 

and approximate solutions of rrT  and 
*

rrT  are very close. 
Thus, we can conclude that the equivalent inclusion method for the spherical inhomogeneity with 

the interface stress model (ISM) and the linear-spring model (LSM) is very accurate, and it can be 
used to predict the effective properties of composites within the Eshelby formalism.  
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