
Mechanics of Materials 39 (2007) 94–103

www.elsevier.com/locate/mechmat
A unified scheme for prediction of effective moduli
of multiphase composites with interface effects:

Part II—Application and scaling laws

H.L. Duan, X. Yi, Z.P. Huang, J. Wang *

LTCS and Department of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China

Received 6 February 2006; received in revised form 6 February 2006
Abstract

In this part, first, the detailed expressions for the effective moduli of multiphase composites containing spherical par-
ticles or fibres are presented following the theoretical framework developed in Part I. Second, the effect of the interfacial
bonding conditions on the effective moduli of these composites are examined. It is shown that the imperfect bonding con-
dition can considerably affect the effective moduli of the composites. Third, as the effective moduli of the composites with
the considered linear-spring and interface stress effects become dependent upon the size of the particles or fibres, two sim-
ple scaling laws are derived to depict the size-dependence. It is shown that whilst the interface effects simulated by the two
interface models are opposite from a physical point of view, the scaling laws for them are formally reciprocal from a math-
ematical one.
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1. Introduction

The macroscopic properties of multiphase com-
posites depend upon the properties and the interfa-
cial bonding conditions of the constituent phases,
and the microstructures of the composites. Thus
the effect of the interfacial bonding conditions on
the mechanical and physical properties of various
composites has attracted a lot of attention of
researchers in many fields, especially, in physics,
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materials science and technology, and mechanics.
The prediction of the effective moduli taking into
account various interface effects is one of the funda-
mental problems in mechanics of composites. Sim-
ple and accurate micromechanical schemes for
predicting the effective moduli have been constantly
pursued. In the first part of this two-part paper, we
have presented a replacement procedure that trans-
forms spherical particles and cylindrical fibres with
the three kinds of interface effect into equivalent
homogeneous particles and fibres. The moduli of
these equivalent particles and fibres have also been
given. These equivalent reinforcements are then
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embedded in, and regarded as being perfectly
bonded to, the matrix materials of the respective
composites. Thus, various micromechanical schemes
for multiphase composites can be readily used to
predict the effective moduli of the concerned com-
posites using the elastic constants of the matrix
materials and the equivalent reinforcements. For
the reasons shown in Part I, in this paper, we choose
to use the generalized self-consistent method (GSCM)
to predict the effective moduli of the composites.
However, unlike the classical GSCM (Christensen
and Lo, 1979), we have proposed to calculate the
stress (strain) concentration tensors using the
Eshelby equivalent inclusion method in an average
sense. As will be shown in detail, this modified gen-
eralized self-consistent method (Duan et al., 2006)
gives much simpler expressions of the effective shear
moduli than the classical GSCM. In this part, the
framework developed in Part I will be applied to
particle- or fibre-reinforced composites with the
interface effects. Examples will be given to demon-
strate the details of the application of the scheme
and the influence of the interface effects on the
effective moduli of the composites.

This part is organized as follows. In Section 2, we
shall give the detailed expressions of the effective
moduli of particle- or fibre-reinforced two-phase
composites derived using the modified generalized
self-consistent method. This scheme will be com-
pared with the classical GSCM to verify its accuracy.
In Section 3, the GSCM predictions will be incorpo-
rated into the decoupled formulas to calculate the
effective moduli of composites containing multiple
kinds of particle or fibre. In Section 4, the effective
moduli of multiphase composites with the interface
effects will be examined in detail using the developed
scheme in this paper. In Section 5, two kinds of sim-
ple scaling law depicting the size-dependence of the
effective moduli corresponding to the linear-spring
model and interface stress model are given. Finally,
some conclusions are drawn in Section 6.

2. Effective moduli of two-phase composites

As indicated in Part I, the spherical particles and
cylindrical fibres with the three kinds of interface
effect can be replaced by the corresponding equiva-
lent particles and fibres, which are in turn perfectly
bonded to the matrix materials. The interface effects
are taken into account in the moduli of the equiva-
lent particles and fibres. Thus, in this section and the
next, we shall simply discuss the prediction of the
effective moduli of particle- or fibre-reinforced com-
posites with perfect interfacial bonding conditions.

2.1. Particle-reinforced composites

Here, we consider a two-phase composite which
is composed of a continuous matrix and randomly
distributed spherical particles of the same stiffness.
For this composite, we reproduce the expressions
for the effective moduli obtained by Duan et al.
(2006). When substituting T� in Eq. (I48) into Eq.
(I43) (In this part, formulas from Part I are distin-
guished by the prefix I.), it is found that the
obtained effective bulk modulus �j is identical to that
given by the classical GSCM (Christensen and Lo,
1979), and the MTM (Mori and Tanaka, 1973; Ben-
veniste, 1987), i.e.

�j ¼ 4ð1� fIÞj1l1 þ jIð3j1 þ 4f Il1Þ
3ð1� fIÞjI þ 3f j1 þ 4l1

ð1Þ

where j1 and l1 are the bulk and shear moduli of
the matrix, jI and lI are those of the particles,
and fI is the volume fraction of the particles. The
effective shear modulus, denoted by �l, needs to be
solved from the following quadratic equation in
�l=l1 (Duan et al., 2006):

A0
�l
l1

� �2

þ B0
�l
l1

� �
þ C0 ¼ 0 ð2Þ

where

A0 ¼ �½126f 7=3
I � 252f 5=3

I þ 50ð7� 12m1 þ 8m2
1ÞfI �

� ð1� g3Þ þ 4ð7� 10m1ÞN
B0 ¼ ½252f 7=3

I � 504f 5=3
I þ 150ð3� m1Þm1fI �

� ð1� g3Þ � 3ð7� 15m1ÞN
C0 ¼ �½126f 7=3

I � 252f 5=3
I þ 25ð7� m2

1ÞfI �
� ð1� g3Þ � ð7þ 5m1ÞN ð3Þ

in which N = �7 + 5m1 � 2g3(4 � 5m1), g3 = lI/l1

and m1 is the Poisson ratio of the matrix. It is seen
that the coefficients A 0, B 0 and C 0 are much simpler
than their counterparts in the classical GSCM. It
has been demonstrated that the effective shear mod-
ulus given in Eq. (2) is numerically indistinguishable
from the classical GSCM for various composites
(Duan et al., 2006).

2.2. Fibre-reinforced composites

Here, we consider a composite consisting of a
continuous matrix and aligned but randomly



96 H.L. Duan et al. / Mechanics of Materials 39 (2007) 94–103
distributed cylindrical fibres of the same stiffness.
Such a composite is a macroscopically transversely
isotropic material which has five independent elastic
constants. Among the five elastic constants, those
related to the longitudinal (fibre) direction and the
plane-strain bulk modulus in the plane perpendicu-
lar to the fibres can be easily and accurately pre-
dicted by the composite cylinder model of Hill
(1964), and Hashin (1966). The prediction of the
transverse shear modulus poses a problem for the
composite cylinder model, although the model can
give bounds on the shear modulus. Christensen
and Lo (1979) developed the generalized self-consis-
tent method to calculate the transverse shear modu-
lus. The configuration of the model is shown in
Fig. 2(a) in Part I, which should be understood in
a two-dimensional sense. Therefore, when the theo-
retical framework developed in Part I is applied in a
two-dimensional sense, we can calculate the effective
transverse plane-strain bulk modulus and the trans-
verse shear modulus of the aligned fibre-reinforced
composite. Similar to the case for the spherical
particle, when substituting T� in Eq. (I48) into Eq.
(I43), it is found that the obtained effective plane-
strain bulk modulus �k is identical to that given by
the classical GSCM (Christensen and Lo, 1979), i.e.

�k ¼ ð1� fIÞk1l1 þ kIðk1 þ fIl1Þ
ð1� fIÞkI þ fIk1 þ l1

ð4Þ

where k1 and l1 are the plane-strain bulk and shear
moduli of the matrix, respectively, kI is the plane-
strain bulk modulus of the fibres, and fI denotes
the volume fraction of the fibres. The effective trans-
verse shear modulus of the composite, denoted by
�lT, needs to be solved from the following quadratic
equation in �lT=l1:

a0
�lT

l1

� �2

þ b0
�lT

l1

� �
þ c0 ¼ 0 ð5Þ

where

a0 ¼ ½�3f 3
I þ 6f 2

I � 4ð4m2
1 � 6m1 þ 3ÞfI �

� ð1� g2Þ � ð3� 4m1ÞN 1

b0 ¼ ½6f 3
I � 12f 2

I þ 8m1fI �ð1� g2Þ þ 2ð1� 2m1ÞN 1

c0 ¼ ½�3f 3
I þ 6f 2

I � 4f I �ð1� g2Þ þ N 1

ð6Þ
with N1 = 1 + g2(3 � 4m1), g2 = lTI/l1, lTI is the
transverse shear modulus of the fibres, and m1 is
the Poisson ratio of the matrix. Again, it is seen that
the coefficients a 0, b 0 and c 0 are much simpler than
their counterparts in the classical GSCM. Similarly,
it can be demonstrated that the effective transverse
shear modulus given in Eq. (5) is numerically indis-
tinguishable from the classical GSCM for various
composites; the detailed numerical results are omit-
ted for brevity.

3. Effective moduli of multiphase composites

3.1. Particle-reinforced composites

As pointed out in Section 4.3 in Part I, the effec-
tive moduli of multiphase composites can be calcu-
lated using Eq. (I43) or (I44) together with the stress
or strain concentration tensors calculated in Eq.
(I48) or (I51) for each kind of particle. However,
for multiphase composites, either Eq. (I43) or
(I44) results in two coupled nonlinear equations
with the effective moduli being the unknowns. Thus
it is not very convenient to calculate the effective
moduli. To circumvent this difficulty while still tak-
ing advantage of the accuracy of the generalized
self-consistent method, Huang et al. (1994) pro-
posed a decoupled method to calculate the effective
moduli of multiphase composites using the results
of the GSCM. This method is implemented as fol-
lows. For a general multiphase composite with
N � 1 kinds of particle, denoted by I = 2, . . . ,N,
the normalized effective moduli of the composite
can be calculated with high accuracy by the follow-
ing decoupled formulas:

�j
j1

ffi
YN
I¼2

�j0

j1

fI ;
lI

l1

; mI ; m1

� �
ð7Þ

�l
l1

ffi
YN
I¼2

�l0

l1

fI ;
lI

l1

; mI ; m1

� �
ð8Þ

where �j0ðfI ; lI=l1; mI ; m1Þ and �l0ðfI ; lI=l1; mI ; m1Þ are
the effective bulk and shear moduli of the two-phase
composite that comprises the matrix material of the
considered multiphase composite and the I-th kind
of particle.

Huang et al. (1994) calculated the effective bulk
and shear moduli of multiphase particle-reinforced
composites using Eqs. (7) and (8), along with the
bulk and shear moduli of two-phase composites of
Christensen and Lo (1979). In this paper, we calcu-
late the effective moduli of multiphase particle-rein-
forced composites using Eqs. (7) and (8), along with
Eqs. (1) and (2). Our numerical results also show
that the decoupled formulas in Eqs. (7) and (8) are
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very accurate compared with the detailed numerical
results computed from the coupled nonlinear alge-
braic equations (I43) or (I44). It has been shown
that for two-phase composites, Eqs. (I43) and
(I44), together with the respective stress and strain
concentration tensors in (I48) and (I51), give the
identical effective moduli, which means that the
present method is indeed self-consistent. In the fol-
lowing, the numerical results of the effective moduli
obtained from the solution of the nonlinear equa-
tions in Eqs. (I43) or (I44) will be compared with
Eqs. (7) and (8) to show the accuracy of the latter.

Fig. 1(a) shows the variation of the effective
Young modulus of a composite comprising a matrix
of epoxy, quartz-sand particles (second phase) and
voids (third phase) studied by Cohen and Ishai
(1967). The material parameters are: E1 =
2.03 GPa, m1 = 0.4, E2 = 73.6 GPa, m2 = 0.25 and
E3 = 0. The volume fractions f2 and f3 hold such
that f2 = 0.173(1 � f3) according to Cohen and Ishai
(1967). It is seen from Fig. 1(a) that the predictions
given by the present method (coupled and decou-
pled) agree well with those of Huang et al. (1994)
calculated using the decoupled formulas Eqs. (7)
and (8) together with the GSCM predictions of
Christensen and Lo (1979) for two-phase compos-
ites. All the theoretical predictions agree well with
the experimental data of Cohen and Ishai (1967).
The Mori-Tanaka prediction (Weng, 1984) deviates
from the experimental data slightly for high void
volume fractions.

In order to further examine the accuracy of the
present scheme, we next consider a composite con-
taining two kinds of inhomogeneity with extreme
(a) (

Fig. 1. Comparison of the present scheme (coupled and decoupled)
experimental results (Cohen and Ishai, 1967) for a composite comprisin
present scheme (coupled and decoupled) with the predictions of Molinar
and voids (b).
stiffnesses: the first kind is rigid particles (E2 =1)
and the second is void (E3 = 0). The Poisson ratio
of the matrix is taken as 0.3. The voids weaken
the composite, while the rigid particles stiffen it.
Fig. 1(b) shows the competition between the voids
and the rigid inhomogeneities. Previously, Molinari
and El Mouden (1996) presented a cluster model
which needs some numerical computation but is
generally better than the MTM in taking into
account the inhomogeneity interactions to predict
the effective moduli of composites. Fig. 1(b) also
compares the results obtained by the present scheme
(coupled and decoupled) with the numerical results
of Molinari and El Mouden (1996) for this three-
phase composite, and the comparison shows that
these two methods are very close. It is interesting
to note that, for a material containing equal
amounts of voids and rigid inhomogeneities, the
Young’s modulus almost retains the value of the
matrix material, as found by Huang et al. (1994).

3.2. Fibre-reinforced composites

Likewise, for aligned fibre-reinforced composites,
Huang et al. (1994) also proposed the following
decoupled formulas to calculate the effective trans-
verse plane-strain bulk modulus and the effective
transverse shear modulus:

�k
k1

ffi
YN
I¼2

�k0

k1

fI ;
lTI

l1

; mI ; m1

� �
ð9Þ

�lT

l1

ffi
YN
I¼2

�lT0

l1

fI ;
lTI

l1

; mI ; m1

� �
ð10Þ
μ/
μ 1

b)

with Huang et al. (1994, decoupled), MTM (Weng, 1984) and
g epoxy, quartz sand particles and voids (a). Comparison of the
i and El Mouden (1996) for a composite containing rigid particles



Fig. 2. Comparison of the present scheme (coupled and decou-
pled) with MTM (Weng, 1984) for a fibre-reinforced composite.
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where �k0 and �lT 0 are the plane-strain bulk modulus
and shear modulus of a two-phase composite con-
taining only the I-th kind of fibre with the volume
fraction fI. Thus, �k0 and �lT0 are calculated from
Eqs. (4) and (5). Our numerical results also show
that the decoupled formulas in Eqs. (9) and (10)
are very accurate compared with the numerical re-
sults computed from the nonlinear coupled alge-
braic equations. Fig. 2 shows the effective
transverse plane-strain Young’s modulus ET of a
three-phase composite obtained by the present
scheme (coupled and decoupled), and the MTM
(Weng, 1984), where ET ¼ 4�k�lT=ð�k þ �lTÞ. The con-
sidered material is a boron fibre-reinforced compos-
ite with cylindrical voids. The material parameters
are: E2/E1 = 120.12, m1 = 0.35, m2 = 0.2, E3/E1 = 0.
The volume fraction of the voids is fixed at
f3 = 0.1. Fig. 2 shows that the results given by the
decoupled formulas are practical the same as those
by the numerical solutions of the coupled equations.
It is seen that the MTM significantly underestimates
the effective modulus compared with the GSCM.
This feature is similar to what was found by Segu-
rado and LLorca (2002) for composites reinforced
by spherical particles.

4. Effective moduli of multiphase composites with

interface effects

The effective moduli of multiphase particle-rein-
forced composites with the interface effects can be
obtained easily by combining the expressions in
Eqs. (1) and (2) for the effective moduli of two-
phase composites, the elastic moduli of the equiva-
lent particles in Eqs. (I16)–(I22) with the decoupled
formulas in Eqs. (7) and (8); and those of the multi-
phase fibre-reinforced composites can be obtained
by combining the formulas in Eqs. (4) and (5), the
elastic moduli of the equivalent fibres in Eqs.
(I26)–(I27), (I31)–(I32) and (I36)–(I37) with the
decoupled formulas in Eqs. (9) and (10). Other elas-
tic constants of the unidirectional fibre-reinforced
composites can be calculated using the composite
cylinder model. In the following, we will focus on
the effective moduli of multiphase composites con-
taining spherical inhomogeneities with various
interface effects.

First, we predict the effective moduli of a four-
phase particle-reinforced composite, with a matrix
of epoxy, perfectly-bonded quartz-sand particles
(second phase, volume fraction f2), quartz-sand with
free sliding interface (third phase, volume fraction
f3) and voids (fourth phase, volume fraction f4).
The material parameters of the epoxy matrix and
quartz-sand are the same as those in Fig. 1(a); the
quartz-sand particles with the free sliding interface
can be equivalent to perfectly-bonded particles with
the moduli given by Eqs. (I16)–(I17), but setting
mr!1 and mh = 0. In order to manifest the influ-
ence of the voids and the free-sliding bonding condi-
tion, we compare the effective moduli of the
composites with and without these two factors. In
the former case, f3 = f4 = 0, and in the latter
f3 = f4 = 0.1. The numerical results for the two cases
predicted using the present scheme and the MTM
are shown in Fig. 3(a) and (b). These results are
obtained under the condition f1 + f2 + f3 + f4 = 1.
It is seen that the existence of the free sliding parti-
cles and voids can considerably decrease the effec-
tive moduli of the composite. The effective bulk
modulus of the four-phase composite predicted by
the present scheme is higher than that predicted
by the MTM, whereas the effective shear modulus
of the four-phase composite predicted by present
scheme is lower than that by the MTM.

Next, we predict the effective moduli of a three-
phase composite with an interphase. The matrix is
cement paste with j1 = 22.51 GPa, l1 = 11.8 GPa;
the second phase is sand with j2 = 44 GPa,
l2 = 37 GPa; and the third phase is voids with
j3 = 0, l3 = 0. There is an interphase around the sec-
ond phase (sand) with the elastic constants lc/
l2 = 0.50, mc = 0.40 and interphase thickness
t = 0.0588RI. These material parameters are taken
from the work of Hashin and Monteiro (2002).
The sand particles with the interphase can be equiv-
alent to perfectly-bonded particles with the moduli
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Fig. 3. Effective bulk modulus (a) and shear modulus (b) of a composite with perfectly-bonded particles, free-sliding particles and voids.
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given by Eqs. (I21)–(I22). In order to manifest the
influence of the voids, we compare the effective mod-
uli when f3 = 0 with those when f3 = 0.1. The numer-
ical results for the two cases predicted using the
present scheme and the MTM are given in
Fig. 4(a) and (b). It is seen that the bulk and shear
moduli predicted by the present scheme are slightly
higher than those predicted by the MTM for the
three-phase composite (f3 = 0.1). However, for the
two-phase composite (f3 = 0), the bulk modulus pre-
dicted by the present scheme is equal to that by the
MTM, and the shear modulus predicted by the pres-
ent scheme is almost the same as that by the MTM.

5. Scaling laws for size-dependence

It can be seen from Section 3.2 and 3.3 of Part I
that when the linear-spring model and the interface
stress model are considered, some intrinsic length
scales emerge. These length scales are
(a) (b

Fig. 4. Effective bulk modulus (a) and shear modulus (b) of a composi
voids.
lr ¼
l1

an
; lh ¼

l1

as

; for the linear-spring model

ð11Þ

lk ¼
ks

l1

; ll ¼
ls

l1

; for the interface stress model

ð12Þ
Therefore, by dimensional analysis, the non-dimen-
sional effective moduli of the composites with these
interface effects will generally depend upon the size
of the particles or fibres. This size-dependence is
important for the characterization of composites
and polycrystalline materials. The detailed size-
dependence of the effective moduli can be studied
following the above micromechanical scheme. How-
ever, as will be shown below, when the length scales
are small compared with the characteristic size of
the composites, the size-dependence can be depicted
concisely and accurately by two simple scaling laws.
For the purpose of illustration, we only consider
)

te containing spherical particles with an interphase and spherical
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two-phase composites. The size-dependence of the
effective moduli of multiphase composites with the
interface effects also obeys the similar scaling laws.

5.1. Scaling law for linear-spring interface model

For the linear-spring interface model, as is shown
above, there are two intrinsic length scales lr and lh.
Thus, the non-dimensional effective moduli of the
composite can be expressed as the functions of the
non-dimensional parameters lr/L and lh/L, where
L denotes the radius of the spherical particles or
the radius of the cylindrical fibres. We can then
expand the functions into Taylor series of the vari-
ables lr/L and lh/L. When these variables are small
such that the terms of the order two and higher
can be neglected and only the linear terms are
retained, these functions can then be expressed in
a simple form as follows:

Hð1Þ
HðLÞ ¼ 1þ 1

L
ð!rlr þ !hlhÞ ð13Þ

where !r and !h are two non-dimensional parame-
ters. H(L) denotes the property corresponding to a
characteristic size L, say, the radius of the particles,
and H(1) denotes the same property when L!1
or, equivalently, when the interface effect is vanish-
ingly small. Previously, Nan et al. (1998) used the
tangential linear-spring model to simulate the elastic
behaviour of nanocrystals, and obtained a simple
scaling law similar to that in Eq. (13). In their scal-
ing law, there is only one intrinsic length scale.

After some algebraic manipulations, it can be
shown that for composites reinforced by spherical
particles with the linear-spring interface effect, the
scaling laws for the effective elastic constants of
the composites are

�jð1Þ
�jðRIÞ

¼ 1þ 3f Ij
2
I ð3j1 þ 4l1Þ

2

G1l1

lr

RI
ð14Þ

�lð1Þ
�lðRIÞ

¼ 1þ 90f Ig
2
3ð1� m1Þ2

G2

ð2lr þ 3lhÞ
RI

ð15Þ

in which

G1 ¼ ½4ð1� fIÞj1l1 þ jIð3j1 þ 4f Il1Þ�
� ½3ð1� fIÞjI þ 3f Ij1 þ 4l1� ð16Þ

G2 ¼ 4ð1þ fIÞð28� 45m1Þg3

þ 12

5
ð2þ fI � 3f 2

I Þð5� 9m1Þg2
3

þ ð5� 2f I � 3f 2
I Þð7� 5m1Þ ð17Þ
For unidirectional fibre-reinforced composites with
the linear-spring interface effect, the scaling law
for the effective elastic constants are

�kð1Þ
�kðqIÞ

¼ 1þ 2f I k
2
I ðk1þl1Þ

2

l1½ð1� fIÞkI þ fI k1þl1�½ð1� fIÞk1l1þkIðk1þ fIl1Þ�

� lr

qI
ð18Þ

�lTð1Þ
�lTðqIÞ

¼ 1þ16f I g
2
2ð1�m1Þ2

G3

ðlrþ lhÞ
qI

ð19Þ

�lLð1Þ
�lLðqIÞ

¼ 1þ 4f Il
2
I

ð1� f 2
I Þðl2

I þl2
1Þþ2ð1þ f 2

I ÞlIl1

lh

qI
ð20Þ

in which

G3 ¼ 3ð1þ f 2
I Þg2 þ 3ð1� fIÞg2

2ð3þ fI � 5m1Þ
� ð1� m1Þ þ ð1� fIÞð1þ 2f I � 3f Im1Þ ð21Þ

In Eqs. (18) and (19), �k denotes the effective trans-
verse plane-strain bulk modulus, �lT denotes the
transverse shear modulus, and �lL the longitudinal
shear modulus.

The other two elastic constants related to the
fibre direction, namely, the longitudinal Poisson
ratio �mL and the longitudinal Young modulus EL,
are nearly unaffected by the interface effect

�mLð1Þ
�mLðqIÞ

� 1 ð22Þ

ELð1Þ
ELðqIÞ

� 1 ð23Þ

By comparing the predictions of these scaling laws
with those calculated using the formulas in the
micromechanical scheme, it can be verified that
when lr 6 0.05RI(qI) and lh 6 0.05RI(qI), the scaling
laws are very accurate.

It is interesting to note that as G1 and G2 are
always positive for fI 6 1.0 and m1 6 0.5, the coeffi-
cients of lr/RI and lh/RI in the second terms on the
right hand sides of Eqs. (14) and (15) will be posi-
tive. Therefore, the effective moduli will decrease
with the decrease of the size of the particles for
the same volume fraction fI. For nanocrystalline
materials in which the grain boundary has a lower
elastic modulus than those of the grains (e.g. Kluge
et al., 1990; Zhang and Hack, 1992), Schiøtz et al.
(1998) indicated that most of the deformation
occurs in the grain boundary region, and in the lin-
ear elastic region the Young modulus of the nano-
crystalline material decreases with the decrease of
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the size of the grains. Therefore, the size-dependence
of the elastic behaviour of the nanocrytsalline mate-
rial is qualitatively in accordance with what is pre-
dicted by the scaling laws in Eqs. (14) and (15).

5.2. Scaling law for interface stress model

As mentioned in Part I, the effect of the surface/
interface stress on the mechanical behaviour of mate-
rials has intensified recently for its importance in the
properties of nano-structured materials (e.g. Cuenot
et al., 2004; Duan et al., 2005a,b,c; Shenoy, 2005;
Dingreville et al., 2005). The property of an isotropic
interface is characterized by two interface elastic con-
stants ks and ls, giving rise to two intrinsic length
scales lk and ll in Eq. (12). Duan et al. (2005a) pre-
dicted the effective elastic moduli of heterogeneous
solids containing spherical inhomogeneities with the
interface stress effect using the composite sphere
model, the Mori-Tanaka method, and the coven-
tional generalized self-consistent method. In addi-
tion, Duan et al. (2005b) presented the Eshelby and
stress concentration tensors for a spherical inhomo-
geneity embedded in an infinite medium with the
interface stress effect. The salient features of these
tensors are their position- and size-dependence.
Therefore, Duan et al. (2005a,b), Wang et al. (2006)
pointed out that the size-dependence of the effec-
tive moduli, and the Eshelby and stress concentra-
tion tensors can be depicted by the following scaling
laws:

HðLÞ
Hð1Þ ¼ 1þ 1

L
ð!klk þ !lllÞ ð24Þ

Here, !k and !l are two non-dimensional parame-
ters, H(L) is the property corresponding to a charac-
teristic size L, and H(1) denotes the property when
L!1 or, equivalently, when the interface effect is
vanishingly small. In fact, Wang et al. (2006) have
found that many properties of nano-structured
materials obey the scaling law in Eq. (24).

For composites reinforced by spherical particles
with the interface stress effect, the scaling laws for
the effective moduli are

�jðRIÞ
�jð1Þ ¼ 1þ 4l1ð3j1þ 4f Il1Þ

4ð1� fIÞj1l1 þ jIð3j1 þ 4f Il1Þ
ðlkþ llÞ

3RI

ð25Þ
�lðRIÞ
�lð1Þ ¼ 1þ 45f Ið1� m1Þ2

M ½M � 15f Ið1� g3Þð1� m1Þ�
ðlkþ 7llÞ

RI

ð26Þ
in which

M ¼ 7þ 8f I � 5ð1þ 2f IÞm1 þ 2ð1� fIÞð4� 5m1Þg3

ð27Þ
For the fibre-reinforced composites, the scaling law
for the effective moduli are

�kðqIÞ
�kð1Þ

¼ 1þ l1ðk1 þ fIl1Þ
ð1� fIÞk1l1 þ kIðk1 þ fIl1Þ

ðlk þ 2llÞ
2qI

ð28Þ
�lTðqIÞ
�lTð1Þ

¼ 1þ 4f Ið1� m1Þ2

N
ðlk þ 2llÞ

qI
ð29Þ

�lLðqIÞ
�lLð1Þ

¼ 1þ ð1þ fIÞl1

ð1þ fIÞlLI þ ð1� fIÞl1

ll

qI
ð30Þ

in which

N ¼ ½1þ 3f I � 4f Im1 þ ð1� fIÞð3� 4m1Þg2�
� ½1� fI þ ð3þ fI � 4m1Þg2� ð31Þ

Similar to the linear-spring interface model, the longi-
tudinal Poisson ratio �mL and the longitudinal Young
modulus EL are nearly unaffected by the interface
effect

�mLðqIÞ
�mLð1Þ

� 1 ð32Þ

ELðqIÞ
ELð1Þ

� 1 ð33Þ

It can be verified that the scaling laws are very accu-
rate when lk 6 0.1RI (qI) and ll 6 0.1RI (qI).

It is noted that previously, Miller and Shenoy
(2000), and Shenoy (2002), in studying the elastic
constants of monolithic nanobeams and nanoplates
taking into account the surface stress effect, have
presented a scaling law H(L)/H(1) = 1 + alin/L,
where lin is the ratio of the surface elastic modulus
to the Young modulus of the bulk material, and a
is a non-dimensional parameter.

5.3. Additional remarks

We recall that the linear-spring interface model
can be used to approximate a thin and soft inter-
phase (Hashin, 2002; Wang et al., 2005), and an
imperfect interface (Tan et al., 2005), whereas the
interface stress model can be used to approximate
a thin and stiff interphase (Wang et al., 2005), and
the excess bulk stress at an interface (Müller and
Saúl, 2004). For the linear-spring model, the trac-
tion across the interface is continuous but the dis-
placement is discontinuous, whereas for the
interface stress model, the traction is discontinuous
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across the interface but the displacement is continu-
ous. Therefore, these two interface models possess a
sort of symmetry from a physical point of view.
Interestingly, as the left hand sides of the scaling
laws in Eqs. (13) and (24) are formally inverse of
each other, the two scaling laws depicting these
two interface effects also possess a sort of symmetry
from a mathematical point of view.
6. Conclusions

In terms of the replacement procedure developed
Part I, spherical particles and fibres with the inter-
face effects can be replaced by equivalent homoge-
neous particles and fibres, respectively. These
equivalent particles and fibres are then embedded
in the respective matrix materials of the composites,
where the conventional continuous conditions pre-
vail at the interfaces. Thus, the problems with the
interface effects are converted into those without
any interface effects. Therefore, in this part of the
two-part paper, the expressions for the effective
moduli of composites containing perfectly bonded
particles and fibres are given using the generalized
self-consistent prediction based upon the Eshelby
equivalent inclusion method in an average sense
for the three-phase configuration. It is shown that
these expressions are very accurate but much sim-
pler than those predicted using the classical general-
ized self-consistent method. The influence of the
interfacial bonding conditions on the effective mod-
uli of composites are examined, and it is shown that
the interfacial bonding condition can considerably
affect the stiffening effect of the particles. When
the linear-spring and interface stress effects are
taken into account, some intrinsic length scales
emerge and thus the effective moduli of the compos-
ites become dependent upon the size of the particles
and fibres. The general size-dependence can be eas-
ily studied following the procedure of the developed
micromechanical scheme. However, it is shown that
when the ratios of the intrinsic length scales to the
size of the particles/fibres are small, the size-depen-
dence can be depicted accurately by two simple scal-
ing laws.
Acknowledgements

This work is supported by the National Natural
Science Foundation of China under Grant No.
10525209 and 10372004.
References

Benveniste, Y., 1987. A new approach to the application of Mori-
Tanaka’s theory in composite materials. Mech. Mater. 6, 147–
157.

Christensen, R.M., Lo, K.H., 1979. Solutions for effective shear
properties in three phase sphere and cylinder models. J. Mech.
Phys. Solids 27, 315–330.

Cohen, L.J., Ishai, O., 1967. The elastic properties of three-phase
composites. J. Compos. Mater. 1, 390–396.

Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.,
2004. Surface tension effect on the mechanical properties of
nanomaterials measured by atomic force microscopy. Phys.
Rev. B 69, 165410-1–165410-5.

Dingreville, R., Qu, J., Cherkaoui, M., 2005. Surface free energy
and its effect on the elastic behaviour of nano-sized particles,
wires and films. J. Mech. Phys. Solids 53, 1827–1854.

Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L., 2005a. Size-
dependent effective elastic constants of solids containing
nano-inhomogeneities with interface stress. J. Mech. Phys.
Solids 53, 1574–1596.

Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L., 2005b.
Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. A
461, 3335–3353.

Duan, H.L., Wang, J., Huang, Z.P., Luo, Z.Y., 2005c. Stress
concentration tensors of inhomogeneities with interface
effects. Mech. Mater. 37, 723–736.

Duan, H.L., Jiao, Y., Yi, X., Huang, Z.P., Wang, J. Solutions of
inhomogeneity problems with graded shells and application to
core-shell nanoparticles and composites. J. Mech. Phys.
Solids, in press.

Hashin, Z., 1966. Viscoelastic fiber reinforced materials. AIAA J.
4, 1411–1417.

Hashin, Z., 2002. The interphase/imperfect interface in elasticity
with application to coated fiber composites. J. Mech. Phys.
Solids 50, 2509–2537.

Hashin, Z., Monteiro, P.J.M., 2002. An inverse method to
determine the elastic properties of the interphase between the
aggregate and the cement paste. Cement Concrete Res. 32,
1291–1300.

Hill, R., 1964. Theory of mechanical properties of fibre-
strengthened materials: elastic behaviour. J. Mech. Phys.
Solids 12, 199–212.

Huang, Y., Hu, K.X., Wei, X., Chandra, A., 1994. A
generalized self-consistent mechanics method for composite
materials with multiphase inclusions. J. Mech. Phys. Solids
42, 491–504.

Kluge, M.D., Wolf, D., Lutsko, J.F., Phillpot, S.R., 1990.
Formalism for the calculation of local elastic constants at
grain boundaries by means of atomistic simulation. J. Appl.
Phys. 67, 2370–2379.

Miller, R.E., Shenoy, V.B., 2000. Size-dependent elastic proper-
ties of nanosized structural elements. Nanotechnology 11,
139–147.

Molinari, A., El Mouden, M., 1996. The problem of elastic
inclusions at finite concentration. Int. J. Solids Struct. 33,
3131–3150.

Mori, T., Tanaka, K., 1973. Average stress in matrix and average
elastic energy of materials with misfitting inclusions. Acta
Metall. 21, 571–574.
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