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Surface stress is widely used to characterize the adsorption effect on the mechanical

response of nanomaterials and nanodevices. However, quantitative relations between

continuum-level descriptions of surface stress and molecular-level descriptions of

adsorbate interactions are not well established. In this paper, we first obtain the

relations between the adsorption-induced surface stress and the van der Waals and

Coulomb interactions in terms of the physical and chemical interactions between

adsorbates and solid surfaces. Then, we present a theoretical framework to predict the

deflection and resonance frequencies of microcantilevers with the simultaneous effects

of the eigenstrain, surface stress and adsorption mass. Finally, the adsorption-induced

deflection and resonance frequency shift of microcantilevers are numerically analyzed

for the van der Waals and Coulomb interactions. The present theoretical framework

quantifies the mechanisms of the adsorption-induced surface stress, and thus provides

guidelines to the analysis of the sensitivities, and the identification of the detected

substance in the design and application of micro- and nanocantilever sensors.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Surface stress has a great effect on the mechanical and physical properties of materials and devices, especially,
nanomaterials and nanodevices (e.g., Kramer et al., 2004; Duan et al., 2005; Park and Klein, 2008). Since the bonding
configurations of the atoms at surfaces become different when adsorbates are situated on the surfaces, surface stress can be
altered by the presence of adsorbates. This mechanism constitutes the basis for chemical, physical and biological detections
using cantilever sensors of micro- and nanosize. The most common methods to measure adsorption-induced change of
surface stress are based on the static bending and the resonance frequency shift of vibration of microcantilever sensors.
Generally, the bending of cantilevers is driven by an eigenstrain and the change of the surface stress (Stoney, 1909;
Timoshenko, 1925; Freund, 1996; Li et al., 1999; Zang et al., 2007; Zang and Liu, 2008), while the vibration frequency shift is
affected by the mass loading and surface elasticity (Gurtin et al., 1976; Ilic et al., 2000; Saya et al., 2004; Chun et al., 2007;
Lachut and Sader, 2007; Park and Klein, 2008). Change of surface stress can arise from many interacting mechanisms of the
adsorbates, including the electrostatic interaction, van der Waals (vdW) forces, dipole–dipole interaction and hydrogen
bonding, changes in the charge distribution of surface atoms, and so on (Israelachvili, 1985; Grossmann et al., 1996; Berger
et al., 1997; Chakarova-Käck et al., 2006; Sony et al., 2007). Experiments have revealed that the adsorption-induced surface
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stress results in the bending and resonance frequency shift of microcantilevers (Chen et al., 1995; Berger et al., 1997; Wu
et al., 2001; McFarland et al., 2005; Hwang et al., 2006).

Extensive studies on surface stress induced by adsorbate interactions have been conducted by continuum approach,
atomistic simulation and experiments (Kohn and Lau, 1976; Lau and Kohn, 1977; Berger et al., 1997; Pala and Liu, 2004). For
example, Lau and Kohn (1977) investigated the indirect adsorbate interactions by treating an adsorbed atom as a force
dipole on the surface of an unstrained half-space. Pala and Liu (2004) studied the effect of strain on the chemisorption
energy based on the interaction energy between adsorbates and a solid surface. However, in these models, they only
considered the indirect interactions between adsorbates mediated by the substrate and did not consider the direct
adsorbate–adsorbate interactions. It is noted that as the density of adsorbates increases, the adsorbate–adsorbate
interactions have to be considered. Generally, there are two kinds of adsorbate interactions: the physical interactions
and chemical interactions. Among these, the van der Waals interaction is the major driving force for physisorption
(Chakarova-Käck et al., 2006; Sony et al., 2007). For example, it is shown that the van der Waals interaction makes
important contributions to the adsorption of thiophene on copper surfaces (Sony et al., 2007) and the adsorption of
benzene and naphtalene on graphite (Chakarova-Käck et al., 2006). At present, although extensive studies have been
carried out to gain insights into the adsorption problem, the quantitative relation between the adsorption-induced surface
stress and the van der Waals interaction is not studied. Among the chemical interactions of adsorbates, the electrostatic
interaction is important to the adsorption states of molecules with charging effects (Berger et al., 1997). For example, Berger
et al. (1997) studied the adsorption-induced surface stress during the self-assembly of alkanethiols on gold by measuring
the sensor deflection. McFarland et al. (2005) examined the influence of surface stresses induced by the adsorption of thiol
molecules on the resonance frequency of a cantilever sensor. Chen et al. (1995) concluded that the resonance frequency
shift of a cantilever can result from the change of both mass loading and spring constant induced by surface adsorption
of chemicals. However, to the authors’ knowledge, no relation is established between the adsorption-induced change of
surface stress and the adsorbate interactions.

Therefore, at present, one big challenge in the development of microcantilever sensors is quantifying the connections
between the properties of adsorbates and the adsorption-induced surface stress. As both the static deformation and the
dynamic frequency are quantities at the continuum level, whereas the interactions exist at the atomic/molecular level, an
effective way to addressing this challenge is to derive the continuum-level descriptions of the surface stress from the
molecular-level descriptions of the adsorbate interactions. Based on the connection between the continuum-level and
molecular-level descriptions, the static and dynamic response of cantilevers to adsorption can be analyzed. On the other
hand, it was reported that the constant surface stress induced by molecular interactions affects the resonance frequency of
microcantilevers (Lagowski et al., 1975; Chen et al., 1995; Hwang et al., 2006; Dorignac et al., 2006). However, Gurtin et al.
(1976) showed that only the surface modulus results in the variation of resonance frequency. Therefore, it is important to
develop a model to analyze the dynamic response of cantilevers to the surface modulus. A better understanding of the
resonance behavior of cantilevers is essential to improve the design of sensors.

Due to the importance of the van der Waals interaction and electrostatic interaction in the interacting mechanisms of
the adsorbates, in this paper, we first establish the connections between the surface stress at the continuum level and the
adsorbate interactions (adsorbate–adsorbate interactions and adsorbate–surface interactions) at the molecular level for the
van der Waals interaction and the Coulomb interaction. Then we analyze the static deformation and resonance frequency
shift of two-layer cantilevers with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass.
Finally, the adsorption-induced deflection and resonance frequency shift of microcantilevers are numerically analyzed
based on the presented theoretical framework. Numerical results indicate that the effect of the surface stress and
adsorption mass on the dynamic properties of cantilevers is crucial and depends on the type of the adsorbate and the
interacting properties.
2. Surface stress due to vdW interaction

There exist interatomic/intermolecular forces between the adsorbates on a surface. Because the vdW interaction
between the adsorbates is the major driving force for physisorption (Chakarova-Käck et al., 2006; Sony et al., 2007) and the
electrostatic interaction is important to the adsorption states of molecules with charging effects (Berger et al., 1997), we
investigate these two interactions in terms of the short-range Lennard-Jones (L-J) potential and the long-range Coulomb’s
law, respectively, and derive the relations between the surface stress at the continuum level and the adsorbate interactions
at the atomic/molecular level.

Consider a cantilever with a thickness h and Young modulus E as shown in Fig. 1. For simplicity, we assume that the
surfaces of the cantilever are chemically homogeneous, so the adsorbates are distributed statistically uniformly on the
upper and lower surfaces, with the mean interspacing distance Z between two adsorbates along the length direction as
illustrated in Fig. 1. The origin of the coordinate system is on the geometrical midplane and the z-axis is perpendicular to
the midplane. In this model, we also assume that the first layer of the adsorbates (adsorbates 2, 3, 5 and 6 in Fig. 1) on the
cantilever surfaces play a dominant role and the effects of the second and higher layers of the adsorbates are less important
(Dareing and Thundat, 2005; Huang et al., 2006).
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Fig. 1. A cantilever with a uniform distribution of atoms/molecules adsorbed both on the upper and lower surfaces.
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Surface stresses tu and tl exist on the upper and lower surfaces of the cantilever, respectively. Here and in the following
part, the subscripts u and l denote the quantities related to the upper and lower surfaces of the cantilever, respectively.
Depending on the state of the elastic strain, t can be expressed as (e.g., Gurtin and Murdoch, 1975)

tu ¼ au þ bueu; tl ¼ al þ blel, (1)

where a denotes the constant (strain-independent) surface stress, b is the surface modulus, and eu and el are the surface
elastic strains. In particular, a constant surface stress a40 means that the surface tends to contract and the surface is said
to be in tension. On the contrary, ao0 indicates that the surface tends to expand and is said to be in compression. The
strain-independent surface stress auðlÞ and the surface modulus buðlÞ can be expressed as

auðlÞ ¼ a0
uðlÞ þ DauðlÞ; buðlÞ ¼ b0

uðlÞ þDbuðlÞ, (2)

where the quantities with a superscript 0 denote the values before the adsorption, and D denotes the changes caused by the
adsorption.

We first consider the vdW interaction based on the model used by Dareing and Thundat (2005) and Huang et al. (2006).
The vdW interaction between the adsorbates (2, 3, 5 and 6) and the surfaces atoms (1 and 4), and that between the
adsorbates themselves are depicted by the following Lennard-Jones (6-12-type) potential (cf. Fig. 1):

VðrijÞ ¼ �
A

r6
ij

þ
B

r12
ij

, (3)

where rij is the distance between atoms i and j, and A and B are the Lennard-Jones constants. The distances between
adjacent atoms are

r23 ¼ Z 1þ e h

2
þ x

� �� �
; r12 ¼ r13 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r23

2

� �2

þ x2

r
,

r56 ¼ Z 1þ e � h

2
� x

� �� �
; r45 ¼ r46 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r56

2

� �2

þ x2

r
, (4)

where Z is taken as the space between two adsorbates (the reciprocal of Z is defined as the number density under the
undeformed state (number per length), x is the distance between the adsorbates and surfaces (cf. Fig. 1), and eðh=2þ xÞ and
eð�h=2� xÞ are the values of the strains at z ¼ h=2þ x and z ¼ �h=2� x, respectively.

2.1. Strain-independent surface stress due to vdW interaction

We first establish the connection between the strain-independent surface stress a in Eq. (1) and the vdW interactions of
the distributed adsorbates. Suppose that the adsorbates are only located on one surface of the cantilever (upper surface
here) and there are only the surface stress a0

u and surface modulus b0
u on the upper surface before adsorption. According to

Eq. (3), the potential due to the vdW interaction over the length L of the cantilever is

UiðKÞ ¼

Z
L

R
Z
½Vðr12Þ þ Vðr13Þ þ Vðr23Þ�dx, (5)

where R is the number density under the undeformed state (number per width), Vðr12Þ ¼ Vðr13Þ ¼ �A1=r6
12 þ B1=r12

12 and
Vðr23Þ ¼ �A2=r6

23 þ B2=r12
23. K denotes the curvature. Here, A1 and B1 are L-J constants for the interaction between the

adsorbates and the adjacent cantilever atoms, and A2 and B2 are L-J constants for two adjacent adsorbates. The elastic
energy (Ue1) in the bulk and upper surface per unit width over the length L is

Ue1ðKÞ ¼
1

2

Z
L

Z h=2

�h=2
sedx dzþ

Z
L

a0
ueu þ

b0
u

2
e2

u

 !
dx, (6)
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where s ¼ Ee, e ¼ zK . Here we assume that the extension of the cantilever is very small and makes little contribution to
the deformation of the cantilever, which is always true when the thickness h is larger than 2 nm (Zang and Liu, 2007).
Hence we neglect the extension of the cantilever in Eq. (6). The equilibrium state requires that the total potential energy
Upð¼ Ui þ Ue1Þ should be stationary, namely, @Up=@K ¼ 0. With the modified Stoney formula au ¼ �ðEh2

þ 4hbuÞK=6 (Zang
and Liu, 2007), it follows that

a0
u

R
þ

3ð1þ zKÞA1

Z7
1

4
ð1þ zKÞ2 þ

x
Z

� �2
" #4

þ
6A2

Z7 1þ zKð Þ
7
�

6ð1þ zKÞB1

Z13
1

4
ð1þ zKÞ2 þ

x
Z

� �2
" #7

�
12B2

Z13ð1þ zKÞ13
¼

au

R
3b0

u þ hE

4bu þ hE

 !
�

au

R
, (7)

where z ¼ h=2þ x. It is noted that if the extension of the cantilever is considered, the term ð3b0
u þ hEÞ on the right side of

Eq. (7) should be ð4b0
u þ hEÞ. Since b0

u and bu are very small compared with hE when h42 nm (Zang and Liu, 2007),
ð3b0

u þ hEÞ=ð4bu þ hEÞ � 1, which yields Eq. (7). Under the condition zK51, if we ignore zK in the left-hand side of Eq. (7),
then the relation between the adsorption-induced surface stress Dau and the interactions of the distributed adsorbates can
be obtained

Dau ¼
3R
Z7

2A2 þ
A1

r4
e

� �
�

6R
Z13

2B2 þ
B1

r7
e

� �
, (8)

where re ¼
1
4þ ðx=ZÞ

2. It is observed that Dau increases linearly with increasing attractive constants A1 and A2, while
decreases linearly with increasing repulsive constants B1 and B2. This is consistent with the properties of the surface stress,
namely, a positive surface stress tends to contract the surface and a negative one expands the surface. Since A1 and A2

(B1 and B2) are usually in the same order and x=Z � 1 when the density of adsorbates is high, from Eq. (8) we know that the
adsorbate–adsorbate interaction (A2;B2) plays a more important role than the adsorbate–surface interaction (A1;B1) in the
magnitude of the adsorption-induced surface stress.
2.2. Surface moduli due to vdW interaction

Next, we establish the relation between the vdW interactions of the adsorbates and the surface modulus b in Eq. (1).
Suppose that the same adsorbates are located on both the upper and lower surfaces uniformly (cf. Fig. 1). The potential
energy due to the vdW interaction over the length L is

UiðKÞ ¼

Z
L

R
Z ½2Vðr12Þ þ Vðr23Þ þ 2Vðr45Þ þ Vðr56Þ�dx ¼

Z
L

R
Zui dx, (9)

where Vðr45Þ ¼ �A1=r6
45 þ B1=r12

45 and Vðr56Þ ¼ �A2=r6
56 þ B2=r12

56. The elastic energy (Ue2) in the bulk and upper and lower
surfaces per unit width over L is

Ue2ðKÞ ¼
1

2

Z
L

Z h=2

�h=2
sedx dzþ

Z
L

a0ðeu þ elÞ þ
b0

2
ðe2

u þ e
2
l Þ

" #
dx, (10)

where s ¼ Ee, e ¼ zK . The kinetic energy of the adsorbates and the cantilever per unit width over L is

Ukð _wÞ ¼
1

2

Z
L

rhþ
2Rma

Z

� �
_w2 dx, (11)

where r is the mass density of the cantilever, w is the deflection of the midplane, the overdot denotes the partial derivative
with respect to time t, and ma is the mass of each adsorbate. Introducing the Lagrangian function Lðw; _w; tÞ ¼

Ukð _wÞ � UiðKÞ � Ue2ðKÞ into Hamilton’s equation d
R t2

t1
L dt ¼ 0 leads to

@2

@x2

@

@K

Eh3

24
K2
þ

b0h2

4
K2
þ
R
Zui

 !
� rhþ

2Rma

Z

� �
@2w

@t2
¼ 0. (12)

By neglecting the extension of the cantilever, expanding @ui=@K into a Taylor series with respect to K, and keeping the first
order term of K, the free vibration equation can be obtained from Eq. (12),

Eh3

12
þ

b0h2

2
þ
R
Z
@2ui

@K2

					
K¼0

 !
@4w

@x4
þ rhþ

2Rma

Z

� �
@2w

@t2
¼ 0. (13)

Recall that the vibration equation in the bending mode is given by (see Appendix B)

TD0
@4w

@x4
þ ðmþ DmÞ

@2w

@t2
¼ 0, (14)
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Fig. 2. Contours of aR�1 � 109 (a) and bR�1 � 109 (b) as functions of A0 and B0.
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in which T is the width, m and Dm are the effective mass per unit length of the cantilever and the mass loading. Comparing
Eq. (13) with the vibration equation (14), one obtains the bending stiffness per unit width D0,

D0 ¼
Eh3

12
þ

b0h2

2
þ
R
Z
@2ui

@K2

					
K¼0

, (15)

where

@2ui

@K2

					
K¼0

¼ �
3h2

2Z6
14A2 �

A1

r4
e

þ
2A1

r5
e

� �
þ

3h2

2Z12
52B2 �

2B1

r7
e

þ
7B1

r8
e

� �
. (16)

By letting Eq. (15) equal to D0 ¼ Eh3=12þ bh2=2 (Gurtin et al., 1976), the adsorption-induced surface modulus Db is
obtained

Db ¼ �
3R
Z7

14A2 �
A1

r4
e

þ
2A1

r5
e

� �
þ

3R
Z13

52B2 �
2B1

r7
e

þ
7B1

r8
e

� �
. (17)

Note that Db can be either positive or negative, depending on whether the repulsive interaction or the attractive one
dominates. Similar to Eq. (8), the adsorbate–adsorbate interaction terms in Eq. (17) dominate the adsorption-induced
surface modulus when the density of adsorbates is high. Both Eqs. (8) and (17) show that the adsorption-induced surface
stress Da and the surface modulus Db are functions of the L-J constants (adsorption mechanism) and the location of
adsorbates (surface coverage), and imply that the surface stress provides an insight into the adsorbate interactions as the
density of adsorbates varies.

Next, we show some numerical results of the surface stress due to the vdW interaction. According to Eqs. (8) and (17),
the contours of the change âð¼ DaR�1 � 109

Þ of the strain-independent surface stress, and the change b̂ð¼ DbR�1 � 109
Þ

of the surface modulus as functions of the normalized L-J constants A0 and B0 are shown in Figs. 2(a) and (b). We take
x ¼ 0:282 nm and Z ¼ 0:324 nm as have been used by Zhang et al. (2008), and the normalized L-J constants A0 and B0 are
defined by A1

0 ¼ A2
0 � A0 and B1

0 ¼ B2
0 � B0 in which A1 ¼ A1

0 � 10�77 J m6, A2 ¼ A2
0 � 10�77J m6, B1 ¼ B1

0 � 10�134 J m12 and
B2 ¼ B2

0 � 10�134 J m12. The range of constants A0 and B0 considered in Fig. 2 are typical for different molecular structures,
i.e., A0 2 ½0:02;10� and B0 2 ½0:02;4� (Rappé et al., 1992). If the number density R is taken as the reciprocal of Z (R ¼ 1=Z),
the constant surface stress change (Da) induced by adsorption varies from about �4:5 to 6 N=m (â varies from �1:5 to 2 N),
as shown in Fig. 2(a). In the range of A0 2 ½0:02;0:15� and B0 2 ½0:02;0:15� which are the representative values of the
adsorption of O atoms on a solid surface, the adsorption-induced surface stress is in the order of 0.1 N/m.

As shown in Fig. 2(b), the change of the adsorption-induced surface modulus Db depicted by the L-J potential is about
1 N=m, which quantitatively agrees with the magnitude ð�1 to �0:1 N=mÞ of surface modulus in the paper of Lu et al.
(2005). Once Db is known, the frequency shift induced by the adsorption can be predicted by Eqs. (25) and (27) derived in
Section 4. From Figs. 2(a) and (b), it is clear that when the attractive interaction dominates, a tensile constant surface stress
and negative surface modulus are induced. The negative surface modulus will decrease the resonance frequency.
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Fig. 3. Schematic illustration of adsorbates situated on the surface of a cantilever, where the alkanethiol molecules are adsorbed on the Au(111) surface.
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3. Surface stress due to Coulomb interaction

Besides the vdW interaction, the Coulomb interaction is another important mechanism for the adsorption of small
molecules and gas atoms, especially, when there exist charges or charge transfers in the considered system. It has been
reported that the sulfur headgroup chemisorbs to the Au surface via the formation of Au–S bonds and the alkyl chains
interact through the vdW attraction (Nuzzo et al., 1987). Though the vdW interaction between the alkyl chains results in
the tilt of the chains, it has little contributions to the adsorption-induced surface stress (Berger et al., 1997; Godin, 2004).
Moreover, Au–S bonds result in a partial charge transfer of approximately 0.3e between the Au and S atoms (Grönbeck
et al., 2000). Due to the Coulomb interaction, the forces exerted between negatively charged sulfur headgroups and
positively charged gold atoms contribute to the surface stress. To investigate the relation between the surface stress and
the Coulomb interactions of adsorbates, we take the self-assembly of alkanethiols on the Au(111) surface in the vacuum
condition as an example. The overlaying structure of alkanethiolates on the Au(111) surface can be described, using
Wood’s notation, as a ð

ffiffiffi
3
p
�

ffiffiffi
3
p
ÞR30� overlayer of which a cð4� 2Þ superlattice can also be observed sometimes

(Yourdshahyan and Rappe, 2002). Since the ð
ffiffiffi
3
p
�

ffiffiffi
3
p
ÞR30� structure is the primary structure, our investigation is focused

on it. For simplicity, we use the one-dimensional parallel configuration (see Fig. 3) to estimate the contribution of partial
charge interactions to the surface stress, and this configuration can be extended to the case of cð4� 2Þ superlattice. In this
model, the partial charge transfer at the Au–S bond is treated as two point charges (Godin, 2004). As depicted in Fig. 3, the
adsorbates (2, 3, 6 and 20) are partially negatively charged sulfur headgroups while the surface atoms (1, 4, 5 and 10) are
positively charged gold atoms.

The electrostatic energy, WðrjkÞ, for the Coulomb interaction between two electric charges is given by

WðrjkÞ ¼
1

4p�0

qjqk

rjk
, (18)

where rjk is the distance between charges j and k, qð¼ eZÞ is the electric charge of the corresponding particle,
eð¼ 1:602� 10�19 CÞ is the elementary charge and Z is the ionic valency, and �0ð¼ 8:8542� 10�12 C2=N m2Þ denotes the
permittivity of free space. For the like charges, WðrjkÞ is positive, while for the unlike charges it is negative. The long-range
Coulomb energy for a system of N charges is given by W ¼

PN
j¼1 Wj, where Wj is the electrostatic interaction energy of the

charge j with all the other charges, and can be expressed as

Wj ¼
1

2
�

1

4p�0

XN

k¼1;kaj

qjqk

rjk
. (19)

Similar to Eq. (5), if the adsorbates are only located on the upper surface, the potential Uið¼ RðW1 þW2ÞÞ due to the
Coulomb interaction over the length Z is

Ui ¼
Rq2

8p�0

X1
n¼1

2

nr14
þ

2

nr23
�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

14n2 þ x2
q �

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

23n2 þ x2
q �

2

x

0
B@

1
CA, (20)

where W1 and W2 are the electrostatic interaction energies of the Au atom (atom 1) and the sulfur headgroup (adsorbate 2,
cf., Eq. (19)). r14 ¼ Z½1þ eðh=2Þ�, r23 is given in Eq. (4), and x is the distance between the sulfur headgroup and the gold
surface.



ARTICLE IN PRESS

X. Yi, H.L. Duan / J. Mech. Phys. Solids 57 (2009) 1254–12661260
With the elastic energy Ue1 in Eq. (6) and the Coulomb interaction in Eq. (20), the total energy is Up ¼ Ui þ Ue1. From the
relation @Up=@K ¼ 0 and following the similar procedure as shown in Section 2.1, we obtain the expression of the change Da

of the strain-independent surface stress due to the electrostatic interaction,

Da ¼
Rq2

2p�0Z2

X1
n¼1

1

n
�1þ 1þ

x2

Z2n2

 !�3=2
2
4

3
5, (21)

where Z is the distance between adjacent adsorbates (sulfur headgroups) under the undeformed state.
When the same adsorbates are situated on the two surfaces of the cantilever, the potential energy due to the Coulomb

interaction over the length Z is Ui ¼ RðW1 þW2 þW10 þW20 Þ, where Wj (j ¼ 1;2;10;20) is given in Eq. (19). Using Hamilton’s
equation, the elastic energy and kinetic energies (cf. Eqs. (10) and (11)), and following the procedure in Section 2.2, the surface
modulus change Db can be obtained:

Db ¼
Rq2

2p�0Z2

X1
n¼1

1

n
2� 3 1þ

x2

Z2n2

 !�5=2

þ 1þ
x2

Z2n2

 !�3=2
2
4

3
5. (22)

Due to the Coulomb interactions between the charged Au atoms and S headgroups, the adsorption of alkanethiols on the
Au(111) surface results in the surface stress. The charge transfer from Au to S is about q ¼ 0:3e for the adsorption of thiols
(Grönbeck et al., 2000), the distance between the sulfur headgroups and Au(111) surface is approximately 0.2 nm
(Yourdshahyan and Rappe, 2002), the distance Z between adjacent sulfur headgroups is about

ffiffiffi
3
p

aAu, and the number
density (R) of sulfur headgroups is about 2=ð3aAuÞ (the lattice constant of Au is aAu ¼ 2:884 Å). According to Eq. (21), the
change of the strain-independent surface stress due to the adsorption of thiols on the Au(111) surface is Da ¼ �0:095 N=m,
which is in the order of 0.011–0:019 N=m in the experiment done by Berger et al. (1997). From Eq. (21), the change of the
surface modulus due to the adsorption of thiols on the Au(111) surface is Db ¼ 0:3522 N=m.

4. Mechanics of microcantilevers based on adsorption-induced surface stress

4.1. Static and dynamic properties

To investigate the impact of the adsorption-induced surface stress on the static and dynamic properties of
microcantilevers, we consider a classical thin film/substrate structure shown in Fig. 4, which has a wide range
of applications as microelectromechanical components (Berger et al., 1997; Li et al., 1999; Wu et al., 2001; Kramer et al.,
2004). The thickness and Young modulus of the film (upper layer) are hf and Ef , respectively, and those of the substrate
(lower layer) are hs and Es. A perfect bonding is assumed between the two layers. The coordinate system is defined such
that the interface of the film and substrate is located at z ¼ 0, and the upper and lower surfaces are located at z ¼ hf and
z ¼ �hs, respectively. In the film, there is an eigenstrain e�ðzÞ as a function of coordinate z. The eigenstrain denotes the
mismatch strain that may arise from the different lattice constants and/or the hygro-thermal expansion coefficients
between the film and the substrate. We regard the two surfaces and two bulk layers as a whole system; hence the surface
stress t and the bulk stress in the cross-section are in equilibrium.

We first analyze the deformation of the two-layer cantilever due to the eigenstrain e� and the surface stress t
simultaneously. The detailed process to derive the static deformation is given in Appendix A. According to the equilibrium
equations of the cantilever, i.e., the zero resultant forces due to the uniform strain and bending strain components, and the
zero bending moment, the curvature K due to the eigenstrain and the surface stress can be obtained:

K ¼
6Ef

R hf

0 ðz� hbÞe�dzþ 6ðhf � hbÞbue�ðhf Þ þ 3c0hf hbðEf þ EsÞ þ 3G1

6ðhs þ hbÞ
2bl þ 6ðhf � hbÞ

2bu þ 2G2

, (23)
Fig. 4. Schematic diagram of a two-layer cantilever.
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where

G1 ¼ ðhs þ hbÞð2al þ 2c0bl þ c0hsEsÞ � ðhf � hbÞð2au þ 2c0bu þ c0hf Ef Þ,

G2 ¼ hf ðh
2
f � 3hf hb þ 3h2

bÞEf þ hsðh
2
s þ 3hshb þ 3h2

bÞEs, (24)

e�ðhf Þ denotes the eigenstrain at z ¼ hf , and c0 and hb are given in Eqs. (A.6) and (A.7). Non-uniform eigenstrain can be used
to simulate the strain relaxation which is important to the growth of strained islands and thin films (Freund, 1996; Huang
et al., 2005). If the eigenstrain is uniform, Eq. (24) reduces to a modified Timoshenko formula (Eq. (9) in the paper of Zang
and Liu, 2008), which is obtained by the scheme of the strain energy minimization. In Eq. (23), the assumption in the
classical Stoney (1909) formula that the film thickness is much less than that of the substrate (hf =hs51) is abandoned.
Under the condition hf =hs51 and a constant eigenstrain (or a constant surface stress), Eq. (23) reduces to the classical
Stoney formula. Eq. (23) can be regarded as a generalized Stoney formula.

Next, we analyze the dynamic property of the two-layer cantilever taking into account the surface modulus and the
adsorption mass simultaneously. The bending stiffness per unit width, D0, of the two-layer cantilever in the vibration
equation as depicted in Eq. (14) is

D0 ¼
Ef hf þ 4bu

12G3
½Eshsð3h2

f þ 3hf hs þ h2
s Þ þ Ef h3

f � þ
ðhf þ hsÞ

2bubl

G3
þ

Eshs þ 4bl

12G3
½Ef hf ðh

2
f þ 3hf hs þ 3h2

s Þ þ Esh
3
s �, (25)

where G3 ¼ bu þ bl þ hf Ef þ hsEs. The details of the derivation for Eq. (25) are given in Appendix B. The solution to Eq. (14)
gives the resonance frequency (~f i) of the ith mode of the cantilever clamped on one end with the effects of the changes of
the mass and stiffness,

~f i ¼
1

2p
li

L

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðDþ DDÞ

mþ Dm

s
, (26)

where L denotes the length of cantilever, li represents the eigenvalue of the equation cosli cosh li þ 1 ¼ 0, DDð¼ D0 � DÞ is
the change of the bending stiffness, and D is given in Eq. (25) by letting bu ¼ bl ¼ 0. If DD ¼ Dm ¼ 0, Eq. (26) reduces to the
resonance frequency f i without the mass loading and the change of bending stiffness.

If DD5D and Dm5m, the frequency shift (Df i ¼
~f i � f i) is

Df i �
1

4p
li

L

� �2
ffiffiffiffiffiffi
TD

m

r
DD

D
�
Dm

m

� �
. (27)

Eqs. (14) and (27) show that the frequency shift is determined by a combination of the mass loading and the change of the
bending stiffness, while the eigenstrain e�ðzÞ and the strain-independent surface stress a do not influence the resonance
frequency. Similar phenomena exist in the thermoelastic problem of microscale beam resonators (Sun et al., 2006). Based
on the dynamic characteristics of the cantilevers with the surface stress and mass loading, the cantilever sensors can be
divided into three categories: (I) mass sensors, whose dynamic response is influenced by the adsorbed mass, and its
frequency shift is Df ðmÞi ¼ �Dm=2mf i; (II) surface stress sensors, whose dynamic response is influenced by the surface
modulus, and the corresponding frequency shift is Df ðsÞi ¼ DD=2Df i; (III) mass and surface stress sensors, whose dynamic
response is influenced by the two factors simultaneously, and the frequency shift is Df i ¼ Df ðmÞi þ Df ðsÞi depicted by Eqs. (25)
and (27). For example, Chen et al. (1995) showed by experiments that both the adsorbed mass and surface stress affect the
resonance frequency of a gelatin-coated cantilever when it is exposed to water vapor.

From the expressions of Df ðsÞi , we can conclude that the frequency shift Df ðsÞi =f i increases with the increase of the surface
modulus and decreases with the increase of the thickness and the Young moduli of the bulk layers. If Ef ¼ Es ¼ E, h ¼

hs þ hf and bl ¼ 0, Df ðsÞi can be particularly expressed as

Df ðsÞi

f i

¼
3

2 1þ
hE

bu

� �. (28)

For this case, Df ðsÞi =f i is a function of a non-dimensional parameter hE=bu.
As indicated in Eqs. (25) and (27), for surface stress sensors and mass and surface stress sensors, the strain-independent

surface stress a does not change the resonance frequency. This conclusion is different from some results in the literature. In
some models, the dynamic analysis of the cantilever is conducted on the bulk layer, while the surface stress a is simply
expressed as an equivalent external axial force ðau þ alÞT (Lagowski et al., 1975; Saya et al., 2004) or ðau þ alÞL (Chen et al.,
1995; McFarland et al., 2005; Dorignac et al., 2006; Hwang et al., 2006). However, as made clear by Gurtin et al. (1976), the
distributed loading q ¼ ðau þ alÞT@

2w=@x2 by the surface stress cancels the effect of the equivalent external axial force on
the resonance frequency. Hence, the strain-independent surface stress has no effect on the frequency shift (Gurtin et al.,
1976), which is shown in Eqs. (25) and (27). In the sequel, the application of the theoretical framework in Sections 2 and 3
to the composite cantilever sensor shown in Fig. 4 is demonstrated in detail by some examples.
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Fig. 5. Variations of the bending curvature (a) and normalized frequency shift (b) with substrate thickness hs due to the vdW interaction; (c) ratio of

frequency shifts due to surface stress ðDf ðsÞi Þ and mass loading ðDf ðmÞi Þ verse normalized substrate thickness.
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4.2. Numerical results

The curvature and normalized frequency shift of a cantilever consisting of a Si substrate and a Au film due to the vdW
interaction of adsorbates are plotted in Figs. 5(a) and (b). The parameters of the cantilever are: Es ¼ 180 GPa,
rs ¼ 2:33 g=cm3, Ef ¼ 90 GPa, hf ¼ 20 nm, rf ¼ 19:3 g=cm3. Two cases are considered, namely, mercury (Hg) atoms on
Au(10 0) with A1

0 ¼ A2
0 ¼ 2:8377, B1

0 ¼ B2
0 ¼ 1:943, x ¼ 0:45 nm, Z ¼ 0:4 nm (Dareing and Thundat, 2005); oxygen (O) atoms

on Au(10 0) surface with A1
0 ¼ 0:103, B1

0 ¼ 0:07885, A2
0 ¼ 0:1534, B2

0 ¼ 0:141, x ¼ 0:282 nm, Z ¼ 0:324 nm (A1
0, A2

0, B1
0 and B2

0

are defined in Section 2) (Rappé et al., 1992; Zhang et al., 2008). The mass of a Hg atom is ma ¼ 201Da and that of an oxygen
atom is ma ¼ 16Da (where 1Da ¼ 1:66� 10�27kg). According to Eqs. (8), (17), (27) and (A.10), the bending curvature K and
the normalized frequency shift Df i=f i as functions of the thickness of substrate are shown in Figs. 5(a) and (b). Here we
assume that the surface stresses on the upper and lower surfaces are zero before adsorption, taking R ¼ Z�1 and
Dm=m ¼ ma=½Z2ðrf hf þ rshsÞ�. As shown in Figs. 5(a) and (b), for the adsorption of mercury vapor on gold surface, Ko0 and
Df i=f io0 without the consideration of mass loading effect, indicating that the adsorption-induced surface stress a is
positive, whereas the surface modulus b is negative. For the case of O/Au(10 0), the adsorption-induced surface stress a is
negative but the surface modulus b is positive. It is seen that K increases as the thickness hs decreases. With consideration
of the atom mass, Df i=f i changes significantly after the adsorption of Hg or O atoms on gold surface as shown in Fig. 5(b),
which indicates that the mass of the adsorbates plays an important role in changing the resonant frequency besides the
adsorbate interactions. To elucidate the effects of mass and surface modulus clearly, Fig. 5(c) shows the ratio Df ðsÞi =Df ðmÞi ,
namely, the ratio of the frequency shift Df ðsÞi due to the surface modulus to that Df ðmÞi due to the mass, as a function of hs=hf .
It is seen that the ratio Df ðsÞi =Df ðmÞi depends on the type of the adsorbate and the interacting properties. For example, in the
case of O/Au(10 0), the influence of the adsorption-induced surface modulus on Df i is larger than that of the mass on Df i

under hso4hf . As hs becomes large, Df ðsÞi =Df ðmÞi reaches a value about �0:5, suggesting that the effects of the mass and the
adsorbate interactions are comparably important even for large hs=hf . For the Hg/Au(10 0) system, the mass loading effect
dominates the frequency shift and the influence of Hg atom interactions can be neglected.

For the Coulomb interaction, we consider butanethiol molecules adsorbed on the gold surface of the cantilever in Fig. 4.
The variations of K and Df i=f i with the space Z of adsorbates for q ¼ 0:3e is shown in Figs. 6(a) and (b). The cantilever
parameters are the same as those used for the vdW interaction in Fig. 5, except hs ¼ 200 nm. The mass of a butanethiol
molecule, ma, is about 89Da, and Dm=m ¼ Rma=½Zðrf hf þ rshsÞ�. As shown in Figs. 6(a) and (b), the curvature K and the
normalized frequency shift Df i=f i decrease with the increase of the adsorbate space Z, indicating that the number density
of adsorbates has a significant effect on the static and dynamic properties of cantilever sensors. As the number density R
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Fig. 6. Variations of the curvature (a) and normalized frequency shift (b) with adsorbate space Z for a two-layer cantilever due to the Coulomb interaction

between the adsorbates; (c) ratio of frequency shifts due to surface stress ðDf ðsÞi Þ and mass loading ðDf ðmÞi Þ as a function of hs=hf .
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increases, the bending curvature and resonance frequency shift become large. K40 and Df i=f i40 without the
consideration of mass loading effect indicate that the adsorption-induced surface stress a is negative and the surface
modulus b is positive. In Fig. 6(b), we can see that although the Coulomb interaction has an influence on the resonance
frequency shift, the large resonance frequency shift comes from the mass of the adsorbates. Fig. 6(c) illustrates the
dependence of ratio Df ðsÞi =Df ðmÞi on hs=hf for Z ¼ 0:3 and 0.45 nm. It is seen that for the case of low density of adsorbates
(Z ¼ 0:45 nm), the mass effect dominates the dynamic properties of cantilevers. For the high density of adsorbates
(Z ¼ 0:3 nm), the surface modulus resulting from the adsorbate interactions contributes a lot to the frequency shift,
especially for a small hs=hf .

5. Conclusions

The connection between the surface stress in the continuum level and the adsorbate interactions in the molecular level,
including the van der Waals interaction and Coulomb interaction, is established by considering the interaction energy, the
elastic energy and kinetic energy of a cantilever. Then a theoretical framework is presented to analyze the deflection and
resonance frequency of a two-layer cantilever due to the eigenstrain, surface stress and adsorption mass, simultaneously.
The mass and number density of adsorbates, the cantilever size and the adsorption mechanism play an important role in
the variations of the bending curvature and resonance frequency of cantilevers. The magnitude of resonance frequency shift
due to the mass loading and the surface modulus can be comparable (smaller, larger or in the same order) depending on the
type of the adsorbate, the interacting properties and the ratio of the thicknesses of the substrate and the film. The present
theoretical framework quantifies the mechanisms of the adsorption-induced surface stress, and thus provides guidelines to
the analysis of the sensitivities, and the identification of the detected substance in the design and application of micro- and
nanocantilever sensors.
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Appendix A. Static deformation due to surface stress and eigenstrain

We assume that the cantilever is so slender (T; Lbhf þ hs) that it is accurate enough to use the Bernoulli–Euler beam
theory. The strain in the cantilever can be decomposed into a uniform component and a bending component (Hsueh and
Evans, 1985),

e ¼ c0 þ ðz� hbÞK ð�hs 	 z 	 hf Þ, (A.1)

where c0 is the uniform strain component, hb denotes the position of the bending axis, and K is the curvature of the bending
axis. It is noted that the bending axis is the line where the bending strain component is zero, whereas the conventional
neutral axis is defined as the line where the total strain is zero.

The stresses sf and ss in the film and substrate can be obtained from Hooke’s law,

sf ¼ Ef ðef � e�Þ; ss ¼ Eses, (A.2)

where E is the Young modulus, and the subscripts f and s identify the quantities related to the film and substrate,
respectively. In this paper, we use the one-dimensional model for simplicity, but the approach holds for the two-
dimensional condition. If the two-layer structure is a plate rather than a cantilever, and e�ðzÞ is the in-plane biaxial
eigenstrain, then E should be replaced by the biaxial modulus E=ð1� nÞ, where n is the Poisson ratio.

According to the equilibrium equations of the cantilever, i.e., the zero resultant forces (SPc0
¼ 0 and SPb ¼ 0) due to the

uniform strain and bending strain components, and the zero bending moment (SM ¼ 0)

SPc0
¼

Z hf

0
Ef ðc0 � e�Þdzþ

Z 0

�hs

Esc0 dzþ ðau þ alÞ þ ðbu þ blÞc0 � bue�ðhf Þ, (A.3)

SPb ¼

Z hf

0
Ef ðz� hbÞK dzþ

Z 0

�hs

Esðz� hbÞK dzþ buðhf � hbÞK � blðhs þ hbÞK , (A.4)

SM ¼

Z hf

0
sf ðz� hbÞdzþ

Z 0

�hs

ssðz� hbÞdzþ tuðhf � hbÞ � tlðhs þ hbÞ, (A.5)

the uniform strain component c0, the position of the bending axis hb, and the curvature K can be obtained. The curvature K

is given by Eqs. (23) and (24), and c0 and hb are given by

c0 ¼
Ef

R hf

0 e� dzþ bue�ðhf Þ � ðau þ alÞ

G3
, (A.6)

hb ¼
Ef h2

f � Esh
2
s þ 2hf bu � 2hsbl

2G3
, (A.7)

where e�ðhf Þ denotes the eigenstrain at the upper surface z ¼ hf . Note that the position of the bending axis is independent
of the eigenstrain e� and constant surface stress a.

A.1. Curvature due to eigenstrain

Letting the surface stresses tu and tl in Eq. (23) vanish, the curvature induced by the eigenstrain e�ðzÞ is

K ¼
6Ef ½2ðEshs þ Ef hf Þ

R hf

0 ze� dzþ ðEsh
2
s � Ef h2

f Þ
R hf

0 e� dz�

h4
f E2

f þ h4
s E2

s þ 2Ef Eshf hsð2h2
s þ 3hf hs þ 2h2

f Þ
. (A.8)

For a uniform eigenstrain (e� ¼const.), Eq. (A.8) becomes (Timoshenko, 1925; Freund, 1996)

K ¼
6Ef Eshf hsðhf þ hsÞe�

h4
f E2

f þ h4
s E2

s þ 2Ef Eshf hsð2h2
s þ 3hf hs þ 2h2

f Þ
. (A.9)

For hf5hs, Eq. (A.9) reduces to the Stoney formula in terms of e�, i.e., K ¼ 6Ef hf e�=Esh
2
s .

A.2. Curvature due to surface stress

When e�ðzÞ ¼ 0, Eq. (23) reduces to

K ¼
3c0hf hbðEf þ EsÞ þ 3G1

6ðhs þ hbÞ
2bl þ 6ðhf � hbÞ

2bu þ 2G2

, (A.10)
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where G1 and G2 are given in Eq. (24) and

c0 ¼ �
au þ al

G3
; hb ¼

Ef h2
f � Esh

2
s þ 2hf bu � 2hsbl

2G3
. (A.11)

If we only consider the strain-independent surface stresses au and al, the curvature described by Eq. (A.10) becomes

K ¼
6½ðal � auÞðh

2
f Ef þ h2

s EsÞ þ 2hf hsðalEf � auEsÞ�

h4
f E2

f þ h4
s E2

s þ 2Ef Eshf hsð2h2
s þ 3hf hs þ 2h2

f Þ
. (A.12)

With hf5hs and bu ¼ bl ¼ 0, the curvature in Eq. (A.12) reduces to the classical Stoney formula in terms of the surface stress
a, i.e., Da ¼ au � al ¼ �Esh

2
s K=6. The elimination of the bending curvature K from Eqs. (A.9) and (A.12) gives the equivalent

relation between the uniform eigenstrain e� and the surface stress a, i.e.,

e� ¼
ðal � auÞðh

2
f Ef þ h2

s EsÞ

Ef Esðhf þ hsÞhf hs
þ

2ðalEf � auEsÞ

Ef Esðhf þ hsÞ
. (A.13)

For hf5hs, Eq. (A.13) becomes Da ¼ �Ef hf e�.

Appendix B. Resonance frequency due to adsorption mass and surface stress

We consider a two-layer cantilever subjected to the surface stress t and the adsorption mass together. Neglecting the
damping effect and shear deformation, the vibration equation of the cantilever loaded by a constant axial end force (F) is
(Timoshenko et al., 1974)

�
@2M

@x2
� F

@2w

@x2
þ ðmþ DmÞ

@2w

@t2
¼ 0, (B.1)

where M is the bending moment, mð¼ rf Af þ rsAsÞ, and Dm are the effective mass per unit length of the cantilever and
mass loading, respectively (the mass of cantilever is mc ¼ mL, and the total mass loading is Dmt ¼ DmLÞ.

In the absence of external force (F ¼ 0), Eq. (B.1) becomes

�
@2M

@x2
þ ðmþ DmÞ

@2w

@t2
¼ 0. (B.2)

Using Eq. (A.5) and the relation K ¼ �@2w=@x2, the bending moment M on the cross-section of the two-layer cantilever is

M

T
¼

Z hf

0
sf ðz� hbÞdzþ

Z 0

�hs

ssðz� hbÞdzþ tuðhf � hbÞ � tlðhs þ hbÞ

¼ � ðhs þ hbÞ
2bl þ ðhf � hbÞ

2bu þ
1

3
ðEf h3

f þ Esh
3
s Þ � Ef hf hbðhf � hbÞ þ Eshshbðhs þ hbÞ

� �
@2w

@x2
�Pðe�; c0;hbÞ, (B.3)

where hb is given in Eq. (A.7), T is the width of the cantilever and Pðe�; c0;hbÞ is a function of e�, c0 and hb. By substituting hb

by Eq. (A.7), Eq. (B.3) can also be expressed as

M ¼ �TD0
@2w

@x2
þ const., (B.4)

where D0 is given by Eq. (25).
In the case of Ef ¼ Es ¼ E, Eq. (25) gives the expression of the bending stiffness of a homogeneous cantilever with the

effect of the surface modulus,

D0 ¼
h4E2

þ 4Eh3
ðbu þ blÞ þ 12h2bubl

12ðbu þ bl þ hEÞ
. (B.5)

If the surface moduli of the upper and lower surfaces are equal, i.e. bu ¼ bl ¼ b, Eq. (B.5) reduces to the result
(D0 ¼ Eh3=12þ bh2=2) given by Gurtin et al. (1976).

References

Berger, R., Delamarche, E., Lang, H.P., Gerber, C., Gimzewski, J.K., Meyer, E., Güntherodt, H.-J., 1997. Surface stress in the self-assembly of alkanethiols on
gold. Science 276, 2021–2024.
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